
oc-
The JDBCTM API is the JavaTM platform standard call-level API for database access. This d
ument contains the final specification of the core JDBC 2.1 API.

Please send technical comments on this specification to:

jdbc@eng.sun.com

Please send product and business questions to:

jdbc-business@eng.sun.com

Copyright 1999 by Sun Microsystems Inc.

901 San Antonio Road, Palo Alto, CA 94303.

All rights reserved.

Sun Microsystems Inc.

JDBCTM 2.1 API

Seth White and Mark Hapner

October 5, 1999 4:39 pm
Version 1.1

JDBC 2.1 Core API

ject
ata

s, Java
rks of
RESTRICTED RIGHTS: Use, duplication or disclosure by the government is sub
to the restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical D
and Computer Software Clause as DFARS 252.227-7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, Java, JavaBeans, Enterprise JavaBean
Naming and Directory Interface, and JDBC are trademarks or registered tradema
Sun Microsystems, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MECHANTABILITY, FITNESS FOR A PAR-
TICULAR USE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TY-
POGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC., MAY
MAKE NEW IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/
OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.
Sun Microsystems Inc. 2 October 5, 1999

JDBC 2.1 Core API
Contents

1 Introduction 4

2 Goals 5

3 Overview of New Features 7

4 What’s Actually Changed 9

5 Result Set Enhancements 12

6 Batch Updates 22

7 Persistence for Java Objects 26

8 New SQL Types 30

9 Customizing SQL Types 36

10 Other New Features and Changes 46

11 Clarifications 49

AppendixA:Rejected Design Choices 51

AppendixB:Additional Suggestions 52

AppendixC:Change History 55

AppendixD:Motivation for the SQL99 Proposal 58
Sun Microsystems Inc. 3 October 5, 1999

JDBC 2.1 Core API

ased
who
ping

elop-

ts.
Java
nol-

the
that

put
urage

DBC
ive an

de-
2.0

API.

over
con-
man
the
1 Introduction

1.1 Preface

This document contains the final specification of the JDBCTM 2.1 Core API.

1.2 Target audience

The target audience for this document includes vendors of JDBC technology-b
drivers (JDBC drivers) whose products implement the JDBC API, other vendors
want to provide support for the JDBC API in their products, and end-users develo
applications using the JDBC API.

1.3 Background

The initial release of the JDBC API has been well received by both end-users dev

ing database applications using JavaTM technology, and vendors of database produc
Due to its wide acceptance, the JDBC API has become an API that is core to the
platform. We would like to thank everyone who has worked on or used JDBC tech
ogy for helping to make it successful.

Since the first release of the JDBC API, we have received valuable feedback from
members of the community of JDBC technology users regarding new features
would make useful additions to the API. We are continuing to solicit additional in
and ideas from everyone who has an interest in JDBC technology, and we enco
everyone to send us their requests and ideas for new features and directions.

1.4 Organization

The JDBC API has been separated into two parts: the core JDBC 2.1 API and the J
2.0 Optional Package API. Chapters 2 and 3 of this document discuss goals and g
overview of the JDBC API as a whole. The remainder of the document contains a
tailed specification of the core JDBC 2.1 API. A detailed specification for the JDBC
Optional Package API is presented in a separate document.

1.5 Terminology

In this document we refer to the previous release of the JDBC API as the JDBC 1.0

1.6 Acknowledgments

The JDBC API design effort has been a broad industry effort that has involved
twenty partner companies. We would like to thank the many reviewers who have
tributed to previous versions of the specification. We especially thank Gray Closs
and Stefan Dessloch for making the initial proposal for adding SQL99 types to
JDBC API.
Sun Microsystems Inc. 4 October 5, 1999

JDBC 2.1 Core API

use.
which
er-
level
trans-

ming
an be
e to
ality.

them
hine
s of
ight-

new
Ser-

ese

API.
plat-
are
JDBC
ess is
to the
es be-
2 Goals

This section outlines the main goals for the JDBC API.

2.1 Leverage the strengths of the JDBC 1.0 and Java platform APIs

One of the important strengths of the JDBC 1.0 API is that it is relatively easy to
This ease-of-use is in some respects due to the Java programming language,
gives JDBC technology a “hi-level” flavor, despite the fact that it is a call-level int
face. For example, users of the JDBC 1.0 API aren’t required to understand low-
memory-management details, or byte-alignment, or data alignment details when
ferring data to and from the database.

Despite being easy to use, the JDBC API gives developers using the Java program
language access to a powerful set of database capabilities. JDBC technology c
used to build sophisticated, real-world applications. The JDBC API must continu
strike the proper balance between ease-of-use and providing a rich set of function

2.2 Maintain compatibility with existing applications and drivers

Existing JDBC drivers and the Java programming language applications that use
shall continue to work—unchanged—in an implementation of the Java virtual mac
that supports the JDBC 2.1 API. Applications that don’t use any of the new feature
the JDBC 2.1 API do not require any changes to continue running. It should be stra
forward for existing applications to migrate to the new JDBC API.

2.3 Keep pace with the Java platform

The Java platform has matured since the first release of the JDBC API. Some of the
Java platform APIs that are important for the JDBC API are: the Java Transaction

vice (JTS), the Java Naming and Directory InterfaceTM (JNDI), JavaBeansTM, Enter-

prise JavaBeansTM(EJB), and internationalization. The JDBC API must leverage th
other Java platform APIs and support them well.

2.4 JavaBeans

The most important new Java platform API for the JDBC API is the JavaBeans
When the JDBC API was first released there was no component model for the Java
form. The JDBC API should provide a foundation for developers creating data-aw
components written to the JavaBeans architecture (JavaBeans components). The
API is a good place to provide this standard component foundation since data acc
a ubiquitous aspect of most applications. A new RowSet type has been added
JDBC Optional Package API to meet this goal. Chapter 4 discusses the differenc
tween the core JDBC 2.1 and JDBC 2.0 Optional Package APIs.
Sun Microsystems Inc. 5 October 5, 1999

JDBC 2.1 Core API

by the
arge

s.

nces
pports
va ob-

data,
ited

en the
2.5 Advanced Database Features

There are some important features provided by databases that are not supported
JDBC 1.0 API, like scrollable cursors and advanced data types, such as Binary L
OBjects (BLOBS). The JDBC 2.1 core API must support these advanced feature

The JDBC API should provide a framework that allows developers to access insta
of user-defined data types that are stored in a database. The JDBC 2.1 core API su
both databases that provide storage for Java programming language objects (Ja
jects), and databases that store SQL99 structured types.

The JDBC API should provide some basic support for access to non-SQL tabular
such as data stored in files. The JDBC Optional Package API provides some lim
support for tabular data. See Chapter 4 for a discussion of the differences betwe
core JDBC 2.1 and JDBC 2.0 Optional Package APIs.
Sun Microsystems Inc. 6 October 5, 1999

JDBC 2.1 Core API

JDBC

rec-
by

tion,
pos-
y to

ents
matic

ecuted.

va ob-
ctured
map-

y not
data

ase us-

wset
eated
isual

to a
ction

e that
base.

icular
3 Overview of New Features

This chapter contains an overview of the new features that are being added to the
API.

3.1 Result set enhancements

The JDBC 1.0 API provided result sets that had the ability to scroll in a forward di
tion only. Scrollable result sets allow for more flexibility in the processing of results
providing both forward and backward movement through their contents. In addi
scrollable result sets allow for relative and absolute positioning. For example, it’s
sible to move to the fourth row in a scrollable result set directly, or to move directl
the third row following the current row, provided the row exists.

The JDBC API allows result sets to be directly updatable, as well.

3.2 Batch updates

The batch update feature allows an application to submit multiple update statem
(insert/update/delete) in a single request to the database. This can provide a dra
increase in performance when a large number of update statements need to be ex

3.3 Advanced data types

Increased support for storing persistent Java programming language objects (Ja
jects) and a mapping for SQL99 data types such as binary large objects, and stru
types, has been added to the JDBC API. An application may also customize the
ping of SQL99 structured types into Java programming language classes.

3.4 Rowsets

As its name implies, a rowset encapsulates a set of rows. A rowset may or ma
maintain an open database connection. When a rowset is ‘disconnected’ from its
source, updates performed on the rowset are propagated to the underlying datab
ing an optimistic concurrency control algorithm.

Rowsets add support to the JDBC API for the JavaBeans component model. A ro
object is a bean. A rowset implementation may be serializable. Rowsets can be cr
at design time and used in conjunction with other JavaBeans components in a v
builder tool to construct an application.

3.5 JNDI for naming databases

The Java Naming and Directory Interface (JNDI) API can be used in addition
JDBC technology-based driver manager (JDBC driver manager) to obtain a conne
to a database. When an application uses the JNDI API, it specifies a logical nam
identifies a particular database instance and JDBC driver for accessing that data
This has the advantage of making the application code independent of a part
JDBC driver and JDBC technology URL.
Sun Microsystems Inc. 7 October 5, 1999

JDBC 2.1 Core API

on
s the

con-
nce,

API.
tocol

n be re-
acters.
3.6 Connection Pooling

The JDBC API contains ‘hooks’ that allow connection pooling to be implemented
top of the JDBC driver layer. This allows for a single connection cache that span
different JDBC drivers that may be in use. Since creating and destroying database
nections is expensive, connection pooling is important for achieving good performa
especially for server applications.

3.7 Distributed transaction support

Support for distributed transactions has been added as an extension to the JDBC
This feature allows a JDBC driver to support the standard 2-phase commit pro
used by the Java Transaction Service (JTS) API.

3.8 Other new features

Support for character streams has been added. This means that character data ca
trieved and sent to the database as a stream of internationalized Unicode char
Methods to allowjava.math.BigDecimal values to be returned with full precision
have also been added. Support for time zones has been added.
Sun Microsystems Inc. 8 October 5, 1999

JDBC 2.1 Core API

C 2.0

com-

a-

ava
arate

sting

are
Pack-
action
m the

core

n ap-
ny-
be

aces
resent
f the
s that
ormal
4 What’s Actually Changed

This chapter describes the practical differences between the JDBC 1.0 and JDB
APIs.

4.1 A New Package

The JDBC API has been factored into two complementary components. The first
ponent is API that is core to the Java platform (thecore JDBC 2.1 API) and comprises
the updated contents of thejava.sql package. This document contains the specific
tion for the core JDBC 2.1 API. The second component, termed theJDBC 2.0 Optional
Package API, comprises the contents of a new package,javax.sql , which as its name
implies will be delivered as an optional package to the Java platform (formerly J
Standard Extension). The JDBC 2.0 Optional Package API is described in a sep
document.

Thejava.sql package contains all of the additions that have been made to the exi
interfaces and classes, in addition to a few new classes and interfaces. The newjav-

ax.sql package has been introduced to contain the parts of the JDBC API which
closely related to other pieces of the Java platform that are themselves Optional
ages, such as the Java Naming and Directory Interface (JNDI), and the Java Trans
Service (JTS). In addition, some advanced features that are easily separable fro
core JDBC API, such as connection pooling and rowsets, have also been added tojav-

ax.sql . Putting these advanced facilities into an optional package instead of into
will help keep the core JDBC API small and focused.

Since optional packages are downloadable, it will always be possible to deploy a
plication which uses the features in the JDBC Optional Package that will “run a
where,” since if an optional package isn’t installed on a client machine, it can
downloaded along with the application that uses it.

4.2 Changes to Classes and Interfaces

The list below contains all of the JDBC 2.1 API core classes and interfaces. Interf
and classes that are new are listed in bold type. All of the interfaces and classes p
in the JDBC 1.0 API are also present in the core JDBC 2.1 API, however, some o
JDBC 1.0 technology interfaces have gained additional methods. The interface
contain new methods are listed in italics and those that have not changed are in n
type.

java.sql.Array
java.sql.BatchUpdateException
java.sql.Blob
java.sql.CallableStatement

java.sql.Clob
java.sql.Connection
Sun Microsystems Inc. 9 October 5, 1999

JDBC 2.1 Core API

g lan-
ow
rela-
DBC
java.sql.DatabaseMetaData

java.sql.DataTruncation

java.sql.Date

java.sql.Driver

java.sql.DriverManager

java.sql.DriverPropertyInfo

java.sql.PreparedStatement

java.sql.Ref
java.sql.ResultSet

java.sql.ResultSetMetaData

java.sql.SQLData
java.sql.SQLException

java.sql.SQLInput
java.sql.SQLOutput
java.sql.SQLWarning

java.sql.Statement

java.sql.Struct
java.sql.Time

java.sql.Timestamp

java.sql.Types

The separate core JDBC 2.1 API documentation contains the Java programmin
guage definitions of thejava.sql interfaces and classes listed above. The figure bel
shows the more important core interfaces and their relationships. The important
tionships between interfaces have not changed with the introduction of the new J
API.
Sun Microsystems Inc. 10 October 5, 1999

JDBC 2.1 Core API

ent.

