The Real-Time Specification
for Java'

The Java™ Series

Lisa Friendly, Series Editor

Tim Lindholm , Technical Editor

Ken Arnold, Technical Editor of The Jifif Technology Series

Jim Inscore, Technical Editor of The JaV Series, Enterprise Edition

Ken Arnold, James Gosling, David Holmes Jonni Kanerva
The Java™ Programming Language, Third Edition The Java™ FAQ

Greg Bollella, James Gosling, Ben Brosgol, Peter Dibble,DOUg Lea

Steve Furr, David Hardin, Mark Turnbull Concurrent Programming in Java™, Second Edition:

The Real-Time Specification for Java™ Design Principles and Patterns

Rosanna Lee, Scott Seligman
JNDI API Tutorial and Reference:
Building Directory-Enabled Java™ Applications

Mary Campione, Kathy Walrath, Alison Huml
The Java™ Tutorial, Third Edition:

A Short Course on the Basics

Sheng Liang

The Java™ Native Interface:
Programmer’s Guide and Specification

Mary Campione, Kathy Walrath, Alison Huml,
Tutorial Team
The Java™ Tutorial Continued: The Rest of the JDK™

Patrick Chan Tim Lindholm, Frank Yellin
The Java™ Developers Almanac 2000 The Java™ Virtual Machine Specification, Second Edition
Patrick Chan, Rosanna Lee Henry Sowizral, Kevin Rushforth, Michael Deering

The Java™ Class Libraries Poster, Enterprise Edition, The Java 3D™ API Specification, Second Edition

version 1.2 .
Kathy Walrath, Mary Campione

Patrick Chan, Rosanna Lee The JFC Swing Tutorial: A Guide to Constructing GUIs
The Java™ Class Libraries, Second Edition, Volume 2:

java.applet, java.awt, java.beans Seth White, Maydene Fisher, Rick Cattell,

Graham Hamilton, Mark Hapner
Patrick Chan, Rosanna Lee JDBC™ API Tutorial and Reference, Second Edition:
The Java™ Class Libraries Poster, Fifth Edition: CoveringUniversal Data Access for the Java™ 2 Platform

the Java™ 2 Platform, Standard Edition, v1.3)
Steve Wilson, Jeff Kesselman

Patrick Chan, Lee, Douglas Kramer Java™ Platform Performance: Strategies and Tactics
The Java™ Class Libraries, Second Edition, Volume 1:
Supplement for the Java™ 2 Platform, Standard Edition,

v1.2 Ken Arnold, Bryan O’Sullivan, Robert W. Scheifler,
Patrick Chan, Rosanna Lee, Douglas Kramer Jim Wa!?;" Ann Wollrath

The Java™ Class Libraries, Second Edition, Volume 1: 1N€ Jini™ Specification

java.io, java.lang, java.math, java.net, java.text, java.util gy Freeman, Susanne Hupfer, Ken Arnold
Zhiqun Chen JavaSpaces™ Principles, Patterns, and Practice

Java Card™ Technology for Smart Cards: The Java™ Series, Enterprise Edition
Architecture and Programmer's Guide

The Jini™ Technology Series

Nicholas Kassem, Enterprise Team

Li Qong . Designing Enterprise Applications with the Java™ 2
Inside Java™ 2 Platform Security: Platform, Enterprise Edition

Architecture, API Design, and Implementation

) i) Bill Shannon, Mark Hapner, Vlada Matena, James
James Gosling, Bill Joy, Guy Steele, Gilad Bracha Davidson, Eduardo Pelegri-Llopart, Larry Cable,
The Java™ Language Specification, Second Edition Enterprise Team

Java™ 2 Platform, Enterprise Edition:

. . Platform and Component Specifications
http://www.javaseries.com

The Real-Time Specification
for Java

The Real-Time for Java Expert Group
http://www.rtj.org

Greg Bollella
Ben Brosgol Peter Dibble
Steve Furr James Gosling
David Hardin Mark Turnbull
v

ADDISON-WESLEY
Boston « San Francisco « New York ¢ Toronto « Montreal
London ¢ Munich ¢ Paris « Madrid
Capetown ¢ Sydney * Tokyo * Singapore » Mexico City

Copyright © 2000 Addison-Wesley.
Duke logo™ designed by Joe Palrang.

Sun, Sun Microsystems, the Sun logo, the Duke logo, and all Sun, Java, Jini, and Solaris based trademarks and
logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other
countries. UNIX is a registered trademark in the United States and other countries, exclusively licensed
through X/Open Company, Ltd. All other product names mentioned herein are the trademarks of their
respective owners.

U.S. GOVERNMENT USE:This specification relates to commercial items, processes or software.
Accordingly, use by the United States Government is subject to these terms and conditions, consistent with
FAR12.211 and 12.212.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. THE REAL-TIME
FOR JAVA EXPERT GROUP MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME. IN
PARTICULAR, THIS EDITION OF THE SPECIFICATION HAS NOT YET BEEN FINALIZED: THIS
SPECIFICATION IS BEING PRODUCED FOLLOWING THE JAVA COMMUNITY PROCESS AND
HENCE WILL NOT BE FINALIZED UNTIL THE REFERENCE IMPLEMENTATION IS COMPLETE.
THE EXPERIENCE OF BUILDING THAT REFERENCE IMPLEMENTATION MAY LEAD TO
CHANGES IN THE SPECIFICATION.

The publisher offers discounts on this book when ordered in quantity for special sales. For more information,
please contact:

Pearson Education Corporate Sales Division

One Lake Street

Upper Saddle River, NJ 07458

(800) 382-3419

corpsales@pearsontechgroup.com

Visit Addison-Wesley on the Web at www.awl.com/cseng/
Library of Congress Control Number: 00-132774

ISBN 0-201-70323-8
Text printed on recycled paper.

123456789 10-MA-04 03 02 01 00
First printing, June 2000

To Paula and my daughter Alex, who forgave my extended absences
during critical phases of house construction — GB

To Deb, Abz, and Dan, for making it all worthwhile — BB

To Ken Kaplan and my family, who allowed me the
time and resources for this work — PD

To Linda, who has always been a true friend, cared for my home in my absences,
welcomed me at the airport and generally shown patience and consideration — SF

To Judy, Kelsey, and Kate, who gave me the
Love and Time to work on this book — JG

To Debbie, Sam, and Anna, who endured my frequent absences, and general
absentmindedness, during the writing of this book — DH

To my daughters Christine, Heather, and Victoria, and especially to my wife Terry,
who all put up with my strange working hours — MT

To the Stanford Inn-by-the-Sea, the Chicago Hilton, and the Chateau Laurier for
providing space for a bunch of geeks to hang out; and to the Beaver Tail vendors by the
Rideau Canal for providing a yummy distraction.

Contents

I 1
LOF- 1Y T | AU UUPPPTTRRUPPPPTIN IX
U1 o] S UPPUUSRSR Xi
PIEIACE ..o ————————————— Xiii
0T o] (o SR PPTTRRPRTN XiX
1] oo 11 o3 1o o [PPSR 1
D=1 T | o U P TP 5
TRIEAAS ... 21
REAIMETRNIEAA ... e e 22
NOHeapRealtiMeTNIread ... 26
SCREAUIING .. 31
Yol 0 1=T0 1] = Lo [PEERRRR 35
Yol 1= o 111 P PSERURR 36
PHOMYSCREAUIETooiiiieeiii e 38
SCheduliNgParamMEtErScuuiiiiiiii e 40
PrOFMEYPAIrGMELEIS ...oiiiiiiiiiie ittt s b s b e e e s 41
IMPOMANCEPAIAMELELScoiiiiiiiiii e e e e e e 42
REIEASEPAIAMELEISeiiiiiiie it e e s e er e e e e e e e e e e s naeees 43
PeriodiCParamMEterSccoi it e e aaa s 45
APETOAICPAIAMELEISeeiiiiiiiiiiie e 47
SPOrAICPAIAMELEIS ..coiiiiiiiie ettt et e e s bbe e e e e e anees 48
ProcessingGroUPPAramMetErSc.ueiiiiiiiiiieee ittt ettt e e e s abaeeee e 50
Memory ManagemMeNTocuuiiiiiiie e 57
L= a0 V7N = 60
[[T 011, =T o o o 61
gl eTq = 111, =1 4T Y/ PEERRR 62
Y o0 0 1= 1o 1Y/ =T 3 T oY SRR 62
R 1Y/ 2T Y 65
I 1Y 1T o T PRSP 65
PhysicalMemOryFactOryccccuuiiiiiiiiiie e a e e e e eee s 68
IMMOralPhySICAIMEMOIY ...vvviiiiieie e e e e e e e e e 70
Y o0] o 1= To | =d 1) YA (o= 111V, 1T o 4o YOS 71
L Y 1T L0 7 o o =] 72
RAWMEMOIYFIOAEACCESScoceeviiiieiiiii e e e e e e e e e s r e e e e e e e e e s e nnnnreeeeees 77
MEMOIYPAIAMELEIS ...ttt e e e et e e e e et e e e e eeaaa s 79
(7= 14 o= To [T o 1| L= 1 (o] SR 82

Vii

viii

IncrementalColleCtOrEXAMPIEcooiiiiiiiiiiiiiee e 83
MarkAndSweepColleCtOrEXAmMPIEoocueiiiiiiiiiiiee e 84
SYNCAIONIZALION ...t e 85
1Y o a1 (0] { @ o] a1 (o] N PRSPPI 86
PriorityCeillingEMUIALIONceviiiiieiii e e e 87
10 104 Lo 01T 1 7= L (o7 SRS 88
WaIFTEEDEQUEBUEvvveeeeiiee e e e ittt e e e e e e e s s e e e e e e e e e e e s s s nn e ae e e e e aaaeeeseannnrnneens 88
WaitFreeREadQUEUEccooi ittt e e e e e s e e e e e e e s e s e reeee e 90
WatFre@WIHEEQUEUEceiiiiiiiiiiiee e e e ettt e e e e e e s e s e e e e e e e e s e e s s rrarereaaaees 92
1] =P 95
HIGhRESOIULIONTIME .. e e e e e e e e 97
ADSOIUIETIME .ottt e et e e e e s e b e e e e 99
REIALIVETIME ..t e e s e e e e e e 102
RALIONAITIME . e e 105
L0 1= £ PP PP PR TRTPPP 109
{1 o o3 G 110
11 1= PSS 112
(0] 0115 To) I T3 1= PRSP 113
=Y T To [ol I T T SRR 114
ASYNCRIONY .ttt e e e e e aaaas 121
Y 100 YT o | PP PRPRRN 127
ASYNCEVENTHANAIET ...vveeiiiiee e e e e e e e e snenes 129
BoundASYNCEVENTHANAIETvviiiiiieee i 134
L1 C=T 1] o SRR 135
AsynchronouslylnterruptedEXCEPLioNccccuvvieiieeeeeiiiiice e 136
THMEA e 138
System and OPLIONSccooiiiiiiiiiie e 147
POSIXSIGNAIHANAIET ... 148
REAIIMESECUILY ...t e e e e e e e e e e e anaes 151
RealIMESYSIEIM .o e e e e e 152
(o =T o] 1[0 1 1= EEPRPPUPPSPR 155
legalASSIGNMENTEITONviiiiiiiiiiiee ettt e e ee e 156
MEMOIYACCESSEITON ... e e e e e e e e e e enenenenes 156
MEMOrYSCOPEEXCEPLION ...ttt 157
OffsetOUtOfBOUNASEXCEPLIONeviiiiiiiieieiiiiiie ettt 158
RESOUICELIMITEITONeeiiiiiiie et r e e e e e e e e e ennees 158
SizeOUtOfBOUNASEXCEPLION ...couveiiiiiiiiiiiee e 159
TRrOWBOUNAIYEITOF ...coiiiiiiiiei ittt ee s 159
UnsupportedPhysicalMemOoryEXCEePtiONccceviiiiiiiiieiiiiiiee e 160
AIMABNAC ..o 163
BibDlIOGrapnyeeeeiiiiieiie e 187
COlOPNON e —————————— 193

[0 (53 G 195

Caveat

This edition ofThe Real-Time Specification for JAYgRTSJ) igoreliminary . It is

being developed under the Java Community Process (http://java.sun.com/aboutJava/
communityprocess). It will not be considered final until after the completion of the
reference implementation. The experience gained from that implementation may
necessitate changes to the specification. Status information on the specification may
be obtained from the web site maintained by the expert ghtip/www.rtj.org ,

along with updates and samples.

Throughout the RTSJ, when we use the warde we mean code written in the
Java programming language. When we mention the Java language in the RTSJ, that
also refers to the Java programming language. The use of thedepin the RTSJ
will refer to the heap used by the runtime of the Java language. If we refer to other
heaps, such as the heap used by the C language runtime or the operating system'’s
heap, we will explicitly state which heap.

Throughout the RTSJ will use the teffilireado refer to the classhread in The
Java Language Specificati@mdthreadto refer to a sequence of instructions or to an
instance of the clashread. The context of uses tfireadshould be sufficient to
distinguish between the two meanings. We will be explicit where we think necessary.

In order to get this published and in your hands, we made some compromises in
copyediting and proofreading for this first edition. It is our intention to provide this
book for you to begin designing real-time applications with this specification. Please
send any and all comments to: comments@rtj.org.

Authors

Greg Bollella, a Senior Architect at the IBM Corporation, is lead engineer of the Real-
Time for Java Expert Group. Previously, Greg designed and implemented
communications protocols for IBM. He holds a Ph.D. in computer science from the
University of North Carolina at Chapel Hill. His dissertation research is in real-time
scheduling theory and real-time systems implementation.

Ben Brosgol is a senior technical staff member of Ada Core Technologies, Inc.
He has had a long involvement with programming language design and
implementation, focusing on Ada and real-time support, and has been providing Java-
related services since 1997. Ben holds a Ph.D. in applied mathematics from Harvard
University, and a B.A. from Amherst College.

Peter Dibble, Senior Scientist at Microware Systems Corporation, has designed,
coded, and analyzed system software for real-time systems for more than ten years
with particular emphasis on real-time performance issues. As part of Microware’s
Java team, Peter has been involved with the Java Virtual Machine since early 1997.

Steve Furr currently works for QNX Software Systems, where he is responsible
for Java technologies for the QNX Neutrino Operating System. He graduated from
Simon Fraser University with a B.Sc. in Computer Ccience.

James Gosling, a Fellow at Sun Microsystems, is the originator of the Java
programming language. His career in programming started by developing real-time
software for scientific instrumentation. He has a Ph.D. and M.Sc. in Computer
Science from Carnegie-Mellon University and a B.Sc. in Computer Science from the
University of Calgary.

David Hardin, Chief Technical Officer and co-founder of aJile Systems, has
worked in safety-critical computer systems architecture, formal methods, and custom
microprocessor design at Rockwell Collins, and was named a Rockwell Engineer of
the Year for 1997. He holds a Ph.D. in electrical and computer engineering from
Kansas State University.