The list below contains the classes and interfaces that comprise thejavax.sql pack-
age. A detailed specification of these new types is contained in a separate docum

javax.sql.ConnectionEvent
javax.sql.ConnectionEventListener
javax.sql.ConnectionPoolDataSurce
javax.sql.DataSource
javax.sql.PooledConnection
javax.sql.RowSet
javax.sql.RowSetEvent
javax.sql.RowSetInternal
javax.sql.RowSetListener
javax.sql.RowSetMetaData
javax.sql.RowSetReader
javax.sql.RowSetWriter
javax.sql.XAConnection
javax.sql.XADataSource

modified

Connection

DriverManager

PreparedStatement

StatementResultSet

Data types: Date, Time,
TimeStamp, Numeric, CallableStatement

commit, abortcreateStatement

getXXX

subclass

subclass

executeQuery

prepareStatement

getXXX

getConnection

pr
ep

ar
eC

al
l

se
tX

XX

getMoreResults

execute

built-in Java types, etc.

executeQuery
Sun Microsystems Inc. 11 October 5, 1999

JDBC 2.1 Core API

e goal
d up-

er im-
ed to

ward
sup-

also
ove
po-
to
I is

API
. As
their

ile
ta it
e re-

de
ple,
es of
ed—

ead-

his
mber

e-
write

vely,
ting
5 Result Set Enhancements

This chapter discusses the new functionality that has been added to result sets. Th
of the enhancements is to add two new basic capabilities to result sets: scrolling an
datability. Several methods have also been added to enable a JDBC driver to deliv
proved performance when processing results. A variety of examples are includ
illustrate the new features.

5.1 Scrolling

A result set created by executing a statement may support the ability to move back
(last-to-first) through its contents, as well as forward (first-to-last). Result sets that
port this capability are called scrollable result sets. Result sets that are scrollable
support relative and absolute positioning. Absolute positioning is the ability to m
directly to a row by specifying its absolute position in the result set, while relative
sitioning gives the ability to move to a row by specifying a position that is relative
the current row. The definition of absolute and relative positioning in the JDBC AP
modeled on the X/Open SQL CLI specification.

5.2 Result Set types

The JDBC 1.0 API provided one result set type—forward-only. The JDBC 2.1 core
provides three result set types: forward-only, scroll-insensitive, and scroll-sensitive
their names suggest, the new result set types support scrolling, but they differ in
ability to make changes visible while they are open.

A scroll-insensitiveresult set is generallynot sensitive to changes that are made wh
it is open. A scroll-insensitive result set provides a static view of the underlying da
contains. The membership, order, and column values of rows in a scroll-insensitiv
sult set are typically fixed when the result set is created.

On the other hand, ascroll-sensitiveresult set is sensitive to changes that are ma
while it is open, and provides a ‘dynamic’ view of the underlying data. For exam
when using a scroll-sensitive result set, changes in the underlying column valu
rows are visible. The membership and ordering of rows in the result set may be fix
this is implementation defined.

5.3 Concurrency types

An application may choose from two different concurrency types for a result set: r
only and updatable.

A result set that usesread-onlyconcurrency does not allow updates of its contents. T
can increase the overall level of concurrency between transactions, since any nu
of read-only locks may be held on a data item simultaneously.

A result set that isupdatable allows updates and may use database write locks to m
diate access to the same data item by different transactions. Since only a single
lock may be held at a time on a data item, this can reduce concurrency. Alternati
an optimistic concurrency control scheme may be used if it is thought that conflic
Sun Microsystems Inc. 12 October 5, 1999

JDBC 2.1 Core API

cally
nflict

ake
ched
tion for
e val-
nore

read-
free

tion
f the
is just
t that

to up-
base.

ample,
accesses to data will be rare. Optimistic concurrency control implementations typi
compare rows either by value or by a version number to determine if an update co
has occurred.

5.4 Performance

Two performance hints may be given to a JDBC 2.1 technology-enabled driver to m
access to result set data more efficient. Specifically, the number of rows to be fet
from the database each time more rows are needed can be specified, and a direc
processing the rows—forward, reverse, or unknown—can be given as well. Thes
ues can be changed for an individual result set at any time. A JDBC driver may ig
a performance hint if it chooses.

5.5 Creating a result set

The example below illustrates creation of a result set that is forward-only and uses
only concurrency. No performance hints are given by the example, so the driver is
to do whatever it thinks will result in the best performance. The transaction isola
level for the connection is not specified, so the default transaction isolation level o
underlying database is used for the result set that is created. Note that this code
written using the JDBC 1.0 API, and that it produces the same type of result se
would have been produced by the JDBC 1.0 API.

Connection con = DriverManager.getConnection(
"jdbc:my_subprotocol:my_subname");

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery(

"SELECT emp_no, salary FROM employees");

The next example creates a scrollable result set that is updatable and sensitive
dates. Rows of data are requested to be fetched twenty-five at-a-time from the data

Connection con = DriverManager.getConnection(
"jdbc:my_subprotocol:my_subname");

Statement stmt = con.createStatement(
ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);

stmt.setFetchSize(25);

ResultSet rs = stmt.executeQuery(
"SELECT emp_no, salary FROM employees");

The example below creates a result set with the same attributes as the previous ex
however, a prepared statement is used to produce the result set.
Sun Microsystems Inc. 13 October 5, 1999

JDBC 2.1 Core API

may

this

ccord-

 a
ted

ot
.

ppli-
river
d
made
orted

r con-
T

appli-

tes the

da-
d.
PreparedStatement pstmt = con.prepareStatement(
"SELECT emp_no, salary FROM employees where emp_no = ?",
ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);

pstmt.setFetchSize(25);
pstmt.setString(1, "100010");
ResultSet rs = pstmt.executeQuery();

The methodDatabaseMetaData.supportsResultSetType() can be called to see
which result set types are supported by a JDBC driver. However, an application
still ask a JDBC driver to create aStatement , PreparedStatement , or Call-

ableStatement object using a result set type that the driver does not support. In
case, the driver should issue anSQLWarning on theConnection that produces the
statement and choose an alternative value for the result set type of the statement a
ing to the following rules:

1. If an application asks for a scrollable result set type the driver should use
scrollable type that it supports, even if this differs from the exact type reques
by the application.

2. If the application asks for a scrollable result set type and the driver does n
support scrolling, then the driver should use a forward-only result set type

Similarly, the methodDatabaseMetaData.supportsResultSetConcurrency() can
be called to determine which concurrency types are supported by a driver. If an a
cation asks a JDBC driver for a concurrency type that it does not support then the d
should issue anSQLWarning on the Connection that produces the statement an
choose the alternative concurrency type. The choice of result set type should be
first if an application specifies both an unsupported result set type and an unsupp
concurrency type.

In some instances, a JDBC driver may need to choose an alternate result set type o
currency type for aResultSet at statement execution time. For example, a SELEC
statement that contains a join over multiple tables may not produce aResultSet that is
updatable. The JDBC driver should issue anSQLWarning in this case on theStatement ,
PreparedStatement , or CallableStatement that produces theResultSet and
choose an appropriate result set type or concurrency type as described above. An
cation may determine the actual result set type and concurrency type of aResultSet

by calling theResultSet.getType() andgetConcurrency() methods, respectively.

5.6 Updates

A result set is updatable if its concurrency type isCONCUR_UPDATABLE. Rows in an up-
datable result set may be updated, inserted, and deleted. The example below upda
first row of a result set. TheResultSet.updateXXX() methods are used to modify the
value of an individual column in the current row, but do not update the underlying
tabase. When theResultSet.updateRow() method is called the database is update
Columns may be specified by name or number.
Sun Microsystems Inc. 14 October 5, 1999

JDBC 2.1 Core API

appli-

de-

DBC
is

d into

rom

ly-
t row,
lta-

val-
rs.first();
rs.updateString(1, "100020");
rs.updateFloat(“salary”, 10000.0f);
rs.updateRow();

The updates that an application makes must be discarded by a JDBC driver if the
cation moves the cursor from the current row before callingupdateRow() . In addition,
an application can call theResultSet.cancelRowUpdates() method to explicitly
cancel the updates that have been made to a row. ThecancelRowUpdates() method
must be called after callingupdateXXX() and before callingupdateRow() , otherwise
it has no effect.

The following example illustrates deleting a row. The fifth row in the result set is
leted from the database.

rs.absolute(5);
rs.deleteRow();

The example below shows how a new row may be inserted into a result set. The J
API defines the concept of aninsert rowthat is associated with each result set and
used as a staging area for creating the contents of a new row before it is inserte
the result set itself. TheResultSet.moveToInsertRow() method is used to position
the result set’s cursor on the insert row. TheResultSet.updateXXX() andResult-

Set.getXXX() methods are used to update and retrieve individual column values f
the insert row. The contents of the insert row is undefined immediately after callingRe-

sultSet.moveToInsertRow() . In other words, the value returned by calling aRe-

sultSet.getXXX() method is undefined aftermoveToInsertRow() is called until the
value is set by callingResultSet.updateXXX() .

CallingResultSet.updateXXX() while on the insert row does not update the under
ing database or the result set. Once all of the column values are set in the inser
ResultSet.insertRow() is called to update the result set and the database simu
neously. If a column is not given a value by callingupdateXXX() while on the insert
row, or a column is missing from the result set, then that column must allow a null
ue. Otherwise, callinginsertRow() throws anSQLException .

rs.moveToInsertRow();
rs.updateString(1, "100050");
rs.updateFloat(2, 1000000.0f);
rs.insertRow();
rs.first();
Sun Microsystems Inc. 15 October 5, 1999

JDBC 2.1 Core API

or is
rsor

nt

re-

n ex-
that

meet

are

cursor
main-
f the

type

ward
I

hown
A result set remembers the current cursor position “in the result set” while its curs
temporarily positioned on the insert row. To leave the insert row, any of the usual cu
positioning methods may be called, including the special methodResult-

Set.moveToCurrentRow() which returns the cursor to the row which was the curre
row beforeResultSet.moveToInsertRow() was called. In the example above,Re-

sultSet.first() is called to leave the insert row and move to the first row of the
sult set.

Due to differences in database implementations, the JDBC API does not specify a
act set of SQL queries which must yield an updatable result set for JDBC drivers
support updatability. Developers can, however, generally expect queries which
the following criteria to produce an updatable result set:

1. The query references only a single table in the database.

2. The query does not contain any join operations.

3. The query selects the primary key of the table it references.

In addition, an SQL query should also satisfy the conditions listed below if inserts
to be performed.

4. The query selects all of the non-nullable columns in the underlying table.

5. The query selects all columns that don’t have a default value.

5.7 Cursor movement examples

A result set maintains an internal pointer called acursor that indicates the row in the
result set that is currently being accessed. A result set cursor is analogous to the
on a computer screen which indicates the current screen position. The cursor
tained by a forward-only result set can only move forward through the contents o
result set. Thus, rows are accessed sequentially beginning with the first row.

Iterating forward through a result set is done by calling theResultSet.next() method,
as with the JDBC 1.0 API. In addition, scrollable result sets—any result set whose
is not forward only—implement the method,beforeFirst() , which may be called to
position the cursor before the first row in the result set.

The example below positions the cursor before the first row and then iterates for
through the contents of the result set. ThegetXXX() methods, which are JDBC 1.0 AP
methods, are used to retrieve column values.

rs.beforeFirst();
while (rs.next()) {

System.out.println(rs.getString("emp_no") +
 " " + rs.getFloat("salary"));

}

Of course, one may iterate backward through a scrollable result set as well, as is s
below.
Sun Microsystems Inc. 16 October 5, 1999

JDBC 2.1 Core API

lt

all

re
to be
rna-

rrect

loop
hen
case

ich
rs.afterLast();
while (rs.previous()) {

System.out.println(rs.getString(“emp_no”) +
“ “ + rs.getFloat(“salary”));

}

In this example, theResultSet.afterLast() method positions the scrollable resu
set’s cursor after the last row in the result set. TheResultSet.previous() method is
called to move the cursor to the last row, then the next to last, and so on.Result-

Set.previous() returnsfalse when there are no more rows, so the loop ends after
of the rows have been visited.

After examining theResultSet interface, the reader will no doubt recognize that the
is more than one way to iterate through the rows of a scrollable result set. It pays
careful, however, as is illustrated by the following example, which shows one alte
tive that is incorrect.

// incorrect!!!
while (!rs.isAfterLast()) {

rs.relative(1);
System.out.println(rs.getString("emp_no") +

 " " + rs.getFloat("salary"));
}

This example attempts to iterate forward through a scrollable result set and is inco
for several reasons. One error is that ifResultSet.isAfterLast() is called when the
result set is empty, it will return a value of false since there is no last row, and the
body will be executed, which is not what is wanted. An additional problem occurs w
the cursor is positioned before the first row of a result set that contains data. In this
calling rs.relative(1) is erroneous since there is no current row.

The code sample below fixes the problems in the previous example. Here a call toRe-

sultSet.first() is used to distinguish the case of an empty result set from one wh
contains data. SinceResultSet.isAfterLast() is only called when the result set is
non-empty the loop control works correctly, andResultSet.relative(1) steps
through the rows of the result set sinceResultSet.first() initially positions the cur-
sor on the first row.

if (rs.first()) {
while (!rs.isAfterLast()) {

System.out.println(rs.getString("emp_no") +
" " + rs.getFloat("salary"));

rs.relative(1);
}

}

Sun Microsystems Inc. 17 October 5, 1999

JDBC 2.1 Core API

les of
ection
differ-

e—
rly-
g for
vis-

ans-
nsac-
letes)
ed by
lling

at
ll
le to a
rough
to be

h the
t
ult sets
tively
type.

y oth-
sult set
de by
le, if

open,
reate

e re-
-

5.8 Detecting and viewing changes

So far, we have introduced the different result set types and shown a few examp
how a result set of a particular type can be created, updated, and traversed. This s
goes into more detail on the differences between result set types, and what these
ences mean for an application that uses result sets.