Mark Turnbull has been an employee of Nortel Networks since 1983. Most of his
experience has been in the area of proprietary language design, compiler design, and
real-time systems.

Xi

Xii

Preface

Dreams

In 1997 the idea of writing real-time applications in the Java programming language
seemed unrealistic. Real-time programmers talk about wanting consistent timing
behavior more than absolute speed, but that doesn’t mean they don’t require excellent
overall performance. The Java runtime is sometimes interpreted, and almost always
uses a garbage collector. The early versions were not known for their blistering
performance.

Nevertheless, Java platforms were already being incorporated into real-time
systems. It is fairly easy to build a hybrid system that uses C for modules that have
real-time requirements and other components written to the Java platform. It is also
possible to implement the Java interpreter in hardware (for performance), and
integrate the system without a garbage collector (for consistent performance). aldile
Systems produces a Java processor with acceptable real-time characteristics.

Until the summer of 1998, efforts toward support for real-time programming on
the Java platform were fragmented. Kelvin Nilsen from NewMonics and Lisa
Carnahan from the National Institute for Standards and Technology (NIST) led one
effort, Greg Bollella from IBM led a group of companies that had a stake in Java
technology and real-time, and Sun had an internal real-time project based on the Java
platform.

In the summer of 1998 the three groups merged. The real-time requirements
working group included Kelvin Nilsen from NewMonics, Bill Foote and Kevin
Russell from Sun, and the group of companies led by Greg Bollella. It also included a
diverse selection of technical people from across the real-time industry and a few
representatives with a more marketing or management orientation.

The requirements group convened periodically until early 1999. Its final output
was a documenRequirements for Real-time Extensions for the Java Platform
detailing the requirements the group had developed, and giving some rationale for
those requirements. It can be found on the welai: //www.nist.gov/rt-java.

Xiii

Xiv

Realization

One of the critical events during this processess occurred in late 1998, when Sun
created thdava Community Proces&nyone who feels that the Java platform needs a
new facility can formally request the enhancement. If the request, called a Java
Specification Request (JSR), is acceptechlbfor expertss posted. Thepecification
leadis chosen and then he or she formsetkgert groupThe result of the effort is a
specification, reference implementation, and test suite.

In late 1998, IBM asked Sun to accept a JBR Real-Time Specification for
Java,based partly on the work of the Requirements Working Group. Sun accepted the
request as JSR-000001. Greg Bollella was selected as the specification lead. He
formed the experts group in two tiers. The primary group:

Greg Bollella IBM
Paul Bowman Cyberonics
Ben Brosgol Aonix/Ada Core Technologies
Peter Dibble Microware Systems Corporation
Steve Furr QNX System Software Lab
James Gosling Sun Microsystems
David Hardin Rockwell-Collins/aldile
Mark Turnbull Nortel Networks

would actually write the specification, and the consultant group:

Rudy Belliardi Schneider Automation
Alden Dima NIST

E. Douglas Jensen MITRE
Alexander Katz NSICom

Masahiro Kuroda Mitsubishi Electric

C. Douglass Locke Lockheed Martin/TimeSys
George Malek Apogee

Jean-Christophe Mielnik Thomson-CSF

Ragunathan Rajkumar CmMu

PREFACE XV

Mike Schuette Motorola
Chris Yurkoski Lucent
Simon Waddington Wind River Systems

would serve as a pool of readily available expertise and as initial reviewers of early
drafts.

The effort commenced in March 1999 with a plenary meeting of the consultant
and primary groups at the Chicago Hilton and Towers. This was an educational
meeting where the consultants each presented selections of general real-time wisdom,
and the specific requirements of their part of the real-time world.

The basis of the specification was laid down at the first primary group meeting. It
took place in one of the few civilized locations in the United States that is not
accessible to digital or analog cell phone traffic, Mendocino, California. This is also,
in the expert opinion of the primary group, the location of a restaurant that produces
the world’s most heavily cheesed pizza.

Through 1999 the primary group met slightly more than once a month, and
meetings for the joint primary and consultants groups were held slightly less than
once a month. We worked hard and had glorious fun. Mainly, the fun was the joy of
solving a welter of problems with a team of diverse and talented software architects,
but there were memorable nontechnical moments.

There was the seminal “under your butt” insight, when James told Greg that he
should stop looking over his head for the sense of an argument: “This is simple, Greg.
It's not over your head, it's going under your butt.” That was the same Burlington,
Massachusetts, meeting where a contingent of the expert group attended the 3:00 AM
second showing of the newly released Star Wars Phantom Menace. The only sane
reason for waking up at a time more suitable for going to sleep was that James had
gone back to California to attend the movie with his wife, who had purchased tickets
weeks in advance. It tickled our fancy to use the magic of time zones and early rising
to see the new release before them.

The cinnamon rolls in Des Moines, which David later claimed were bigger than
his head. This was an exaggeration. Each roll was slightly less than half the size of
David’s head.

The “dead cat” meeting in Ottawa, where Greg claimed that when he took his
earache to the clinic, the doctor would probably remove a dead cat.

The “impolite phrase” meeting, also in Ottawa. The group made it into a
computer industry gossip column, and our feelings on the thrill of being treated like

XVi

movie stars simply cannot be expressed in this book. We are, however, impressed that
a writer old enough to perceive Greg as IBlKyyis still writing regularly.

In September 1999, the draft specification was published for formal review by
participants in the Java Community Process and informal reading by anyone who
downloaded it from the group’s web site (http://www.rtj.org). In December 1999, the
revised and extended document was published on the web site for public review.
Public review remained open until the 14th of February 2000 (yes, Valentine’s Day).
Then the specification was revised a final time to address the comments from the
general public.

The first result of this work is the document you are reading. IBM is also
producing a reference implementation and a test suite to accompany this specification.

Acknowledgments

The reader should consider this work truly a collaborative effort. Many people
contributed in diverse ways. Unlike most traditional published books this work is the
result of effort and contribution from engineers, executives, administrators, marketing
and product managers, industry consultants, and university faculty members spread
across more than two dozen companies and organizations from around the globe. It is
also the result of a new and unique method for developing software, The Java
Community Process.

We'll start at the beginning. Many of the technical contributors came together at a
series of forums conceived and hosted by Lisa Carnahan at the National Institute for
Standards and Technology. One of the authors, Greg Bollella, was instrumental, along
with Lisa, in the early establishment of the organization of the future authors. He
thanks his managers at IBM, Ruth Taylor, Rod Smith, and Pat Sueltz, for (in their
words) being low-maintenance managers and for allowing Greg the freedom to pursue
his goal.

The Java Community Process was developed at Sun Microsystems by Jim
Mitchell, Ken Urquhart, and others to allow and promote the broad involvement of the
computer industry in the development of the Java™ platform. We thank them and all
those at Sun and other companies who reviewed the initial proposals of the process.
Vicki Shipkowitz the embedded Java product manager at Sun has also helped the
Real-Time for Java Expert Group with logistics concerning demonstrations and
presentations of the RTSJ.

The Real-Time for Java Expert Group comprises an engineering team and a
consultant team. The authors of this work are the primary engineers and we sincerely

PREFACE XVii

thank the consultants, mentioned by name previously, for their efforts during the early
design phase and for reviewing various drafts. Along the way Ray Kamin, Wolfgang
Pieb, and Edward Wentworth replaced three of the original consultants and we thank
them for their effort as well.