The different result set types—forward-only, scroll-insensitive, and scroll-sensitiv
provided by the JDBC API vary greatly in their ability to make changes in the unde
ing data visible to an application. This aspect of result sets is particularly interestin
the result set types which support scrolling, since they allow a particular row to be
ited multiple times while a result set is open.

5.8.1 Visibility of changes

We begin the discussion of this topic by describing the visibility of changes at the tr
action level. First, note the seemingly obvious fact that all of the updates that a tra
tion makes are visible to itself. However, the changes (updates, inserts, and de
made by other transactions that are visible to a particular transaction are determin
the transaction isolation level. The isolation level for a transaction can be set by ca

con.setTransactionIsolation(TRANSACTION_READ_COMMITTED);

where the variablecon has typeConnection . If all transactions in a system execute
the TRANSACTION_READ_COMMITTEDisolation level or higher, then a transaction wi
only see the committed changes of other transactions. The changes that are visib
result set’s enclosing transaction when a result set is opened are always visible th
the result set. In fact, this is what it means for an update made by one transaction
visible to another transaction.

But what about changes made while a result set is open? Are they visible throug
result set by, for example, callingResultSet.getXXX() ? Whether a particular resul
set exposes changes to its underlying data made by other transactions, other res
that are part of the same transaction (We refer to these two types of changes collec
as ‘other’s changes’.), or itself while the result set is open depends on the result set

5.8.2 Other’s changes

A scroll-insensitive result set does not make any changes visible that are made b
ers—other transactions and other result sets in the same transaction—once the re
is opened. The content of a scroll-insensitive result set with respect to changes ma
others is static—the membership, ordering, and row values are fixed. For examp
another transaction deletes a row that is contained in a static result set while it is
the row remains visible. One way to implement a scroll-insensitive result set is to c
a private copy of the result set’s data.

Scroll-sensitive result sets lie at the opposite end of the spectrum. A scroll-sensitiv
sult set makes all of the updates made byothers that are visible to its enclosing trans
action visible. Inserts and deletes may not be visible, however.
Sun Microsystems Inc. 18 October 5, 1999

JDBC 2.1 Core API

e by
effect
ned.
ef-

w is
ain a
ted

ies

e or
t pro-
cre-

data
lt set
ateri-
may

e ap-
en-

s,
by the
t be

ds on
sult
tes). A

re vis-

lling

eted
Let us define carefully what it means for updates to be visible. If an update mad
another transaction affects where a row should appear in the result set—this is in
a delete followed by an insert—the row may not move until the result set is reope
If an update causes a row to fail to qualify for membership in a result set—this is in
fect a delete—the row may remain visible until the result set is reopened. If a ro
explicitly deleted by another transaction, a scroll-sensitive result set may maint
placeholder for the row to permit logical fetching of rows by absolute position. Upda
column values are always visible, however.

The DatabaseMetaData interface provides a way to determine the exact capabilit
that are supported by a result set. For example, the new methods:othersUpdatesAre-

Visible , othersDeletesAreVisible , andothersInsertsAreVisible may be used
for this purpose.

A forward-only result set is really a degenerate case of either a scroll-insensitiv
scroll-sensitive result set— depending on how the DBMS evaluates the query tha
duces the result set. Most DBMSs have the ability to materialize query results in
mentally for some queries. If a query result is materialized incrementally, then
values aren’t actually retrieved until they are needed from the DBMS and the resu
will behave like a sensitive result set. For some queries, however, incremental m
alization isn’t possible. For example, if the result set is sorted, the entire result set
need to be produced a priori before the first row in the result set is returned to th
plication by the DBMS. In this case a forward-only result set will behave like an ins
sitive result set.

For aTYPE_FORWARD_ONLYresult set theothersUpdatesAreVisible , othersDelete-

sAreVisible , andothersInsertsAreVisible methods determine whether insert
updates, and deletes are visible when the result set is materialized incrementally
DBMS. If the result of a query is sorted then incremental materialization may no
possible and changes will not be visible, even if the methods above return true.

5.8.3 A result set’s own changes

We have pointed out that the visibility of changes made by others generally depen
a result set’s type. A final point that concerns the visibility of changes via an open re
set is whether a result set can see its own changes (inserts, updates, and dele
JDBC technology application can determine if the changes made by a result set a
ible to the result set itself by calling theDatabaseMetaData methods:ownUpdate-

sAreVisible , ownDeletesAreVisible , andownInsertsAreVisible . These methods
are needed since this capability can vary between DBMSs and JDBC drivers.

One’s own updates are visible if an updated column value can be retrieved by ca
getXXX() following a call toupdateXXX() . Updates arenot visible if getXXX() still
returns the initial column value afterupdateXXX() is called. Similarly, an inserted row
is visible if it appears in the result set following a call toinsertRow() . An inserted row
is not visible if it does not appear in the result set immediately afterinsertRow() is
called—without closing and reopening the result set. Deletions are visible if del
rows are either removed from the result set or if deleted rows leave ahole in the result
set.
Sun Microsystems Inc. 19 October 5, 1999

JDBC 2.1 Core API

r a

insert
anges
s are

er-
or ex-

ade to a
the

sult set

tored
etch

made
ta

river
data-
driver
may
The following example, shows how an application may determine whethe
TYPE_SCROLL_SENSITIVE result set can see its own updates.

DatabaseMetaData dmd;
...
if (dmd.ownUpdatesAreVisible(ResultSet.TYPE_SCROLL_INSENSITIVE))
{

// changes are visible
}

5.8.4 Detecting changes

TheResultSet.wasUpdated() , wasDeleted() , andwasInserted() methods can be
called to determine whether a row has been effected by a visible update, delete, or
respectively since the result set was opened. The ability of a result set to detect ch
is orthogonal to its ability to make changes visible. In other words, visible change
not automatically detected.

TheDatabaseMetaData interface provides methods that allow an application to det
mine whether a JDBC driver can detect changes for a particular result set type. F
ample,

boolean bool = dmd.deletesAreDetected(
ResultSet.TYPE_SCROLL_SENSITIVE);

If deletesAreDetected returnstrue , thenResultSet.wasDeleted() can be used to
detect ‘holes’ in aTYPE_SCROLL_SENSITIVE result set.

5.9 Refetching a row

Some applications may need to see up-to-the-second changes that have been m
row. Since a JDBC driver can do prefetching and caching of data that is read from
underlying database (seeResultSet.setFetchSize()), an application may not see
the very latest changes that have been made to a row, even when a sensitive re
is used and updates are visible. TheResultSet.refreshRow() method is provided to
allow an application to request that a driver refresh a row with the latest values s
in the database. A JDBC driver may actually refresh multiple rows at once if the f
size is greater than one. Applications should exercise restraint in callingrefre-

shRow() , since calling this method frequently will likely slow performance.

5.10 JDBC API compliance

Although we expect most JDBC drivers to support scrollable result sets, we have
them optional to minimize the complexity of implementing JDBC drivers for da
sources that do not support scrollability. The goal is that it be possible for a JDBC d
to implement scrollable result sets using the support provided by the underlying
base system for systems that have such support. If the DBMS associated with a
does not support scrollability then this feature may be omitted, or a JDBC driver
Sun Microsystems Inc. 20 October 5, 1999

JDBC 2.1 Core API

BC
pport
crol-
implement scrollability as a layer on top of the DBMS. Its important to note that JD
technology rowsets, which are part of the JDBC Optional Package API, always su
scrollability, so a rowset can be used when the underlying DBMS doesn’t support s
lable results.
Sun Microsystems Inc. 21 October 5, 1999

JDBC 2.1 Core API

data
ivid-

s
n the
a fic-

the

at an
ssfully.
done.
r-

imple
ng
ap-

-

s. The
The

if
6 Batch Updates

The batch update facility allows multiple update operations to be submitted to a
source for processing at once. Submitting multiple updates together, instead of ind
ually, can greatly improve performance.Statement , PreparedStatement , andCall-

ableStatement objects can be used to submit batch updates.

6.1 Description of batch updates

6.1.1 Statements

The batch update facility allows aStatement object to submit a set of heterogeneou
update commands together as a single unit, or batch, to the underlying DBMS. I
example below all of the update operations required to insert a new employee into
titious company database are submitted as a single batch.

// turn off autocommit
con.setAutoCommit(false);

Statement stmt = con.createStatement();

stmt.addBatch("INSERT INTO employees VALUES (1000, 'Joe Jones')");
stmt.addBatch("INSERT INTO departments VALUES (260, 'Shoe')");
stmt.addBatch("INSERT INTO emp_dept VALUES (1000, 260)");

// submit a batch of update commands for execution
int[] updateCounts = stmt.executeBatch();

In the example, autocommit mode is disabled to prevent the driver from committing
transaction whenStatement.executeBatch() is called. Disabling autocommit allows
an application to decide whether or not to commit the transaction in the event th
error occurs and some of the commands in a batch cannot be processed succe
For this reason, autocommit should always be turned off when batch updates are
The commit behavior ofexecuteBatch is always implementation defined when an e
ror occurs and autocommit is true.

To keep our discussion of batch updates general, we define the termelementto refer to
an individual member of a batch. As we have seen, an element in a batch is just a s
command when aStatement object is being used. Although we are focusing on usi
Statement objects to do batch updates in this section, the discussion that follows
plies toPreparedStatment andCallableStatement objects, as well.

In the new JDBC API, aStatement object has the ability to keep track of a list of com
mands—or batch—that can be submitted together for execution. When aStatement

object is created, its associated batch is empty—the batch contains no element
Statement.addBatch() method adds an element to the calling statement’s batch.
methodStatement.clearBatch() (not shown above) can be called to reset a batch
Sun Microsystems Inc. 22 October 5, 1999

JDBC 2.1 Core API

ructed

ly-
cally)
atch

ry
order

which
e the

ch
ating

t the

and
atch.

t de-

atch
pro-
can-
g for

l-
d to the
batch

ents,

e is
the application decides not to submit a batch of commands that has been const
for a statement.

Successful execution

TheStatement.executeBatch() method submits a statement’s batch to the under
ing data source for execution. Batch elements are executed serially (at least logi
in the order in which they were added to the batch. When all of the elements in a b
execute successfully,executeBatch() returns an integer array containing one ent
for each element in the batch. The entries in the array are ordered according to the
in which the elements were processed (which, again, is the same as the order in
the elements were originally added to the batch). An entry in the array may hav
following values:

1. If the value of an array entry is greater than or equal to zero, then the bat
element was processed successfully and the value is an update count indic
the number of rows in the database that were effected by the element’s
execution.

2. A value of -2 indicates that a element was processed successfully, but tha
number of effected rows is unknown.

Calling executeBatch() closes the callingStatement object’s current result set if one
is open. The statement’s internal list of batch elements is reset to empty onceexecute-

Batch() returns. The behavior of theexecuteQuery , executeUpdate , or execute

methods is implementation defined when a statement’s batch is non-empty.

ExecuteBatch() throws aBatchUpdateException if any of the elements in the batch
fail to execute properly, or if an element attempts to return a result set. Only DDL
DML commands that return a simple update count may be executed as part of a b
When aBatchUpdateException is thrown, theBatchUpdateException.getUpdate-

Counts() method can be called to obtain an integer array of update counts tha
scribes the outcome of the batch execution.

Handling failures during execution

A JDBC driver may or may not continue processing the remaining elements in a b
once execution of an element in a batch fails. However, a JDBC driver must always
vide the same behavior when used with a particular DBMS. For example, a driver
not continue processing after a failure for one batch, and not continue processin
another batch.

If a driver stops processing after the first failure, the array returned byBatchUpdate-

Exception.getUpdateCounts() will always contain fewer entries than there were e
ements in the batch. Since elements are executed in the order that they are adde
batch, if the array contains N elements, this means that the first N elements in the
were processed successfully whenexecuteBatch() was called.

When a driver continues processing in the presence of failures, the number of elem
N, in the array returned byBatchUpdateException.getUpdateCounts() is always
equal to the number of elements in the batch. The following additional array valu
Sun Microsystems Inc. 23 October 5, 1999

JDBC 2.1 Core API

g

date
each

ues
y re-

in the
re-

batch.

set of
th
gle

ciat-
ine for

batch.
set
returned when aBatchUpdateException is thrown and the driver continues processin
after a failure:

3. A value of -3 indicates that the command or element failed to execute
successfully. This value is also returned for elements that could not be
processed for some reason—such elements fail implicitly.

JDBC drivers that do not continue processing after a failure never return -3 in an up
count array. Drivers of this type simply return a status array containing an entry for
command that was processed successfully.

A JDBC technology based application can distinguish a JDBC driver that contin
processing after a failure from one that does not by examining the size of the arra
turned byBatchUpdateException.getUpdateCounts() . A JDBC driver that contin-
ues processing always returns an array containing one entry for each element
batch. A JDBC driver that does not continue processing after a failure will always
turn an array whose number of entries is less than the number of elements in the

6.1.2 PreparedStatements

An element in a batch consists of a parameterized command and an associated
parameters when aPreparedStatement is used. The batch update facility is used wi
aPreparedStatement to associate multiple sets of input parameter values with a sin
PreparedStatement object. The sets of parameter values together with their asso
ed parameterized update command can then be sent to the underlying DBMS eng
execution as a single unit.

The example below inserts two new employee records into a database as a single
The PreparedStatement.setXXX() methods are used to create each parameter
(one for each employee), while thePreparedStatement.addBatch() method adds a
set of parameters to the current batch.

// turn off autocommit
con.setAutoCommit(false);

PreparedStatement stmt = con.prepareStatement(
"INSERT INTO employees VALUES (?, ?)");

stmt.setInt(1, 2000);
stmt.setString(2, "Kelly Kaufmann");
stmt.addBatch();

stmt.setInt(1, 3000);
stmt.setString(2, "Bill Barnes");
stmt.addBatch();

// submit the batch for execution
int[] updateCounts = stmt.executeBatch();
Sun Microsystems Inc. 24 October 5, 1999

JDBC 2.1 Core API

e
i-

case
cess’

-
as

s for

ing

were

as-
dures
date

ing

n the
t
not
ribed
g are

rray
endum
Finally, PreparedStatement.executeBatch() is called to submit the updates to th
DBMS. CallingPreparedStatement.executeBatch() clears the statement’s assoc
ated list of batch elements. The array returned byPreparedStatement.execute-

Batch() contains an element for each set of parameters in the batch, similar to the
for Statement . Each element either contains an update count or the generic ‘suc
indicator (-2).

Error handling in the case ofPreparedStatement objects is the same as error han
dling in the case ofStatement objects. Some drivers may stop processing as soon
an error occurs, while others may continue processing the rest of the batch. A
Statement , the number of elements in the array returned byBatchUpdateExcep-

tion.getUpdateCounts() indicates whether or not the driver continues process
after a failure. The same three array element values are possible, as forStatement . The
order of the entries in the array is the same order as the order in which elements
added to the batch.

6.1.3 Callable Statements

The batch update facility works the same withCallableStatement objects as it does
with PreparedStatement objects. Multiple sets of input parameter values may be
sociated with a callable statement and sent to the DBMS together. Stored proce
invoked using the batch update facility with a callable statement must return an up
count, and may not have out or inout parameters. TheCallableStatement.execute-

Batch() method should throw an exception if this restriction is violated. Error handl
is analogous toPreparedStatement .

6.2 What’s required

Support for batch updates is optional. If a JDBC driver supports batch updates, the
DatabaseMetaData.supportsBatchUpdates() method must return true, else it mus
return false. In addition, to preserve backward compatibility, JDBC drivers that do
continue processing after a failure are not required to return a value of -2 as desc
in Section 6.1, however, this is encouraged. JDBC drivers that continue processin
required to support both of the negative return values.

Note: In the future, the JDBC API shall define symbolic constants for the negative a
entry values described in Section 6.1. These values have been added as an add
to the original JDBC 2.0 API specification.
Sun Microsystems Inc. 25 October 5, 1999

JDBC 2.1 Core API

ob-

ob-
eve a
ogram-
objects,
nces
rializa-

new

a ob-
tabase
s de-

ilities

age
cts.

e ex-

n fact,
refer-
andate

ing

the
e in-
7 Persistence for Java Objects

The JDBC 1.0 API provided some support for storing objects and retrieving Java
jects from a database via thegetObject() andsetObject() mechanism. The new
JDBC API enhances the ability of a JDBC driver to implement persistence for Java
jects in general, by providing new metadata capabilities that can be used to retri
description of the Java objects that a data source contains. Instances of a Java pr
ming language class (Java class) can be stored in a database as serialized Java
or in some other vendor specific format. If object serialization is used then refere
between objects can be treated according to the rules specified by Java object se
tion.

The new JDBC API features described in this chapter are intended to support a
generation of Java-aware database management systems, termedJava-relational
DBMSs. A Java-relational DBMS extends the type system of a database with Jav
ject types and allows users to write queries that reference these types. Several da
vendors are creating products with Java-relational capabilities. The mechanism
scribed in this chapter are optional. JDBC drivers that do not support the capab
described in this chapter are not required to implement them.

Lets take a look at how a typical application written in the Java programming langu
(Java application) can make use of the JDBC API to store and retrieve Java obje

7.1 Retrieving Java objects

The example below shows how objects can be retrieved using the JDBC API. Th
ample query references a table,PERSONNEL, that contains a column calledEmployee

containing instances of the Java classEmployee . Here, the column name,Employee ,
and the Java class name are the same, but this is not required by the JDBC API. I
since there is currently not a standard, agreed upon syntax for SQL queries that
ence Java programming language types (Java types), the JDBC API does not m
the use of any particular query syntax.

ResultSet rs = stmt.executeQuery(
“SELECT Employee FROM PERSONNEL“);

rs.next();
Employee emp = (Employee)rs.getObject(1);

The example selects all of theEmployee instances from thePERSONNELtable. TheRe-

sultSet.next() method is called to position the result set to the first row contain
an Employee . The example application then obtains anEmployee instance by calling
ResultSet.getObject() . This causes the JDBC driver to construct an instance of
Employee class, possibly by deserializing a serialized object instance, and return th
stance as ajava.lang.Object which the application then narrows to anEmployee .
Sun Microsystems Inc. 26 October 5, 1999

JDBC 2.1 Core API

aside
eci-
code
being
apter.

mak-

ics of
me

ugh
rans-

m-
API.

to the
s be-

btain

ss,
Note that the example above does not contain any additions to the JDBC 1.0 API
from possibly requiring some form of extended SQL query syntax which is not sp
fied by the JDBC API. As an aside, we note that the JDBC technology based
shown above can also be used to retrieve data of an SQL user-defined type that is
mapped to a Java class. The details on how this is done are specified in a later ch

7.2 Storing Java objects

The following example code illustrates the process of updating a Java object and
ing the updated copy of the object persistent using JDBC technology.

emp.setSalary(emp.getSalary() * 1.5);
PreparedStatement pstmt = con.preparedStatement(

“UPDATE PERSONNEL SET Employee = ? WHERE Employee.no = 1001”);
pstmt.setObject(1, emp);
pstmt.executeUpdate();

The example gives an employee a 50% raise. First, theEmployee.setSalary() meth-
od is called to update the value of the employee’s salary. Note that the semant
methods on theEmployee class are not specified by the JDBC API. Here, we assu
that theEmployee class is an ordinary Java class, so callingEmployee.setSalary()

just changes the value of some private data field contained in theEmployee instance.
Calling Employee.setSalary() does not update the database, for example, altho
an alternative implementation could do this, in effect making database updates ‘t
parent’ to applications that use theEmployee class.

Next, aPreparedStatement object is created using an extended SQL UPDATE co
mand—the query syntax used in the example is again not mandated by the JDBC
The UPDATE command specifies that theEmployee column in thePERSONNELtable is
to be changed for a specified row.PreparedStatement.setObject() is used to pass
theEmployee object to the prepared statement, and theexecuteUpdate() method up-
dates theEmployee value stored in the database.

Note once again that the example above does not involve any syntactic additions
JDBC 1.0 API. In addition, the same code could be used if the Employee class wa
ing mapped to an SQL user-defined type.

7.3 Additional metadata

The new JDBC API contains new metadata support that allows an application to o
a complete description of the Java objects that are stored in a data source.

7.3.1 Identifying Java objects

A new type code,JAVA_OBJECT, has been added tojava.sql.Types to denote a Java
object type. TheJAVA_OBJECT type code is returned by methods such asData-

baseMetaData.getTypeInfo() and DatabaseMetaData.getColumns() . For exam-
ple, if a DBMS supports types that can be a Java cla
Sun Microsystems Inc. 27 October 5, 1999

JDBC 2.1 Core API

g

ject,

used
es—
he

nd

e

DatabaseMetaData.getTypeInfo() would return a result set containing the followin
entry:

1. TYPE_NAME String => data source specific name (may be null)

2. DATA_TYPE short =>java.sql.Types.JAVA_OBJECT

3. etc.

The TYPE_NAME column contains the data source specific term for a Java ob
such as “JavaObject”, “Serialized” etc. TYPE_NAME may be null.

7.3.2 Retrieving schema-specific Java type descriptions

A Java class is typically registered with a particular database schema before it is
in defining the schema’s tables. Information on schema-specific user-defined typ
of which JAVA_OBJECTtypes are one particular kind—can be retrieved by calling t
DatabaseMetaData.getUDTs() method. For example,

int[] types = {Types.JAVA_OBJECT};
ResultSet rs = dmd.getUDTs("catalog-name", "schema-name",

"%", types);

returns descriptions of all the Java object typesdefined in thecatalog-name.schema-

name schema. If the driver does not support UDTs or no matching UDTs are fou
then an empty result set is returned.

Each type description has the following columns:

TheTYPE_CAT , TYPE_SCHEM, DATA_TYPE , andREMARKS columns should
be self-explanatory. TheTYPE_NAME is, in effect, the SQL type name. This is th
name used in a CREATE TABLE statement to specify a column of this type.

TYPE_CAT String => the type's catalog (may be null)

TYPE_SCHEM String => the type's schema (may be null)

TYPE_NAME String => the database type name

JAVA_CLASS String => a Java classname

DATA_TYPE short => value defined injava.sql.Types , e.g.
JAVA_OBJECT

REMARKS String => explanatory comment on the type
Sun Microsystems Inc. 28 October 5, 1999

JDBC 2.1 Core API

. In-
es are
y.

e
are ig-
ode

a fully
een
he ex-
t

that
able to
alling
DBC

he usu-
WhenDATA_TYPE is JAVA_OBJECT, theJAVA_CLASS is the fully qualified Java
class name of the Java class associated withTYPE_NAME . All values actually stored
in aTYPE_NAME column must be instances of this class or one of its subclasses
stances of this class or a subclass are materialized by the JDBC driver when valu
fetched from aTYPE_NAME column by an application that uses JDBC technolog

TheDatabaseMetaData.getUDTs() method also accepts a fully qualified SQL nam
as its third parameter. In this case the catalog and schema pattern parameters
nored. The fully qualified SQL name may contain wildcards. For example, the c
sample below is equivalent to the previous example,

int[] types = {Types.JAVA_OBJECT};
ResultSet rs = dmd.getUDTs(null, null,

"catalog-name.schema-name.%", types);

Here we have assumed that the ‘.’ character is used to separate the elements of
qualified name. Note that since the format of fully qualified names may vary betw
database systems, one should generally not hardcode fully qualifed names as in t
ample above. TheDatabaseMetaData interface provides information about the forma
of fully qualified names that is supported by a particular JDBC driver.

7.3.3 Retrieving the Java class object

The JDBC API doesn’t provide any special support for loading the Java class files
correspond to Java objects being stored in a database. An application should be
obtain the class object that corresponds to an object in the database by c
Class.forName() and passing the class name as a parameter. In other words, the J
API assumes that the bytecodes for objects stored in the database are loaded via t
al Java programming language mechanism.
Sun Microsystems Inc. 29 October 5, 1999

JDBC 2.1 Core API

ation
JDBC

nd in-

hose
atabas-
-side
l stan-

e

e da-
nt-
that is
8 New SQL Types

The next two chapters discuss additions to the JDBC API that allow a Java applic
to access new SQL data types, such as binary large objects and structured types.
drivers that do not support the new SQL types need not implement the methods a
terfaces described in these chapters.

8.1 Taxonomy of SQL Types

The latest version of the ANSI/ISO SQL standard is commonly referred to asSQL99.
The JDBC API incorporates a model of the new SQL99 types that includes only t
properties that are essential to exchanging data between Java applications and d
es. The JDBC API should not be affected if some details of the syntax and server
semantics of the new SQL99 types are altered before the draft becomes an officia
dard.

The SQL99 draft specifies these data types:

• SQL2 built-in types—the familiar SQL ‘column types’

• CHAR
• FLOAT
• DATE
• etc.

• New built-in types—new types added by SQL99

• BLOB—a Binary Large OBject
• CLOB—a Character Large OBject

• Structured types, for example:

• CREATE TYPE PLANE_POINT (X FLOAT, Y FLOAT)
• Distinct types—based on the representation of a built-in type, for example:

• CREATE TYPE MONEY AS NUMERIC(10,2)
• Constructed types—based on a given base type:

• REF(structured-type)—designates row containing a structured type instanc
• base-type ARRAY[n]—an array of n base-type elements

• Locator types—designate a datum that resides on the server

• LOCATOR(structured-type)—locator to structured instance in server
• LOCATOR(array)—locator to array in server
• LOCATOR(blob)—locator to Binary Large Object in server
• LOCATOR(clob)—locator to Character Large Object in server

A REFvalue persistently denotes an instance of a structured type that resides in th
tabase. ALOCATORexists only in the client environment and is a transient, logical poi
er to data that resides on the database server. A locator typically refers to data
Sun Microsystems Inc. 30 October 5, 1999

JDBC 2.1 Core API

rators
by the

JDBC
also

s into

eated
pes
e

the
he

docu-

b)

s not

t

too large to materialize on the client, for example, images or audio. There are ope
defined at the SQL level to retrieve random-access pieces of the data denoted
locator.