We thank all those, but especially Kirk Reinholtz of NASA's Jet Propulsion Lab,
who submitted comments during the participant and public reviews.

We all thank Russ Richards at DISA for his support of our effort.

We thank Kevin Russell and Bill Foote of Sun Microsystems who worked hard
during the NIST sponsored requirements phase.

Although they have much left to do and will likely give us more work as they
implement the RTSJ, we thank the reference implementation team at IBM. Peter
Haggar leads the team of David Wendt and Jim Mickelson. Greg also thanks them for
their efforts on the various robot demonstrations he used in his talks about the RTSJ.

Greg would like to personally thank his dissertation advisor Kevin Jeffay for his
guidance.

We thank Robin Coron and Feng Liu, administrative assistants at Sun
Microsystems and IBM, respectively, for their logistical support.

A Note on Format

We usedjavadoc on Java source files to produce most of this book (see the Colophon
for more details) and thus many references to class, interface, and method names use
the@1ink construct to produce a hyperlink in the (more typical) html formatted

output. Of course, clicking on the hyperlink in the html formatted version will display

the definition of the class. We tried to preserve this hyperlink characteristic in the

book by including on each occurrence of a name the page number of its definition as a
trailing subscript. Let us know if this is a useful feature (comments@rtj.org).

XViii

Foreword

| expectThe Real-Time Specification for Jaeabecome the first real-time

programming language to be both commercially and technologically successful.
Other programming languages have been intended for use in the real-time computing
domain. However, none has been commercially successful in the sense of being
significantly adopted in that domain. Many were academic research projects. Most did
not focus on the core real-time issues of managing computing resources in order to
satisfy application timeliness requirements. Instead, they typically emphasized the
orthogonal (albeit important) topic of concurrency and other topics important to the
whole field of embedded computing systems (of which real-time computing systems
are a subset).

Ada 95, including its Real-Time Systems Annex D, has probably been the most
successful real-time language, in terms of both adoption and real-time technology.
One reason is that Ada is unusually effective (among real-time languages and also
operating systems) across the real-time computing system spectrum, from
programming-in-the-small in traditional device-level control subsystems, to
programming-in-the-large in enterprise command and control systems. Despite that
achievement, a variety of nontechnical factors crippled Ada’s commercial success.

When James Gosling introduced the Java programming language in 1995, it
appeared irrelevant to the real-time computing field, based on most of its initial
purposes and its design. Indeed, some of its fundamental principles were antithetical
to those of real-time computing. To facilitate its major goal of operating system and
hardware independence, the language was deliberately given a weak vocabulary in
areas such as thread behavior, synchronization, interrupts, memory management, and
input/output. However, these are among the critical areas needing explicit
management (by the language or the operating system) for meeting application
timeliness requirements.

Nevertheless, the Java platform’s promise of “Write Once, Run Anywhere,”
together with the Java language’s appeal as a programming lanmprageoffer far
greater cost-savings potential in the real-time (and more broadly, the embedded)
domain than in the desktop and server domains. Desktops are dominated by the
“Wintel” duopoly; servers have only a few processor types and operating systems.

Xix

XX

Real-time computing systems have tens of different processor types and many tens of
different operating system products (not counting the custom-made ones that
currently constitute about half of the installations). The POSIX standard hasn’t
provided the intended real-time application portability because it permits widely
varying subsets to be implemented. The Java platform is already almost ubiquitous.
The real-time Java platform’s necessarily qualified promise of “Write Once Carefully,
Run Anywhere Conditionally” is nevertheless the best prospective opportunity for
application re-usability.

The overall challenge was to reconcile the intrinsically divergent natures of the
Java language and most of real-time computing. Compatibility of the Real-Time
Specification for Java and the Java Language Specification had to be maintained,
while making the former cost-effective for real-time computing systems.

Most people involved in, and even aware of, the real-time Java effort, including
the authors of this book and me, were initially very skeptical about the feasibility of
adequately meeting this challenge.

The real-time Java community took two important and unusual initial steps
before forming the Real-Time for Java Expert Group under Sun’s Java Community
Process.

The first step was to convene many representatives of the real-time community a
number of times (under the auspices of the National Institute for Standards and
Technology), to achieve and document consensus on the requirements for the Real-
Time Specification for Java. Not surprisingly, when this consensus emerged, it
included mandatory requirements for building the kind of smaller scale, static, real-
time subsystems familiar to current practitioners using C and C++,

More surprisingly, the consensus also included mandatory and optional
requirements for accommodating advanced dynamic and real-time resource
management technologies, such as asynchronous transfer of control and timeliness-
based scheduling policies, and for building larger scale real-time systems. The
primary impetus for these dynamic and programming-in-the-large, real-time
requirements came from the communities already using the Java language, or using
the Ada language, or building defense (primarily command and control) systems.

The second, concomitant, step was to establish an agreed-upon lexicon of real-
time computing concepts and terms to enable this dialog about, and consensus on, the
requirements for the Real-Time Specification for Java. As unlikely as it may seem to
those outside of the real-time community, real-time computing concepts and terms are
normally not used in a well-defined way (except by most real-time researchers).

The next step toward the realization of the Java language’s potential for the
present and the future of real-time computing is defining and writing the Real-Time

FOREWORD XXi

Specification for Java, the first version of which is in this book. Understanding this
specification will also improve the readers’ understanding of both the Java language
and real-time computing systems as well.

Greg Bollella was an ideal leader for this specification team. He recruited a well
balanced group of real-time and Java language experts. His background in both
practical and theoretical real-time computing prepared him for gently but resolutely
guiding the team’s rich and intense discussions into a coherent specification.

Of course, more work remains, including documenting use cases and examples;
performing implementations and evaluations; gaining experience from deployed
products; and iterations drne Real-Time Specification for JaWdne Distributed
Real-Time Specification for Java also lies ahead.

The real-time Java platform is prepared not just to provide cost-reduced
functional parity with current mainstream real-time computing practice and products,
but also to play a leadership role as real-time computing practice moves forward in the
Internet age.

E. Douglas Jensen
Sherborn, MA

XXii

CHAPTER

Introductioh

This book is a preliminary release ©he Real-Time Specification for JAVYa(RTSJ).
The final version will be available with the release of the reference implementation.

The Real-Time for Java Expert Group (RTJEG), convened under the Java
Community Process and JSR-000001, has been given the responsibility of producing
a specification for extendirithe Java Language SpecificatiandThe Java Virtual
Machine Specificatioand of providing an Application Programming Interface that
will enable the creation, verification, analysis, execution, and management of Java
threads whose correctness conditions include timeliness constraints (also known as
real-time threads). This introduction describes the guiding principles that the RTIJEG
created and used during our work, a description of the real-time Java requirements
developed under the auspices of The National Institute for Standards and Technology
(NIST), and a brief, high-level description of each of the seven areas we identified as
requiring enhancements to accomplish our goal.

Guiding Principles

The guiding principles are high-level statements that delimit the scope of the work of
the RTJEG and introduce compatibility requirementsTfoe Real-Time Specification
for Java.

Applicability to Particular Java Environments: The RTSJ shall not include
specifications that restrict its use to particular Java environments, such as a particular
version of the Java Development Kit, the Embedded Java Application Environment, or
the Java 2 Micro Edition™.

Backward Compatibility: The RTSJ shall not prevent existing, properly
written, non-real-time Java programs from executing on implementations of the RTSJ.