The remainder of this chapter discusses the default mechanism provided by the
API for accessing each of the new SQL types mentioned above. The JDBC API
provides a means for customizing the mapping of SQL distinct and structured type
Java classes. This mechanism is discussed in the Chapter 9.

8.2 Blobs and clobs

8.2.1 Retrieving blobs and clobs

The binary large object (blob) and character large object (clob) data types are tr
similarly to the existing, built-in types defined in the JDBC API. Values of these ty
can be retrieved by calling thegetBlob() andgetClob() methods that appear on th
ResultSet andCallableStatement interfaces. For example,

Blob blob = rs.getBlob(1);
Clob clob = rs.getClob(2);

retrieves a blob value from the first column of the result set and a clob value from
second column. TheBlob interface contains operations for returning the length of t
blob, a specific range of bytes contained in the blob, etc. TheClob interface contains
corresponding operations that are character based. See the accompanying API
mentation for more details.

An application does not deal directly with the LOCATOR(blob) and LOCATOR(clo
types that are defined in SQL. By default, a JDBC driver should implement theBlob

andClob interfaces using the appropriate locator type. Also, by defaultBlob andClob

objects only remain valid during thetransaction in which they are created. A JDBC
driver may allow these defaults to be changed. For example, the lifetime ofBlob and
Clob objects could be changed to session-scoped. However, the JDBC API doe
specify how this is done.

8.2.2 Storing blobs and clobs

A Blob or Clob value can be passed as an input parameter to aPreparedStatement

object just like other data types by calling thesetBlob() andsetClob() methods re-
spectively. ThesetBinaryStream() , andsetObject() methods may be used to inpu
a stream value as a blob. ThesetAsciiStream() , setUnicodeStream() , andsetOb-

ject() methods may be used to input a stream as a clob value.

8.2.3 Metadata additions

Two new type codes,BLOBandCLOB, have been added tojava.sql.Types. These
values are returned by methods such asDatabaseMetaData.getTypeInfo() andDa-

tabaseMetaData.getColumns() when a JDBC driver supports these data types.
Sun Microsystems Inc. 31 October 5, 1999

JDBC 2.1 Core API

iv-
.

ay to

n input

e-
one.
8.3 Arrays

8.3.1 Retrieving arrays

Data of type SQL array can be retrieved by calling thegetArray() method of theRe-

sultSet andCallableStatement interfaces. For example,

Array a = rs.getArray(1);

retrieves anArray value from the first column of the result set. By default, a JDBC dr
er should implement theArray interface using an SQL LOCATOR(array) internally
Also, by defaultArray objects only remain valid during thetransaction in which they
are created. These defaults may be changed as for theBlob andClob types, but the
JDBC API does not specify how this is done.

TheArray interface provides several methods which return the contents of the arr
the client as a materialized Java programming language array (Java array) orResult-

Set object. These methods aregetArray() andgetResultSet() , respectively. See
the separate API documentation for details.

8.3.2 Storing arrays

ThePreparedStatement.setArray() method may be called to pass anArray value
as an input parameter to a prepared statement. A Java array may be passed as a
parameter by callingPreparedSatement.setObject() .

8.3.3 Metadata additions

A new type code,ARRAY, has been added tojava.sql.Types. This value is returned
by methods such asDatabaseMetaData.getTypeInfo() and DatabaseMetaDa-

ta.getColumns() when a JDBC driver supports theArray data type.

8.4 Refs

8.4.1 Retrieving refs

An SQL reference can be retrieved by calling thegetRef() method of theResultSet

andCallableStatement interfaces. For example,

Ref ref = rs.getRef(1);

retrieves aRef value from the first column of the result set. By default, retrieving aRef

value does not materialize the data to which theRef refers. Also, by default a Ref value
remains valid while thesessionor connection on which it is created is open. These d
faults may be overridden, but again the JDBC API does not specify how this is d
Sun Microsystems Inc. 32 October 5, 1999

JDBC 2.1 Core API

object

r ex-

e
type

efore
fined
TheRef interface doesnot provide methods for dereferencing. Instead, aRef can be
passed as an input parameter to an appropriate SQL statement that fetches the
that it references. See the separate JDBC API documentation for details.

8.4.2 Storing refs

The PreparedStatement.setRef() method may be called to pass aRef as an input
parameter to a prepared statement.

8.4.3 Metadata additions

A new type code,REF, has been added tojava.sql.Types. This value is returned by
methods such asDatabaseMetaData.getTypeInfo() andDatabaseMetaData.get-

Columns() when a JDBC driver supports theRef data type.

8.5 Distinct types

8.5.1 Retrieving distinct types

By default, a datum of SQL type DISTINCT is retrieved by calling anygetXXX() meth-
od that is appropriate to the underlying type that the distinct type is based on. Fo
ample, given the following type declaration:

CREATE TYPE MONEY AS NUMERIC(10,2)

a value of type MONEY could be retrieved as follows:

java.math.BigDecimal bd = rs.getBigDecimal(1);

since the underlying SQL NUMERIC type is mapped to thejava.math.BigDecimal

type.

8.5.2 Storing distinct types

Any PreparedStatement.setXXX() method that is appropriate to the underlying typ
of an SQL DISTINCT type may be used to pass an input parameter of that distinct
to a prepared statement. For example, given the definition of type MONEY abovePre-

paredStatement.setBigDecimal() would be used.

8.5.3 Metadata additions

A new type code,DISTINCT , has been added tojava.sql.Types. This value is re-
turned by methods such asDatabaseMetaData.getTypeInfo() andDatabaseMeta-

Data.getColumns() when a JDBC driver supports this data type.

An SQL DISTINCT type must be defined as part of a particular database schema b
it is used in a schema table definition. Information on schema-specific user-de
Sun Microsystems Inc. 33 October 5, 1999

JDBC 2.1 Core API

ng

g

the

ult
o-
he
ter 9
types—of whichDISTINCT types are one particular kind—can be retrieved by calli
theDatabaseMetaData.getUDTs() method. For example,

int[] types = {Types.DISTINCT};
ResultSet rs = dmd.getUDTs("catalog-name", "schema-name",

"%", types);

returns descriptions of all the SQL DISTINCT typesdefined in the catalog-

name.schema-name schema. If the driver does not support UDTs or no matchin
UDTs are found then an empty result set is returned.

Each type description has the following columns:

Most of the columns above should be self-explanatory. TheTYPE_NAME is the SQL
type name given to the DISTINCT type—MONEY in the example above. This is
name used in a CREATE TABLE statement to specify a column of this type.

WhenDATA_TYPE is Types.DISTINCT , theJAVA_CLASS column contains a fully
qualified Java class name. Instances of this class will be created ifgetObject() is
called on a column of this DISTINCT type. For example, JAVA_CLASS would defa
to java.math.BigDecimal in the case of MONEY above. The JDBC API does not pr
hibit a driver from returning a subtype of the class named by JAVA_CLASS. T
JAVA_CLASS value reflects a custom type mapping when one is used. See Chap
for details.

8.6 Structured types

8.6.1 Retrieving structured types

A value of an SQL structured type is always retrieved by calling methodgetObject() .
By default,getObject() returns a value of typeStruct for a structured type. For ex-
ample,

TYPE_CAT String => the type's catalog (may be null)

TYPE_SCHEM String => the type's schema (may be null)

TYPE_NAME String => the database type name

JAVA_CLASS String => a Java class or interface name

DATA_TYPE short => value defined injava.sql.Types , e.g. DIS-
TINCT

REMARKS String => explanatory comment on the type
Sun Microsystems Inc. 34 October 5, 1999

JDBC 2.1 Core API

e as
e
y

ns a
an

this

efore
fined
he

g
iption

. In-

od-
bit a
Struct struct = (Struct)rs.getObject(1);

retrieves aStruct value from the first column of the current row of result setrs . The
Struct interface contains methods for retrieving the attributes of a structured typ
an array of java.lang.Object values. By default, a JDBC driver should materializ
the contents of aStruct prior to returning a reference to it to the application. Also, b
default aStruct object is considered valid as long as the Java application maintai
reference to it. A JDBC driver may allow these defaults to be changed—to allow
SQL LOCATOR to be used, for example—but the JDBC API does not specify how
is done.

8.6.2 Storing structured types

ThePreparedStatement.setObject() method may be called to pass aStruct as an
input parameter to a prepared statement.

8.6.3 Metadata additions

A new type code,STRUCT, has been added tojava.sql.Types. This value is returned
by methods such asDatabaseMetaData.getTypeInfo() and DatabaseMetaDa-

ta.getColumns() when a JDBC driver supports structured data types.

A structured SQL type must be defined as part of a particular database schema b
it can be used in a schema table definition. Information on schema-specific user-de
types—of whichSTRUCTtypes are one particular kind—can be retrieved by calling t
DatabaseMetaData.getUDTs() method. For example,

int[] types = {Types.STRUCT};
ResultSet rs = dmd.getUDTs("catalog-name", "schema-name",

"%", types);

returns descriptions of all the structured SQL typesdefined in the catalog-

name.schema-name schema. If the driver does not support UDTs or no matchin
UDTs are found then an empty result set is returned. See section 8.5.3 for a descr
of the result set returned bygetUDTs() .

When the DATA_TYPE returned by getUDTs() is Types.STRUCT , the
JAVA_CLASS column contains the fully qualified Java class name of a Java class
stances of this class are manufactured by the JDBC driver whengetObject() is called
on a column of this STRUCT type. Thus,JAVA_CLASS defaults to ja-

va.sql.Struct for structured types. Chapter 9 discusses how this default can be m
ified by a Java application. We note here only that the JDBC API does not prohi
driver from returning a subtype of the class named by JAVA_CLASS.
Sun Microsystems Inc. 35 October 5, 1999

JDBC 2.1 Core API

the
ation

s an

er-

L

SQL

tains
t con-
r ex-

ith
p-

plic-
pter
o the
is
s

ce—
of
meth-
hile
a

hich
9 Customizing SQL Types

This chapter describes the support that the JDBC API provides for customizing
mapping of SQL structured and distinct types into Java classes. The customiz
mechanism involves minimal extensions to the JDBC API. The new functionality i
extension of the existinggetObject() andsetObject() mechanism.

9.1 The type mapping

An instance ofjava.util.Map is used to hold a custom mapping between SQL us
defined types—structured and distinct types—and Java classes. Thejava.util.Map

interface is new in the JDK 1.2 and replacesjava.util.Dictionary . Such an object
is termed atype-mapobject. A type-map object implements a function from SQ
names of user-defined types to objects of typejava.lang.Class . A type-map object
determines the class from which to construct an object to contain data of a given
user-defined type.

EachConnection has an associated type-map object. The type-map object con
type-mappings for translating data of SQL user-defined types in operations on tha
nection. Methods are provided for getting and setting a connection’s type map. Fo
ample,

java.util.Map map = con.getTypeMap();
con.setTypeMap(map);

TheConnection.getTypeMap() method returns the type-map object associated w
a connection, whileConnection.setTypeMap() can be used to set a new type ma
ping.

The mapping mechanism is quite flexible. If a connection’s type mapping is not ex
itly initialized by the JDBC application, then the default mappings described in Cha
8 are used by operations on the connection. If a custom mapping is inserted int
type-map for SQL typetype-name , then all operations on the connection will use th
custom mapping for values of typetype-name . Finally, we note that type-map object
may even be provided explicitly when calling certaingetXXX() and setXXX() meth-
ods to override the custom or default mapping associated with aConnection .

9.2 Java class conventions

A Java class which appears in a custom type-map must implement a new interfa
java.sql.SQLData . TheSQLData interface contains methods that convert instances
SQL user-defined types to Java class instances, and vice versa. For example, the
od SQLData.readSQL() reads a stream of data values and builds a Java object, w
methodSQLData.writeSQL() writes a sequence of values from a Java object to
stream. We anticipate that these methods will typically be generated by a tool w
understands the database schema.
Sun Microsystems Inc. 36 October 5, 1999

JDBC 2.1 Core API

gram-
read

data
ay be
s (of
data
f an

n that
rsive-
types
ey are

sub-
ar in
This
a pro-

pport

, they

e ex-
he

the
This stream-based approach for exchanging data between SQL and the Java pro
ming language is conceptually similar to Java object Serialization. The data are
from and written to an SQL data stream provided by the JDBC driver. The SQL
stream may be implemented on various network protocols and data-formats. It m
implemented on any logical data-representation in which the leaf SQL data item
which SQL structured types are composed) can be read from (written to) the
stream in a "depth-first" traversal of the structured types. That is, the attributes o
SQL structured type appear in the stream in the order in which they are declared i
type, and each (perhaps structured) attribute value appears fully (its structure recu
ly elaborated) in the stream before the next attribute. For data of SQL structured
that use inheritance, the attributes must appear in the stream in the order that th
inherited. That is, the attributes of a super-type must appear before attributes of a
type. If multiple inheritance is used, then the attributes of super-types should appe
the stream in the order in which the super-types are listed in the type declaration.
protocol does not require the database server to have any knowledge of the Jav
gramming language.

9.3 Streams of SQL data

This section describes the stream interfaces, SQLInput and SQLOutput, which su
customization of the SQL to Java type mapping.

9.3.1 Retrieving data

When data of SQL structured and distinct types are retrieved from the database
"arrive" in a stream implementing theSQLInput interface. TheSQLInput interface con-
tains methods for reading individual data values sequentially from the stream. Th
ample below illustrates how aSQLInput stream can be used to provide values for t
fields of anSQLData object. TheSQLData object—thethis object in the example—
contains three persistent fields: aString s , aBlob blob , and anEmployee emp .

this.str = sqlin.readString();
this.blob = sqlin.readBlob();
this.emp = (Employee)sqlin.readObject();

The SQLInput.readString() method reads aString value from the stream. The
SQLInput.readBlob() method can be used to retrieve aBlob value from the stream.
By default, theBlob interface is implemented using an SQL locator, so callingread-

Blob() doesn’t materialize the blob contents on the client. TheSQLInput.readOb-

ject() method can be used to return an object reference from the stream. In
example, theObject returned is narrowed to anEmployee .
Sun Microsystems Inc. 37 October 5, 1999

JDBC 2.1 Core API

ed
n

nd
in-

table.
There are a number of additionalreadXXX() methods defined on theSQLInput inter-
face for reading each of the types. TheSQLInput.wasNull() method can be called to
check if the value returned by areadXXX() method was null.

9.3.2 Storing data

When anSQLData object is passed to a driver as an input parameter via asetXXX()

method, the JDBC driver calls the object’sSQLData.writeSql() method to obtain a
stream representation of the contents of the object. MethodwriteSQL() writes data
from the object to anSQLOutput stream as the representation of an SQL user-defin
type. MethodwriteSQL() will typically have been generated by some tool from a
SQL type definition. The example below illustrates use of theSQLOutput stream ob-
ject.

sqlout.writeString(this.str);
sqlout.writeBlob(this.blob);
sqlout.writeObject(this.emp);

The example shows how the contents of anSQLData object can be written to an
SQLOutput stream. TheSQLData object—thethis object in the example—contains
three persistent fields: aString s , aBlob blob , and anEmployee emp . Each field is
written in turn to theSQLOutput stream,sqlout . TheSQLOutput interface contains ad-
ditional methods for writing each of the types defined in the JDBC API.

9.4 Examples

9.4.1 Example of SQL structured type

The following SQL example defines structured types PERSON, FULLNAME, a
RESIDENCE. It defines tables with rows of types PERSON and RESIDENCE, and
serts a row into each, so that one row references another. Finally, it queries the

CREATE TYPE RESIDENCE
(

DOOR NUMERIC(6),
STREET VARCHAR(100),
CITY VARCHAR(50),
OCCUPANT REF(PERSON)

);

CREATE TYPE FULLNAME
(

FIRST VARCHAR(50),
LAST VARCHAR(50)

);

CREATE TYPE PERSON
(

NAME FULLNAME,
Sun Microsystems Inc. 38 October 5, 1999

JDBC 2.1 Core API

s PER-
a
s, and

ct that
hose
of the

en-

eed-
pen-

t
(i.e.,

ead,
HEIGHT NUMERIC,
WEIGHT NUMERIC,
HOME REF(RESIDENCE)

);

CREATE TABLE HOMES OF RESIDENCE (OID REF(RESIDENCE)
VALUES ARE SYSTEM GENERATED);

CREATE TABLE PEOPLE OF PERSON (OID REF(PERSON)
VALUES ARE SYSTEM GENERATED);

INSERT INTO PEOPLE (SURNAME, HEIGHT, WEIGHT) VALUES
(

FULLNAME('DAFFY', 'DUCK'),
4,
58

);

INSERT INTO HOMES (DOOR, STREET, CITY, OCCUPANT) VALUES
(

1234,
'CARTOON LANE',
'LOS ANGELES',
(SELECT OID FROM PEOPLE P WHERE P.NAME.FIRST = 'DAFFY')

);

UPDATE PEOPLE SET HOME = (SELECT OID FROM HOMES H WHERE
H.OCCUPANT->NAME.FIRST = 'DAFFY') WHERE
FULLNAME.FIRST = 'DAFFY'

The example above constructs three structured type instances, one each of type
SON, FULLNAME, and RESIDENCE. A FULLNAME attribute is embedded in
PERSON. The PERSON and RESIDENCE instances are stored as rows of table
reference each other via Ref attributes.

The Java classes below represent the SQL structured types given above. We expe
such classes will typically be generated by a tool that reads the definitions of t
structured types from the catalog tables, and, subject to customizations that a user
tool may provide for name-mappings and type-mappings of primitive fields, will g
erate Java classes like those shown below.

Note: The JDBC API does not provide a standard API for accessing the metadata n
ed by a mapping tool. Providing this type of metadata introduces many subtle de
dencies on the SQL99 type model, so it has been left out for now.

In each class below, methodSQLData.readSQL() reads the attributes in the order tha
they appear in the definition of the corresponding structured types in the database
in "row order, depth-first" order, where the complete structure of each attribute is r
recursively, before the next attribute is read). Similarly,SQLData.writeSQL() writes
the data to the stream in that order.
Sun Microsystems Inc. 39 October 5, 1999

JDBC 2.1 Core API
public class Residence implements SQLData {
 public int door;
 public String street;
 public String city;
 public Ref occupant;

 private String sql_type;
public String getSQLTypeName() { return sql_type; }

 public void readSQL (SQLInput stream, String type)
throws SQLException {

 sql_type = type;
 door = stream.readInt();
 street = stream.readString();
 city = stream.readString();
 occupant = stream.readRef();

}

public void writeSQL (SQLOutput stream) throws SQLException {
stream.writeInt(door);

 stream.writeString(street);
 stream.writeString(city);
 stream.writeRef(occupant);
 }
}

public class Fullname implements SQLData {
 public String first;
 public String last;

 private String sql_type;
public String getSQLTypeName() { return sql_type; }

 public void readSQL (SQLInput stream, String type)
throws SQLException {

 sql_type = type;
 first = stream.readString();
 last = stream.readString();

}

public void writeSQL (SQLOutput stream) throws SQLException {
 stream.writeString(first);
 stream.writeString(last);
 }
}

public class Person implements SQLData {
 Fullname name;
 float height;
 float weight;
 Ref home;
Sun Microsystems Inc. 40 October 5, 1999

JDBC 2.1 Core API

MES
 private String sql_type;
public String getSQLTypeName() { return sql_type; }

 public void readSQL (SQLInput stream, String type)
throws SQLException {

 sql_type = type;
 name = (Fullname)stream.readObject();
 height = stream.readFloat();
 weight = stream.readFloat();
 home = stream.readRef();
 }

 public void writeSQL (SQLOutput stream)
throws SQLException {

 stream.writeObject(name);
 stream.writeFloat(height);
 stream.writeFloat(weight);
 stream.writeRef(home);
 }
}

The following method uses those classes to materialize data from the tables HO
and PEOPLE that were defined earlier:

import java.sql.*;
.
.
.

public void demo (Connection con) throws SQLException {

// setup mappings for the connection
try {

java.util.Map map = con.getTypeMap();
map.put(“S.RESIDENCE", Class.forName("Residence"));
map.put("S.FULLNAME", Class.forName("Fullname"));
map.put("S.PERSON", Class.forName("Person"));

}
catch (ClassNotFoundException ex) {}

PreparedStatement pstmt;
ResultSet rs;

pstmt = con.prepareStatement("SELECT OCCUPANT FROM HOMES");
rs = pstmt.executeQuery();
rs.next();
Ref ref = rs.getRef(1);

pstmt = con.prepareStatement(
"SELECT FULLNAME FROM PEOPLE WHERE OID = ?");

pstmt.setRef(1, ref);
rs = pstmt.executeQuery();
Sun Microsystems Inc. 41 October 5, 1999

JDBC 2.1 Core API

ple,

thod
ing or
rs.next();
Fullname who = (Fullname)rs.getObject(1);

// prints "Daffy Duck"
System.out.println(who.first + " " + who.last);

}

9.4.2 Mirroring SQL inheritance in the Java programming language

SQL structured types may be defined to form an inheritance hierarchy. For exam
consider SQL type STUDENT that inherits from PERSON:

CREATE TYPE PERSON AS OBJECT (NAME VARCHAR(20), BIRTH DATE);

CREATE TYPE STUDENT AS OBJECT EXTENDS PERSON (GPA NUMERIC(4,2));

The following Java classes can represent data of those SQL types. ClassStudent ex-
tendsPerson , mirroring the SQL type hierarchy. MethodsSQLData.readSQL() and
SQLData.writeSQL() of the subclass cascades each call to the corresponding me
in its super-class, in order to read or write the super-class attributes before read
writing the subclass attributes.

 import java.sql.*;
 ...
 public class Person implements SQLData {
 public String name;
 public Date birth;

 private String sql_type;
public String getSQLTypeName() { return sql_type; }

 public void readSQL (SQLInput data, String type)
throws SQLException {

sql_type = type;
 name = data.readString();
 birth = data.readDate();
 }

 public void writeSQL (SQLOutput data)
throws SQLException {

 data.writeString(name);
 data.writeDate(birth);
 }
 }

 public class Student extends Person {
 public float GPA;

 private String sql_type;
public String getSQLTypeName() { return sql_type; }
Sun Microsystems Inc. 42 October 5, 1999

JDBC 2.1 Core API

mple,

as

ctured
ava
 public void readSQL (SQLInput data, String type)
throws SQLException {

sql_type = type;
 super.readSQL(data, type);
 GPA = data.readFloat();
 }

 public void writeSQL (SQLOutput data)
 throws SQLException {
 super.writeSQL(data);
 data.writeFloat(GPA);
 }
 }

The Java class hierarchy need not mirror the SQL inheritance hierarchy. For exa
classStudent above could have been declared without a super-class. In this case,Stu-

dent could contain fields to hold the inherited attributes of the SQL type STUDENT
well as the attributes declared by STUDENT itself..

9.4.3 Example mapping of SQL distinct type

An SQL distinct type, MONEY, and a Java class Money that represents it:

-- SQL definition
CREATE TYPE MONEY AS NUMERIC(10,2);

// definition
public class Money implements SQLData {

public java.math.BigDecimal value;

private String sql_type;
public String getSQLTypeName() { return sql_type; }

public void readSQL (SQLInput stream, String type)
throws SQLException {

sql_type = type;
value = stream.readBigDecimal();

}

public void writeSQL (SQLOutput stream) throws SQLException {
stream.writeBigDecimal(value);

}
}

9.5 Generality of the approach

Users have great flexibility to customize the Java classes that represent SQL stru
and distinct types. They control the mappings of built-in SQL attribute types to J
Sun Microsystems Inc. 43 October 5, 1999

JDBC 2.1 Core API

Java
types)

erate

bitrary

ns.

, that

s.

-
rs

L
f the

ex-
t if its
tion.

it the

he ex-

L

field types. They control the mappings of SQL names (of types and attributes) to
names (of classes and fields). Users may add (to Java classes that represent SQL
fields and methods that implement domain-specific functionality. Users can gen
beans as the classes that represent SQL types.

A user can even map a single SQL type to different Java classes, depending on ar
conditions. To do that, the user must customize the implementation ofSQLData.read-

SQL() to construct and return objects of different classes under different conditio

Similarly, the user can map a single SQL value to a graph of Java objects. Again
is accomplished by customizing the implementation ofSQLData.readSQL() to con-
struct multiple objects and distribute the SQL attributes into fields of those object

A customization of theSQLData.readSQL() method could populate the type-map ob
ject incrementally. And so on. We believe that these kinds of flexibility will allow use
to map SQL types appropriately for different kinds of applications.

9.6 NULL data

An application uses the existinggetObject() andsetObject() mechanism to retrieve
and storeSQLData values. We note that when the second parameter,x, of methodPre-

paredStatement.setObject() has the valuenull , then the driver executes the SQ
statement as if the SQL literal NULL had appeared in place of that parameter o
statement:

 void setObject (int i, Object x) throws SQLException;

When parameterx is null, there is no enforcement that the corresponding argument
pression is of a Java type that could successfully be passed to that SQL statemen
value were non-null. The Java programming language null carries no type informa
For example, a null Java programming language variable of classAntiMatter could be
passed as an argument to an SQL statement that requires a value of SQL typeMATTER,
and no error would result, even though the relevant type-map object did not perm
translation ofMATTER to AntiMatter .

9.7 Summary

Chapters 8 and 9 presented extensions to support new categories of SQL types. T
tensions have these properties:

• All of the new SQL types are handled with uniform and extensible interfaces,
which may be staged into the JDBC API piecemeal.