Write Once Run Anywhere: The RTSJ should recognize the importance of
“Write Once Run Anywhere™, but it should also recognize the difficulty of achieving
WORA for real-time programs and not attempt to increase or maintain binary
portability at the expense of predictability.

Current Practice vs. Advanced FeaturesThe RTSJ should address current
real-time system practice as well as allow future implementations to include advanced
features.

Predictable Execution: The RTSJ shall hold predictable execution as first
priority in all tradeoffs; this may sometimes be at the expense of typical general-
purpose computing performance measures.

No Syntactic Extension:In order to facilitate the job of tool developers, and
thus to increase the likelihood of timely implementations, the RTSJ shall not
introduce new keywords or make other syntactic extensions to the Java language.

Allow Variation in Implementation Decisions: The RTJEG recognizes that
implementations of the RTSJ may vary in a number of implementation decisions, such
as the use of efficient or inefficient algorithms, tradeoffs between time and space
efficiency, inclusion of scheduling algorithms not required in the minimum
implementation, and variation in code path length for the execution of byte codes. The
RTSJ should not mandate algorithms or specific time constants for such, but require
that the semantics of the implementation be met. The RTSJ offers implementers the
flexibility to create implementations suited to meet the requirements of their
customers.

Overview of the Seven Enhanced Areas

In each of the seven sections that follow we give a brief statement of direction for each
area. These directions were defined at the first meeting of the eight primary engineers
in Mendocino, California, in late March 1999, and further clarified through late
September 1999.

Thread Scheduling and Dispatchingin light of the significant diversity in
scheduling and dispatching models and the recognition that each model has wide
applicability in the diverse real-time systems industry, we concluded that our direction
for a scheduling specification would be to allow an underlying scheduling mechanism
to be used by real-time Java threads but that we would not specify in advance the
exact nature of all (or even a number of) possible scheduling mechanisms. The

INTRODUCTION 3

specification is constructed to allow implementations to provide unanticipated
scheduling algorithms. Implementations will allow the programmatic assignment of
parameters appropriate for the underlying scheduling mechanism as well as providing
any necessary methods for the creation, management, admittance, and termination of
real-time Java threads. We also expect that, for now, particular thread scheduling and
dispatching mechanisms are bound to an implementation. However, we provide
enough flexibility in the thread scheduling framework to allow future versions of the
specification to build on this release and allow the dynamic loading of scheduling
policy modules.

To accomodate current practice the RTSJ requires a base scheduler in all
implementations. The required base scheduler will be familiar to real-time system
programmers. It is priority-based, preemptive, and must have at least 28 unique
priorities.

Memory Management: We recognize that automatic memory management is a
particularly important feature of the Java programming environment, and we sought a
direction that would allow, as much as possible, the job of memory management to be
implemented automatically by the underlying system and not intrude on the
programming task. Additionally, we understand that many automatic memory
management algorithms, also known as garbage collection (GC), exist, and many of
those apply to certain classes of real-time programming styles and systems. In our
attempt to accommodate a diverse set of GC algorithms, we sought to define a
memory allocation and reclamation specification that would:

 be independent of any particular GC algorithm,
« allow the program to precisely characterize a implemented GC algorithm’s effect on
the execution time, preemption, and dispatching of real-time Java threads, and
« allow the allocation and reclamation of objects outside of any interference by any GC
algorithm.
Synchronization and Resource Sharingtogic often needs to share serializable
resources. Real-time systems introduce an additional complexity: priority inversion.
We have decided that the least intrusive specification for allowing real-time safe
synchronization is to require that implementations of the Java keysyokthronized
include one or more algorithms that prevent priority inversion among real-time Java
threads that share the serialized resource. We also note that in some cases the use of
thesynchronized keyword implementing the required priority inversion algorithm is
not sufficient to both prevent priority inverison and allow a thread to have an
execution eligibility logically higher than the garbage collector. We provide a set of
wait-free queue classes to be used in such situations.

Asynchronous Event Handling: Real-time sytems typically interact closely
with the real-world. With respect to the execution of logic, the real-world is
asynchronous. We thus felt compelled to include efficient mechanisms for

programming disciplines that would accommodate this inherent asynchrony. The

RTSJ generalizes the Java language’s mechanism of asynchronous event handling.
Required classes represent things that can happen and logic that executes when those
things happen. A notable feature is that the execution of the logic is scheduled and
dispatched by an implemented scheduler.

Asynchronous Transfer of Control: Sometimes the real-world changes so
drastically (and asynchronously) that the current point of logic execution should be
immediately and efficiently transferred to another location. The RTSJ includes a
mechanism which extends Java’s exception handling to allow applications to
programatically change the locus of control of another Java thread. It is important to
note that the RTSJ restricts this asynchronous transfer of control to logic specifically
written with the assumption that its locus of control may asynchronously change.

Asynchronous Thread Termination: Again, due to the sometimes drastic and
asynchronous changes in the real-world, application logic may need to arrange for a
real-time Java thread to expeditiously and safely transfer its control to its outermost
scope and thus end in a normal manner. Note that unlike the traditional, unsafe, and
deprecated Java mechanism for stopping threads, the RTSJ’s mechanism for
asynchronous event handling and transfer of control, is safe.

Physical Memory AccessAlthough not directly a real-time issue, physical
memory access is desirable for many of the applications that could productively make
use of an implementation of the RTSJ. We thus define a class that allows programmers
byte-level access to physical memory as well as a class that allows the construction of
objects in physical memory.

CHAPTER

Desigh

The RTSJ comprises eight areas of extended semantics. This chapter explains each in
fair detail. Further detail, exact requirements, and rationale are given in the opening
section of each relevant chapter. The eight areas are discussed in approximate order of
their relevance to real-time programming. However, the semantics and mechanisms of
each of the areas”scheduling, memory management, synchronization, asynchronous
event handling, asynchronous transfer of control, asynchronous thread termination,
physical memory access, and exceptions“are all crucial to the acceptance of the RTSJ
as a viable real-time development platform.

Scheduling

One of the concerns of real-time programming is to ensure the timely or predictable
execution of sequences of machine instructions. Various scheduling schemes name
these sequences of instructions differently. Typically used names include threads,
tasks, modules, and blocks. The RTSJ introduces the concegtbidulable object.

Any instance of any class implementing the interfa¢edulable is a schedulable
object and its scheduling and dispatching will be managed by the instance of
Scheduler to which it holds a reference. The RTSJ requires three classes that are
schedulable object8ealtimeThread, NoHeapRealtimeThread, and
AsyncEventHandler.

By timely execution of threadsie mean that the programmer can determine by
analysis of the program, testing the program on particular implementations, or both
whether particular threads will always complete execution before a given timeliness

constraint. This is the essence of real-time programming: the addition of temporal
constraints to the correctness conditions for computation. For example, for a program
to compute the sum of two numbers it may no longer be acceptable to compute only
the correct arithmetic answer but the answer must be computed before a particular
time. Typically, temporal constraints are deadlines expressed in either relative or
absolute time.

We use the terracheduling(or scheduling algorithito refer to the production
of a sequence (or ordering) for the execution of a set of threadkddul® This
schedule attempts to optimize a particular metric (a metric that measures how well the
system is meeting the temporal constraintsfeasibility analysisletermines if a
schedule has an acceptable value for the metric. For example, in hard real-time
systems the typical metric is 'number of missed deadlines’ and the only acceptable
value for that metric is zero. So called soft real-time systems use other metrics (such
as mean tardiness) and may accept various values for the metric in use.