• Minimal mechanism is added to the API. An implementation does little more
than transfer control to methods SQLData.readSQL() and
SQLData.writeSQL() of classes that have been generated to represent the SQ
types.
Sun Microsystems Inc. 44 October 5, 1999

JDBC 2.1 Core API
• The extensions are based on existing interfacesjava.io.Serializable ,
java.io.DataInput , java.io.DataOutput , java.sql.ResultSet , and
java.sql.PreparedStatement

• Great flexibility is given to writers of database tools to add value by
customizing the Java classes that represent SQL data.
Sun Microsystems Inc. 45 October 5, 1999

JDBC 2.1 Core API

I.

s

ult or

e
sult-

I doc-

r the
10 Other New Features and Changes

This chapter describes additional changes that have been made in the JDBC AP

10.1 Changes to java.sql.ResultSet

A version of theResultSet.getBigDecimal() method that returns full precision ha
been added.

10.2 Changes to java.sql.ResultSetMetaData

The ResultSetMetaData.getColumnType() method may now return the new SQL
type codes:STRUCT, DISTINCT , BLOB, etc. TheSTRUCTandDISTINCT type codes are al-
ways returned for structured and distinct values, independent of whether the defa
a custom type mapping is being used.

The ResultSetMetaData.getColumnTypeName() method should return the follow-
ing for the new SQL types.

A ResultSetMetaData .getColumnClassName() method has been added to return th
fully qualified name of the Java class whose instances are manufactured if Re
Set.getObject() is called to retrieve a value from the column. See the separate AP
umentation for details.

The ResultSetMetaData.getColumnTypeName() method returns a fully qualified
SQL type name when the type code is STRUCT, DISTINCT, or JAVA_OBJECT.

10.3 Changes to DatabaseMetaData

The DatabaseMetaData.getColumns() method may now return DATA_TYPE val-
ues of the new SQL99 types: BLOB, CLOB, etc. TheDatabaseMetaData.getCol-

umns() method returns the same type names as those listed in Section 10.2 fo
SQL99 data types.

Column Type Column Type Name

JAVA_OBJECT the SQL name of the Java type

DISTINCT the SQL name of the distinct type

STRUCT the SQL name of the structured type

ARRAY data source dependent type name

BLOB data source dependent type name

CLOB data source dependent type name

REF data source dependent type name
Sun Microsystems Inc. 46 October 5, 1999

JDBC 2.1 Core API

n

e

es as
ases

ds to

ate,
time
lues

g da-

e re-
pass-
Added methodDatabasemetaData.getConnection() to return theConnection ob-
ject that produced the metadata object.

Added methodDatabasemetaData.getUDTs() . See the separate API documentatio
for details.

Added methods to support the newResultSet and batch update functionality:sup-

portsResultSetConcurrency() , supportsBatchUpdates() , etc. See the separat
API documentation for details.

10.4 Changes to java.sql.DriverManager

A DriverManager.setLogWriter() method that takes ajava.io.PrintWriter ob-
ject as input has been added. A newDriverManager.getLogWriter() method returns
a PrintWriter object. Theset/getLogStream() methods have been deprecated.

10.5 Date, Time, and Timestamp

The JDBC API follows the Java platform’s approach of representing dates and tim
a millisecond value relative to January 1, 1970 00:00:00 GMT. Since most datab
don’t support the notion of a time zone, the JDBC 2.1 core API adds new metho
allow a JDBC driver to get/setDate , Time , andTimestamp values for a particular time
zone using aCalendar . For example,

ResultSet rs;
...
Date date1 = rs.getDate(1);

returns aDate object that wraps a millisecond value which denotes a particular d
like January 3, 1999, and a normalized time 00:00:00 in the default time zone. The
component of the Date is set to zero in the default time zone since SQL DATE va
don’t have a time component. Since aCalendar was not supplied explicitly toget-

Date() , the default time zone (really the defaultCalendar) is used by the JDBC driver
internally to create the appropriate millisecond value assuming that the underlyin
tabase doesn’t store time zone information.

The following example retrieves a date value in GMT—Greenwich Mean Time.

ResultSet rs;
...

TimeZone.setDefault(TimeZone.getTimeZone("GMT"));
Calendar cal = Calendar.getInstance();
Date date2 = rs.getDate(1, cal);

In the example above, aCalendar is passed explicitly togetDate() to inform the
JDBC driver how to calculate the appropriate millisecond value. Note that the sam
sult could have been achieved by simply changing the default time zone, and not
Sun Microsystems Inc. 47 October 5, 1999

JDBC 2.1 Core API

y

that

-
ppli-

to a

full
ull
me
the

tion.

ec-
E-

In
are
.

ing theCalendar explicitly since the JDBC driver will use the default time zone b
default.

Note that the twoDate objects created above will not compare as equal assuming
the default time zone is not GMT, even if they represent the ‘same’ date.

if (date1.equals(date2))
//never get here

This is because each Java languageDate object really just wraps a normalized millisec
ond time value and these millisecond values will differ across time zones. If an a
cation wishes to compare dates in different time zones it should first convert them
Calendar .

An application should create aDate object using aCalendar . The application is re-
sponsible for specifying the time as 00:00:00 on the desired date when using theCal-

endar since the JDBC API uses this convention. In addition when creating aTime value
the application must specify a date of January 1, 1970 to theCalendar used to create
the millisecond value for theTime as this is the convention specified for time.

10.6 Refinement to theDrop Table requirement

The JDBC 1.0 API specification required that JDBC 1.0 compliant drivers provide
support for the SQL92, Transitional Level, DROP TABLE command, including f
support for the CASCADE and RESTRICT options of DROP TABLE. Because so
popular databases currently do not fully support DROP TABLE as it is defined in
SQL92 specification, this requirement has been relaxed in the JDBC API specifica

A JDBC compliant driver is required to support the DROP TABLE command as sp
ified by SQL92, Transitional Level. However, support for the CASCADE and R
STRICT options of DROP TABLE is optional for a JDBC compliant driver.
addition, the behavior of DROP TABLE is implementation defined when there
views or integrity constraints defined that reference a table that is being dropped
Sun Microsystems Inc. 48 October 5, 1999

JDBC 2.1 Core API

apter

can
n an

c-
state-
ing

s
e may

posi-

cur-
e-

e.

ram-
ter en-
11 Clarifications

We have gotten several requests to clarify some aspects of the JDBC API. This ch
contains additional explanation of some features.

11.1 Connection.isClosed()

TheConnection.isClosed() method is only guaranteed to return true afterConnec-

tion.closed() has been called.Connection.isClosed() cannot be called, in gen-
eral, to determine if a database connection is valid or invalid. A typical client
determine that a connection is invalid by catching the exception that is thrown whe
operation is attempted.

11.2 Statement.setCursorName()

TheStatement.setCursorName() method provides a way for an application to spe
ify a cursor name for the cursor associated with the next result set produced by a
ment. A result set’s cursor name can be retrieved by call
ResultSet.getCursorName(). If Statement.setCursorName() is called prior to
creating a result set, thenResultSet.getCursorName() should always return the val-
ue specified in Statement.setCursorName().

We note that callingStatement.setCursorName() prior to creating a result set doe
not mean that the result set is updatable, in other words, positioned update or delet
not be allowed on a result set even ifStatement.setCursorName() was called. By de-
fault, a result set is read-only.

The only use for a cursor name is to embed it in a SQL statement of the form

UPDATE ... WHERE CURRENT OF <cursor>

The cursor name provides a way to do a positioned update or delete. To enable
tioned update and delete on a result set, a select query of the form

SELECT FOR UPDATE ... FROM ... WHERE ...

should be used to create the result set. IfStatement.setCursorName() is not called to
specify a cursor name, then the JDBC driver or underlying DBMS must generate a
sor name when aSELECT FOR UPDATEstatement is executed, if positioned update/d
lete is supported.ResultSet.getCursorName() should returnnull if the result set is
read-only andStatement.setCursorName() was not called to specify a cursor nam

11.3 Character conversion

JDBC driver implementations are expected to automatically convert the Java prog
ming language unicode encoding of strings and characters to and from the charac
Sun Microsystems Inc. 49 October 5, 1999

JDBC 2.1 Core API

erride
store

XX()
te un-
Que-
ow().
the

for-
coding of the database being accessed. The JDBC API does not define how to ov
the character encoding of a database. For example, the API does not define how to
unicode characters in an ASCII database.

11.4 Streams as input parameters

When an application passes a stream as an input value via a setXXX() or updateX
method, the application is responsible for maintaining the stream in a readable sta
til one of the following methods is called: PreparedStatement.execute(), execute
ry(), executeUpdate(), or executeBatch(), and ResultSet.insertRow() or updateR
A JDBC driver is not required to wait until one of these methods is called to read
stream value.

11.5 Result sets not created by aStatement

A ResultSet object that is created by a metadata operation is only required to be
ward-only. Scrollability is not required for result sets produced byDatabaseMetaData

operations.
Sun Microsystems Inc. 50 October 5, 1999

JDBC 2.1 Core API

to add

a.sql
ged to

aces in
d too
Appendix A: Rejected Design Choices

A.1 Design Alternative: Create new subtypes of the existing java.sql types.

We have chosen to add new methods to existing interfaces and classes in order
new functionality to the JDBC API.

An alternative design, which we considered, was instead to extend the existing jav
types with new subtypes that contained any new methods. This approach was jud
be too unwieldy. For example, since we needed to add methods to theja-

va.sql.Statement interface, such asStatement.setFetchSize() , it would have
been necessary to create three new statement interfaces related to the old interf
a fairly complex inheritance hierarchy (see below). This approach seemed to ad
much complexity to the JDBC API.

Statement

ExtendedStatement PreparedStatement

CallableStatement

ExtendedCallableStatement

ExtendedPreparedStatement

indicates subclass relationship
Sun Microsystems Inc. 51 October 5, 1999

JDBC 2.1 Core API

t have
f the
e.

after

r pre-
a pre-
results
and

SL.
st be
(e.g.,
cific
ation

sms
ser-

en a
c). - -

ition),

efin-
whose

ther

ously.

ns that
data-
to un-
Appendix B: Additional Suggestions

This section contains a list of some of the suggested additions that we received tha
not been added to the JDBC API. They are listed simply as a record of some o
things that have been left out. We welcome input concerning the items listed her

B.1 Other Suggestions for v0.1

Processing Results - Add a way to determine the value of an auto-incremented key
an insert is done.

Enhanced Meta-Data - Add meta-data for prepared statement parameters and fo
pared statement result set. The JDBC API does not provide metadata describing
pared statements parameters; and, it does not provide metadata describing its
without executing the statement (equivalent to SQL92 DESCRIBE OUTPUT
ODBC SQLDescribeParam.

New Data Types - Add the SQL time interval data type

Security - Allow the application to choose underlying transport properties, e.g., S
Provide SSL Socket implementation. A JDBC technology based application mu
able to select driver-supported mechanisms for securing the wirelevel protocol
encryption). Relative to SSL, one option is to allow the application to specify a spe
Cyphersuite (key-exchange algorithm, bulk-encryption, MAC [message authentic
algorithm])

Security-Authentication - Allow an application to select driver-supported mechani
for performing authentication. The following mechanisms should be supported: U
name, password; Kerberos token; Digital Certificates

Command Complete event - Support a user provided event object that is fired wh
Command completes (both current command and regular command, sync or asyn
Various events: Connect Event; Disconnect Event; Before Connect Event

Cursor Implementation Location - Support client-side vs server-side.

Parameter Management - Support: Append, GetCount, GetItem (by name/pos
Delete and Refresh.

Hybrid SQL/Java programming language Integration - Provide a mechanism for d
ing Java classess and provide a hybrid SQL/Java query mechanism over Tables
columns may be SQL atomics or Java classes.

Specialty Data Types - Provide extensions for OLAP, Spatial, TimeSeries and o
Specialty Data Types.

Serializing data, time, timestamps - Allow these types to be serializable.

Async Requests - Allow the caller to request that a Statement execute asynchron

Java classes - Introduce the notion of a SQL specialization of Java classes/bea
introduces SQL99 concepts useful for dealing with Java objects in the context of
bases and business applications. For example, it is useful for a database system
Sun Microsystems Inc. 52 October 5, 1999

JDBC 2.1 Core API

ns on
meth-
Appli-

i-

h

ld

od

r
s to
o

te
re
o

r
.)
e

se
derstand which method(s) definitions in a Class may be used to perform operatio
objects such as comparisons, etc. One approach would be to introduce "generic"
od names. Those could also be used outside of the database by regular Business
cations.

Add support for SQL PSM.

Add additional SQL language functionality e.g. various forms of join.

Add *levels* of JDBC compatibility, as opposed to individual API calls to see if ind
vidual features are supported by a drvier.

Add an API call that describes the format of the URL understood by a driver.

Add a row object that encapsulates database data in its native format.

Add immutability for Date, Time, Timestamp.

B.2 Additional suggestions for v0.7

• It was suggested that as an alternative to providing individual methods for eac
new property on theStatement interface such as result set type, concurrency
type, etc., we could introduce a new Class,ResultSetProperties , that itself
contained all methods for getting and setting these properties. Statement wou
then just contain two new methods for getting and setting a
ResultSetProperties property. This approach would help to simplify the
Statement interface.