Many systems use thread priority in an attempt to determine a schedule. Priority
is typically an integer associated with a thread; these integers convey to the system the
order in which the threads should execute. The generalization of the concept of
priority is execution eligibilityWe use the termispatchingto refer to that portion of
the system which selects the thread with the highest execution eligibility from the
pool of threads that are ready to run. In current real-time system practice, the
assignment of priorities is typically under programmer control as opposed to under
system control. The RTSJ’s base scheduler also leaves the assignment of priorities
under programmer control. However, the base scheduler also inherits methods from
its superclass to determine feasibility. The feasibility algorithms assume that the rate-
monotonic priority assignment algorithm has been used to assign priorities. The RTSJ
does not require that implementations check that such a priority assignment is correct.
If, of course, the assignment is incorrect the feasibility analysis will be meaningless
(note however, that this is no different than the vast majority of real-time operating
systems and kernels in use today).

The RTSJ requires a number of classes with names of the format
<string>Parameters (such aschedulingParameters) . Aninstance of one of these
parameter classes holds a particular resource demand characteristic for one or more
schedulable objects. For example, agéorityParameters subclass of
SchedulingParameters contains the execution eligibility metric of the base
scheduler, i.e., priority. At some times (thread create-time or set (reset)), later,
instances of parameter classes are bound to a schedulable object. The schedulable
object then assumes the characteristics of the values in the parameter object. For
example, if @riorityParameter instance, that had in its priority field the value
representing the highest priority available, is bound to a schedulable object, then that

DESIGN 7

object will assume the characteristic that it will execute whenever it is ready in
preference to all other schedulable objects (except, of course, those also with the
highest priority).

The RTSJ is written so as to allow implementers the flexibility to install arbitrary
scheduling algorithms and feasibility analysis algorithms in an implementation of the
specification. We do this because the RTJEG understands that the real-time systems
industry has widely varying requirements with respect to scheduling. Programming to
the Java platform may result in code much closer toward the goal of reusing software
written once but able to execute on many different computing platforms (known as
Write Once Run Anywhere) and that the above flexibility stands in opposition to that
goal, The Real-Time Specification for Jaaigo specifies a particular scheduling
algorithm and semantic changes to the JVM that support predictable execution and
must be available on all implementations of the RTSJ. The initial default and required
scheduling algorithm is fixed-priority preemptive with at least 28 unique priority
levels and will be represented in all implementations by therityScheduler
subclass ofcheduler.

Memory Management

Garbage-collected memory heaps have always been considered an obstacle to real-
time programming due to the unpredictable latencies introduced by the garbage
collector. The RTSJ addresses this issue by providing several extensions to the
memory model, which support memory management in a manner that does not
interfere with the ability of real-time code to provide deterministic behavior. This goal
is accomplished by allowing the allocation of objects outside of the garbage-collected
heap for both short-lived and long-lived objects.

Memory Areas

The RTSJ introduces the concept of a memory area. A memory area represents an area
of memory that may be used for the allocation of objects. Some memory areas exist
outside of the heap and place restrictions on what the system and garbage collector
may do with objects allocated within. Objects in some memory areas are never
garbage collected; however, the garbage collector must be capable of scanning these
memory areas for references to any object within the heap to preserve the integrity of
the heap.

There are four basic types of memory areas:
1. Scoped memory provides a mechanism for dealing with a class of objects that
have a lifetime defined by syntactic scope (cf, objects on the heap).

2. Physical memory allows objects to be created within specific physical memory
regions that have particular important characteristics, such as memory that has
substantially faster access.

3. Immortal memory represents an area of memory containing objects that, once
allocated, exist until the end of the application, i.e., the objects are immortal.

4. Heap memory represents an area of memory that is the heap. The RTSJ does not
change the determinant of lifetime of bjects on the heap. It is still determined by
visibility.

Scoped Memory

The RTSJ introduces the concept of scoped memory. A memory scope is used to give
bounds to the lifetime of any objects allocated within it. When a scope is entered,
every use ofiew causes the memory to be allocated from the active memory scope. A
scope may be entered explicitly, or it can be attacheRem@timeThread which will
effectively enter the scope before it executes the threasl® method.

Every scoped memory area effectively maintains a count of the number of
external references to that memory area. The reference courtdopedMemory area
is increased by entering a new scope throughrther () method oMemoryArea, by
the creation of &ealtimeThread using the particulaScopedVemory area, or by the
opening of an inner scope. The reference count ftapedMemory area is decreased
when returning from thenter () method, when threaltimeThread using the
ScopedMemory exits, or when an inner scope returns fronedtser () method. When
the count drops to zero, the finalize method for each object in the memory is executed
to completion. The scope cannot be reused until finalization is complete and the RTSJ
requires that the finalizers execute to completion before the next use (caltiag()
or in a constructor) of the scoped memory area.

Scopes may be nested. When a nested scope is entered, all subsequent allocations
are taken from the memory associated with the new scope. When the nested scope is
exited, the previous scope is restored and subsequent allocations are again taken from
that scope.

Because of the unusual lifetimes of scoped objects, it is necessary to limit the
references to scoped objects, by means of a restricted set of assignment rules. A
reference to a scoped object cannot be assigned to a variable from an enclosing scope,
or to a field of an object in either the heap or the immortal area. A reference to a
scoped object may only be assigned into the same scope or into an inner scope. The
virtual machine must detect illegal assignment attempts and must throw an
appropriate exception when they occur.

DESIGN 9

The flexibility provided in choice of scoped memory types allows the application
to use a memory area that has characteristics that are appropriate to a particular
syntactically defined region of the code.

Immortal Memory

ImmortalMemory iS @ memory resource shared among all threads in an application.
Objects allocated immmortalMemory are freed only when the Java runtime
environment terminates, and are never subject to garbage collection or movement.

Budgeted Allocation

The RTSJ also provides limited support for providing memory allocation budgets for
threads using memory areas. Maximum memory area consumption and maximum
allocation rates for individual real-time threads may be specified when the thread is
created.

Synchronization

Terms

For the purposes of this section, the use of the peionity should be interpreted
somewhat more loosely than in conventional usage. In particular, thaitgrest

priority threadmerely indicates the most eligible thread"the thread that the dispatcher
would choose among all of the threads that are ready to run“and doesn’t necessarily
presume a strict priority based dispatch mechanism.

Wait Queues

Threads waiting to acquire a resource must be released in execution eligibility order.
This applies to the processor as well as to synchronized blocks. If threads with the
same execution eligibility are possible under the active scheduling policy, such
threads are awakened in FIFO order. For example:

« Threads waiting to enter synchronized blocks are granted access to the synchronized
block in execution eligibility order.

A blocked thread that becomes ready to run is given access to the processor in
execution eligibility order.

« A thread whose execution eligibility is explicitly set by itself or another thread is
given access to the processor in execution eligibility order.

A thread that performs a yield will be given access to the processor after waiting
threads of the same execution eligibility.

10

» Threads that are preempted in favor of a thread with higher execution eligibility may
be given access to the processor at any time as determined by a particular
implementation. The implementation is required to provide documentation stating
exactly the algorithm used for granting such access.

Priority Inversion Avoidance

Any conforming implementation must provide an implementation of the
synchronized primitive with default behavior that ensures that there is no unbounded
priority inversion. Furthermore, this must apply to code if it is run within the
implementation as well as to real-time threads. The priority inheritance protocol must
be implemented by default. The priority inheritance protocol is a well-known
algorithm in the real-time scheduling literature and it has the following effect. If
thread { attempts to acquire a lock that is held by a lower-priority thrgdben $'s
priority is raised to that of;tas long as,tholds the lock (and recursively ¥is itself
waiting to acquire a lock held by an even lower-priority thread).