• Add a new CursorResultSet interface which extends ResultSet and adds meth
CursorStatement prepareUpdate() throws SQLException ; OR add the
prepareUpdate method to the existingResultSet interface - and define that it
may fail if there is no cursor associated with it. Add a newCursorStatement

interface which extendsPreparedStatement and adds the methods:void

update() throws SQLException and void delete() throws

SQLException . It would be helpful to introduce another intermediate
CursorResultSet which would sit in the interitance hierarchy between
ResultSet and ScrollableResultSet . The motivation for the
CursorStatement is to avoid the need to parse every query to look for curso
operations. The reason to have CursorStatement extend PreparedStatement i
get access to the setXXX methods. The setXXX() methods would be used t
provide new values to the corresponding columns of the current row in the
CursorResultSet. The executeUpdate() method would perform the actual upda
(with the parameter values that had been set) or delete (parameter values a
ignored). The execute() and executeQuery() methods would be overridden s
that they always throw SQLException. Additionally, the CursorStatement
would be "bound" to the CursorResultSet which created it such that wheneve
that CursorResultSet was repositioned (next, relative, absolute, first, last, etc
that the CursorStatement would automatically track this and update/delet
methods affect the right row. ** It is tempting to do away with the
CursorStatement and just add that functionality to the CursorResultSet becau
these things are likely to be in 1:1 relationship.
Sun Microsystems Inc. 53 October 5, 1999

JDBC 2.1 Core API

l

in

r

y
ce
• Add to the Statement interface: void

setCursorProperties(CursorProperties props) throws SQLException ;
Define a newjava.sql.CursorProperties class. I like the idea of adding
statement properties so that appropriate subclasses ofResultSet are returned
when the statement is executed. But, rather than adding a bunch of individua
accessors/mutators for all these properties toStatement , I would recommend
defining aCursorProperties class with public members and then add just a
single new method to Statement : void

setCursorProperties(CursorProperties props) throws SQLException ;
This would remove the need for the newStatement.setFetchSize and
getFetchSize methods for example.CursorProperties would have a public
constructor which returns aCursorProperties object with well defined
default values (TBD). Members of this class would include: 0. boolean
useCursors - if true the statement should return aCursorResultSet from
executeQuery. 1. String cursorName -Statement.setCursorName() would be
depricated. 2. boolean scrollable - if true the statement should return a
ScrollableResultSet from execute query. 3. boolean readonly - if true this
cursor is READONLY. 4. int rowCacheSize - hint to driver on how many rows
to retrieve from the database at a time. 5. boolean closeOnEndTransaction -
ANSI SQL '92 cursors are automatically closed on commit/rollback, but many
databases allow cursors to remain open for efficiency 6. String[]
updatableColumns - list of columns which in SQL '92 grammar would be in the
"FOR UPDATE OF <column list>" clause. 7. boolean sensitive - if true
committed changes to the underlying tables which happened while the curso
was open may be seen by the application as it scrolls over those rows.

• The result of any SQL query can be thought of as defining a simple structured
type. The fields of the structured type correspond to the columns of the quer
result, and each row in the result set returned by the query represents an instan
of the type. The JDBC API could allow a mapping from a type that is defined
implicitly by an SQL query to a Java class, or even a bi-directional mapping
between regular relational tables and Java classes.
Sun Microsystems Inc. 54 October 5, 1999

JDBC 2.1 Core API

C

h

of

h

e

he

s

Appendix C: Change History

C.1 Changes between 0.10 and 0.70:

• Removed references to thejava.sql2 package. Substituted a proposal that
splits the JDBC API into two packages:javax.sql andjava.sql.

• Removed descriptions of the classes and intefaces injavax.sql. We plan to
add them in again later, or create a separate document for the extended JDB
API.

• Removed theScrollableResultSet interface and associated methods on
other interfaces. Added methods for scrolling to theResultSet interface

• Added result set type, concurrency type, keyset size, fetch size, and fetc
direction properties toConnection , Statement , andResultSet interfaces.

• Deprecated Statement.setCursorName and ResultSet.getCursorName. Use
“SELECT FOR UPDATE” is also deprecated. The new result set update
methods can be used instead.

• Added SQL99 APIs.

• Added new metadata for persistent Java objects.

C.2 Changes between 0.70 and 0.80

• The Struct interface no longer extends the SQLData interface.

• All occurrences of the SQLType interface have been removed and replaced wit
'String'.

• The Array.getArray() method now returns Object instead of Object[]. This
allows an int[] array to be returned, for example.

• The specification now states that a Java programming language array may b
passed as an input parameter via PreparedStatement.setObject().

• The semantics of ResultSet.isDeleted(), etc. is clarified.

• The DatabaseMetaData.getClass() method has been dropped due to t
difficulties involved in loading classes directly from a database.

• The ResultSet.getBigDecimal() and CallableStatement.getBigDecimal()
methods which take an ‘int scale’ parameter have been deprecated.

• Statement.getResultSetType() now throws SQLException

• Added method Array.getBaseTypeName(). Array.getBaseType() now return
an int type code.

• DatabaseMetaData.getUDTs() now allows a fully qualified SQL name which
may contain wildcard characters in the typeNamePattern parameter.
Sun Microsystems Inc. 55 October 5, 1999

JDBC 2.1 Core API

g

e
y

/

.

lt

s.

w

C.3 Changes between 0.80 and 0.90

• Section 9.4: Compiled code examples and removed syntax errors.

• Section 9.4.2: Added note on the independence of the Java programmin
language and SQL99 inheritance hierarchies.

• Section 6.1: Removed the requirement that indirect updates, such as thos
performed by a trigger that is fired, be included in the update counts returned b
a batch update.

• Section 5.6: Clarified some technical details concerning inserting new rows in
a result set.

• Section 7.3.1: Noted that the TYPE_NAME returned by getTypeInfo() may
contain a vendor specific type name when the type code is JAVA_ODBECT.
Previously, the TYPE_NAME had to be null.

• Removed method SQLInput.readStruct() and SQLOutput.writeStruct(). Read
writeObject() should be used instead.

• Chapter 5: Revised and simplified the scrollable result set model.

• Section 11.3: Added note on character conversion.

• Section 10.3: Added description of time zone support.

C.4 Changes between 0.90 and 0.91

• Section 5.5: Added rules for selecting a supported result set type and
concurrency type.

• Section 5.6: Added method ResultSet.cancelRowUpdates.

• Section 5.6: Added more description on the semantics of the update methods

• Added Section 5.9.

C.5 Changes between 0.91 and 0.95

• Section 5.6: Added general description of the queries that yield updatable resu
sets.

• Section 8.2: Clarified rules for passing blob and clob values as input parameter

• Sections 11.4 and 11.5: Added these sections to the document.

C.6 Changes between 0.95 and 1.0

• no changes

C.7 Changes between 1.0 and 1.1

• Chapter 6: Extended the semantics of executeBatch. Batch processing is no
allowed to continue after an element in a batch has failed to execute
successfully.
Sun Microsystems Inc. 56 October 5, 1999

JDBC 2.1 Core API
• Added Section 10.6.
Sun Microsystems Inc. 57 October 5, 1999

JDBC 2.1 Core API

L
o

a
r
e

g
al
e

s
E

nt

ny
a

ses
o

s
,

t

n

Appendix D: Motivation for the SQL99 Proposal

The following observations and requirements have shaped this proposal:

• A Java technology program will retrieve a value of an SQL type as a single Java
programming language data item. For example, an instance of a structured SQ
type can be materialized as a single object, by a single method call (e.g., t
method getObject()).

• A Java program will retrieve an SQL value as a "strongly typed" Java object.
For example, a structured type instance will be materialized as an object of
class with fields or methods that correspond to the attributes of that particula
structured type, and that allow the program to access the attributes of th
structured type.

• A client-side Java program can retrieve values of user-defined SQL types from
a database that is "unaware" of Java technology. No Java programmin
language support is required in that database. For example, no speci
definitions must be made in the database to allow structured type data to b
retrieved by Java programs.

• In particular, structured type values are retrieved into Java programs by mean
of SELECT statements; are posted to the database by INSERT and UPDAT
statements; and so on.

• The SQL methods of a structured type execute in the server, and are not releva
to the issue of retrieving structured type data from SQL into Java programs.

• Definitions of user-defined SQL types are visible in SQL catalog tables.
Similarly, definitions of Java classes are programmatically available thru the
reflection API. Therefore, tools that generate Java class definitions for SQL
data, or vice versa, can be written by database tools vendors, independent of a
particular relational database vendor. Our mappings of SQL types to Jav
classes must permit third-parties to write such tools.

• We assume that the mappings between SQL user-defined types any Java clas
will usually be generated by tools. It is not necessary to design the mappings s
that human programmers can easily write them "by hand".

• There is no reason to define exactly one mapping of an SQL type to a class a
the only "correct" mapping. Mapping tools may define different Java classes
corresponding to a given SQL user-defined type, to serve different application
domains or execution environments. Such different classes may have differen
type mappings for the primitive attributes, or auxilliary fields that are relevant
to a particular application. Our mappings of SQL user-defined types to Java
classes should allow such variations.

• We want to support Java programs that fetch data of SQL user-defined types i
a "dynamic SQL" style, without "knowing" in advance the number and kinds of
attributes of those data.
Sun Microsystems Inc. 58 October 5, 1999

JDBC 2.1 Core API

a

a

va
h
h

L

ry
f

• An SQL structured type may contain an attribute of a REF(structured-type) type
that references a row containing another structured type instance. Despite
superficial similarity, that SQL REF is not analogous to a field containing
another lightweight Java object. An SQL REF is a key value that designates
row of a table; it does not designate an object in transient memory.

• Users will often want a 1-1 mapping between SQL types and Java classes. Ja
class-to-SQL mapping tools will generate a class for each distinct type, for eac
structured type, for each REF(structured-type), for each array type, for eac
Locator type, and so on.

• We want to allow flexibility in the mappings of SQL types to Java classes, so
that tools builders, and implementers of domain-specific "application service
layers" can add value by customizing the Java classes that implement SQ
types. In particular, the mapping of leaf SQL attributes and elements to fields
and variables permits all conversions that the JDBC API currently permits.
SQL names may be mapped to Java programming language names in arbitra
ways. An SQL value may be represented by one Java object, or by a graph o
objects.
Sun Microsystems Inc. 59 October 5, 1999

	1 Introduction
	1.1 Preface
	1.2 Target audience
	1.3 Background
	1.4 Organization
	1.5 Terminology
	1.6 Acknowledgments

	2 Goals
	2.1 Leverage the strengths of the JDBC 1.0 and Java platform APIs
	2.2 Maintain compatibility with existing applications and drivers
	2.3 Keep pace with the Java platform
	2.4 JavaBeans
	2.5 Advanced Database Features

	3 Overview of New Features
	3.1 Result set enhancements
	3.2 Batch updates
	3.3 Advanced data types
	3.4 Rowsets
	3.5 JNDI for naming databases
	3.6 Connection Pooling
	3.7 Distributed transaction support
	3.8 Other new features

	4 What’s Actually Changed
	4.1 A New Package
	4.2 Changes to Classes and Interfaces

	5 Result Set Enhancements
	5.1 Scrolling
	5.2 Result Set types
	5.3 Concurrency types
	5.4 Performance
	5.5 Creating a result set
	5.6 Updates
	5.7 Cursor movement examples
	5.8 Detecting and viewing changes
	5.9 Refetching a row
	5.10 JDBC API compliance

	6 Batch Updates
	6.1 Description of batch updates
	6.2 What’s required

	7 Persistence for Java Objects
	7.1 Retrieving Java objects
	7.2 Storing Java objects
	7.3 Additional metadata

	8 New SQL Types
	8.1 Taxonomy of SQL Types
	8.2 Blobs and clobs
	8.3 Arrays
	8.4 Refs
	8.5 Distinct types
	8.6 Structured types

	9 Customizing SQL Types
	9.1 The type mapping
	9.2 Java class conventions
	9.3 Streams of SQL data
	9.4 Examples
	9.5 Generality of the approach
	9.6 NULL data
	9.7 Summary

	10 Other New Features and Changes
	10.1 Changes to java.sql.ResultSet
	10.2 Changes to java.sql.ResultSetMetaData
	10.3 Changes to DatabaseMetaData
	10.4 Changes to java.sql.DriverManager
	10.5 Date, Time, and Timestamp
	10.6 Refinement to the Drop Table requirement

	11 Clarifications
	11.1 Connection.isClosed()
	11.2 Statement.setCursorName()
	11.3 Character conversion
	11.4 Streams as input parameters
	11.5 Result sets not created by a Statement

	Appendix A: Rejected Design Choices
	A.1 Design Alternative: Create new subtypes of the existing java.sql types.

	Appendix B: Additional Suggestions
	B.1 Other Suggestions for v0.1
	B.2 Additional suggestions for v0.7

	Appendix C: Change History
	C.1 Changes between 0.10 and 0.70:
	C.2 Changes between 0.70 and 0.80
	C.3 Changes between 0.80 and 0.90
	C.4 Changes between 0.90 and 0.91
	C.5 Changes between 0.91 and 0.95
	C.6 Changes between 0.95 and 1.0
	C.7 Changes between 1.0 and 1.1

	Appendix D: Motivation for the SQL99 Proposal