The specification also provides a mechanism by which the programmer can
override the default system-wide policy, or control the policy to be used for a
particular monitor, provided that policy is supported by the implementation. The
monitor control policy specification is extensible so that new mechanisms can be
added by future implementations.

A second policy, priority ceiling emulation protocol (or highest locker protocol),
is also specified for systems that support it. The highest locker protocol is also a well-
known algorithm in the literature, and it has the following effect:

» With this policy, a monitor is givengriority ceiling when it is created, which is the
highest priority of any thread that could attempt to enter the monitor.

» As soon as a thread enters synchronized code, its priority is raised to the monitor’s
ceiling priority, thus ensuring mutually exclusive access to the code since it will not
be preempted by any thread that could possibly attempt to enter the same monitor.

« If, through programming error, a thread has a higher priority than the ceiling of the
monitor it is attempting to enter, then an exception is thrown.

One needs to consider the design point given above, the two new thread types,
RealtimeThread andNoHeapRealtimeThread, and regular Java threads and the
possible issues that could arise whewlteapRealtimeThread and a regular Java

thread attempt to synchronize on the same ohjegtapRealtimeThreads have an

implicit execution eligibility that must be higher than that of the garbage collector.
This is fundamental to the RTSJ. However, given that regular Java threads may never
have an execution eligibility higher than the garbage collector, no known priority
inversion avoidance algorithm can be correctly implemented when the shared object is
shared between a regular Java thread atieapRealtimeThread because the

algorithm may not raise the priority of the regular Java thread higher than the garbage

DESIGN 11

collector. Some mechanism other than the synchronized keyword is needed to ensure
non-blocking, protected access to objects shared between regular Java threads and
NoHeapRealtimeThreads.

Note that if the RTSJ requires that the executiomoBéapRealtimeThreads
must not be delayed by the execution of the garbage collector it is impossible for a
NoHeapRealtimeThread to synchronize, in the classic sense, on an object accessed by
regular Java threads. The RTSJ provides three wait-free queue classes to provide
protected, non-blocking, shared access to objects accessed by both regular Java
threads antloHeapRealtimeThreads. These classes are provided explicitly to enable
communication between the real-time executioRobikapRealtimeThreads and
regular Java threads.

Determinism

Conforming implementations shall provide a fixed upper bound on the time required
to enter a synchronized block for an unlocked monitor.

Asynchronous Event Handling

The asynchronous event facility comprises two clagsgscEvent and
AsyncEventHandler. An AsyncEvent object represents something that can happen,
like a POSIX signal, a hardware interrupt, or a computed event like an airplane
entering a specified region. When one of these events occurs, which is indicated by
thefire() method being called, the associateddleAsyncEvent () methods of
instances ofAsyncEventHandler are scheduled and thus perform the required logic.

An instance ofAsyncEvent manages two things: 1) the unblocking of handlers
when the event is fired, and 2) the set of handlers associated with the event. This set
can be queried, have handlers added, or have handlers removed.

An instance ofsyncEventHandler can be thought of as something roughly
similar to a thread. It is Runnable object: when the event fires, the
handleAsyncEvent () methods of the associated handlers are scheduled. What
distinguishes ansyncEventHandler from a simpleRunnable is that an
AsyncEventHandler has associated instanceRefeaseParameters,
SchedulingParameters and MemoryParameters that control the actual execution of
the handler once the associategncEvent is fired. When an event is fired, the
handlers are executed asynchronously, scheduled according to the associated
ReleaseParameters and SchedulingParameters objects, in a manner that looks
like the handler has just been assigned to its own thread. It is intended that the system
can cope well with situations where there are large numbers of instances of

AsyncEvent andAsyncEventHandler (tens of thousands). The number of fired (in
process) handlers is expected to be smaller.

A specialized form of ansyncEvent is theTimer class, which represents an
event whose occurrence is driven by time. There are two forms of Timers: the
OneShotTimer and thePeriodicTimer. Instances ofneShotTimer fire once, at the
specified time. Periodic timers fire off at the specified time, and then periodically
according to a specified interval.

Timers are driven bglock objects. There is a spec@lock object,
Clock.getRealtimeClock (), that represents the real-time clock. The Clock class
may be extended to represent other clocks the underlying system might make
available (such as a soft clock of some granularity).

Asynchronous Transfer of Control

Many times a real-time programmer is faced with a situation where the computational
cost of an algorithm is highly variable, the algorithm is iterative, and the algorithm
produces successively refined results during each iteration. If the system, before
commencing the computation, can determine only a time bound on how long to
execute the computation (i.e., the cost of each iteration is highly variable and the
minimum required latency to terminate the computation and receive the last consistent
result is much less than about half of the mean iteration cost), then asynchronously
transferring control from the computation to the result transmission code at the
expiration of the known time bound is a convenient programming style. The RTSJ
supports this and other styles of programming where such transfer is convenient with
a feature termed Asynchronous Transfer of Control (ATC).

The RTSJ’s approach to ATC is based on several guiding principles, outlined in
the following lists.

Methodological Principles

» A thread needs to explicitly indicate its susceptibility to ATC. Since legacy code or
library methods might have been written assuming no ATC, by default ATC should be
turned off (more precisely, it should be deferred as long as control is in such code).

» Even if a thread allows ATC, some code sections need to be executed to completion
and thus ATC is deferred in such sections. The ATC-deferred sections are
synchronized methods and statements.

» Code that responds to an ATC does not return to the point in the thread where the
ATC was triggered; that is, an ATC is an unconditional transfer of control.
Resumptive semantics, which returns control from the handler to the point of

DESIGN 13

interruption, are not needed since they can be achieved through other mechanisms (in
particular, amAsyncEventHandler).

Expressibility Principles

< A mechanism is needed through which an ATC can be explicitly triggered in a target
thread. This triggering may be direct (from a source thread) or indirect (through an
asynchronous event handler).

« It must be possible to trigger an ATC based on any asynchronous event including an
external happening or an explicit event firing from another thread. In particular, it
must be possible to base an ATC on a timer going off.

e Through ATC it must be possible to abort a thread but in a manner that does not carry
the dangers of thehread class’sstop () anddestroy() methods.

Semantic Principles

« If ATC is modeled by exception handling, there must be some way to ensure that an
asynchronous exception is only caught by the intended handler and not, for example,
by an all-purpose handler that happens to be on the propagation path.

« Nested ATCs must work properly. For example, consider two, nested ATC-based
timers and assume that the outer timer has a shorter timeout than the nested, inner
timer. If the outer timer times out while control is in the nested code of the inner
timer, then the nested code must be aborted (as soon as it is outside an ATC-deferred
section), and control must then transfer to the appropriateh clause for the outer
timer. An implementation that either handles the outer timeout in the nested code, or
that waits for the longer (nested) timer, is incorrect.

Pragmatic Principles

« There should be straightforward idioms for common cases such as timer handlers and
thread termination.

« ATC must be implemented without inducing an overhead for programs that do not use
it.

« If code with a timeout completes before the timeout’s deadline, the timeout needs to
be automatically stopped and its resources returned to the system.

Asynchronous Thread Termination

Although not a real-time issue, many event-driven computer systems that tightly
interact with external real-world noncomputer systems (e.g., humans, machines,
control processes, etc.) may require significant changes in their computational
behavior as a result of significant changes in the non-computer real-world system. Itis
convenient to program threads that abnormally terminate when the external real-time

14

system changes in a way such that the thread is no longer useful. Consider the
opposite case. A thread or set of threads would have to be coded in such a manner so
that their computational behavior anticipated all of the possible transitions among
possible states of the external system. It is an easier design task to code threads to
computationally cooperate for only one (or a very few) possible states of the external
system. When the external system makes a state transition, the changes in
computation behavior might then be managed by an oracle, that terminates a set of
threads useful for the old state of the external system, and invokes a new set of threads
appropriate for the new state of the external system. Since the possible state
transitions of the external system are encoded in only the oracle and not in each
thread, the overall system design is easier.

Earlier versions of the Java language supplied mechanisms for achieving these
effects: in particular the methoédsop() anddestroy() in classThread. However,
sincestop() could leave shared objects in an inconsistent steée() has been
deprecated. The use eéstroy () can lead to deadlock (if a thread is destroyed while
it is holding a lock) and although it has not yet been deprecated, its usage is
discouraged. A goal of the RTSJ was to meet the requirements of asynchronous thread
termination without introducing the dangers of thep () or destroy() methods.

The RTSJ accommodates safe asynchronous thread termination through a
combination of the asynchronous event handling and the asynchronous transfer of
control mechanisms. If the significantly long or blocking methods of a thread are
made interruptible the oracle can consist of a number of asynchronous event handlers
that are bound to external happenings. When the happenings occur the handlers can
invokeinterrupt() on appropriate threads. Those threads will then clean up by
having all of the interruptible methods transfer control to appropriate catch clauses as
control enters those methods (either by invocation or byehern bytecode). This
continues until theun() method of the thread returns. This idiom provides a quick (if
coded to be so) but orderly clean up and termination of the thread. Note that the oracle
can comprise as many or as few asynchronous event handlers as appropriate.

Physical Memory Access

The RTSJ defines classes for programmers wishing to directly access physical
memory from codeRawMemoryAccess defines methods that allow the programmer to
construct an object that represents a range of physical addresses and then access the
physical memory with byte, short, int, long, float, and double granularity. No

semantics other than tket<type>() andget<type>() methods are implied. The
ScopedPhysicalMemory andImmortalPhysicalMemory classes allow programmers

DESIGN 15

to create objects that represent a range of physical memory addresses and in which
Java objects can be located. The RTSJ requipagsd calMemoryFactory in each
implementation. Methods on the factory object are the only way to create instances of
physical memory objects. On each physical memory ¢lasse () methods invoke
appropriate methods on tReysicalMemoryFactory class to create the required
instance. The factory also enforces security policies.

Raw Memory Access

An instance oRawMemoryAccess models a “raw storage” area as a fixed-size
sequence of bytes. Factory methods aktauMemoryAccess objects to be created

from memory at a particular address range or using a particular type of memory. The
implementation must provide a factory that interprets these requests correctly. The
factory may be set by applications based on documentation from the implementation
provider. A full complement ofet<type>() andget<type>() methods allow the
contents of the physical memory area to be accessed through offsets from the base,
interpreted as byte, short, int, long or float data values, and copied to/from arrays of
those types.

The byte-ordering interpretation of the data is based on the value of the
BYTE_ORDER static variable in clagsaltimeSystem.

TheRawMemoryAccess class allows a real-time program to implement device
drivers, memory-mapped I/O, flash memory, battery-backed RAM, and similar low-
level software.

A raw memory access object cannot contain objects or references to objects.
Such a capability would be unsafe (since it could be used to defeat Java’s type
checking) and error-prone (since it is sensitive to the specific representational choices
made by the Java compiler). This capability is provided by physical memory areas,
which do not provide raw access to the memory.

Physical Memory Areas

In many cases systems, needing the predictable execution of the RTSJ will also need
to access various kinds of memory at particular addresses for performance or other
reasons. Consider a system in which very fast static RAM was programmatically
available. A design that could optimize performance might wish to place various
frequently used Java objects in the fast static RAM. JtwedPhysicalMemory and
ImmortalPhysicalMemory classes allow the programmer this flexibility. The
programmer would construct a physical memory object on the memory addresses
occupied by the fast RAM.

16

In order to maintain safety, a factory object constructs all physical memory
objects. The factory ensures that physical memory areas don't overlap other memory
areas or raw memory access objects.

Exceptions

The RTSJ introduces several new exceptions, and some new treatment of exceptions
surrounding asynchronous transfer of control and memory allocators.

The new exceptions introduced are:

» AsynchronouslyinterruptedExceptioBenerated when a thread is asynchronously
interrupted.

* MemoryAccessErrorThrown by the JVM when a thread attempts to access memory
that is not in scope.

» ThrowBoundaryErrorA throwable tried to propagate into a scope where it was not
accessible.

* MemoryScopeExceptioithrown by the wait-free queue implementation when an
object is passed that is not compatible with both ends of the queue.

» OffsetOutOfBoundsExceptio@enerated by the physical memory classes when the
given offset is out of bounds.

» SizeOutOfBoundsExceptioBenerated by the physical memory classes when the
given size is out of bounds.

» UnsupportedPhysicalMemoryExceptiddenerated by the physical memory classes
when the requested physical memory is unsupported.

* lllegalAssignmentErrorThrown on an attempt to make an illegal assignment.

» ResourceLimitErrorThrown if an attempt is made to exceed a system resource limit,
such as the maximum number of locks.

Minimum Implementations of the RTSJ

The flexibility of the RTSJ indicates that implementations may provide different
semantics for scheduling, synchronization, and garbage collection. This section
defines what minimum semantics for these areas and other semantics and APIs
required of all implementations of the RTSJ. In general, the RTSJ does not allow any
subsetting of the APIs in thiavax. realtime package (except those noted as
optionally required); however, some of the classes are specific to certain well-known
scheduling or synchronization algorithms and may have no underlying support in a
minimum implementation of the RTSJ. The RTSJ provides these classes as standard
parent classes for implementations supporting such algorithms.

DESIGN 17

The minimum scheduling semantics that must be supported in all
implementations of the RTSJ are fixed-priority preemptive scheduling and at least 28
unigue priority levels. By fixed-priority we mean that the system does not change the
priority of anyRealtimeThread Or NoHeapRealtimeThread except, temporarily, for
priority inversion avoidance. Note, however, that application code may change such
priorities. What the RTSJ precludes by this statement is scheduling algorithms that
change thread priorities according to policies for optimizing throughput (such as
increasing the priority of threads that have been receiving few processor cycles
because of higher priority threads (aging)). The 28 unique priority levels are required
to be unique to preclude implementations from using fewer priority levels of
underlying systems to implement the required 28 by simplistic algorithms (such as
lumping four RTSJ priorities into seven buckets for an underlying system that only
supports seven priority levels). It is sufficient for systems with fewer than 28 priority
levels to use more sophisticated algorithms to implement the required 28 unique levels
as long agealtimeThreads andNoHeapRealtimeThreads behave as though there
were at least 28 unique levels. (e.g. if there were 28 RealtimeThrgad$4} with
priorities (p.....[»g), respectively, where the value gfywas the highest priority and
the value of p the next highest priority, etc., then for all executions of thrgads t
through $g thread § would alwaysexecute in preference to threagls t, tg and
thread 4 would alwaysexecute in preference to threagls t bg, etc.)

The minimum synchronization semantics that must be supported in all
implementations of the RTSJ are detailed in the above section on synchronization and
repeated here.

All implementations of the RTSJ must provide an implementation of the
synchronized primitive with default behavior that ensures that there is no unbounded
priority inversion. Furthermore, this must apply to code if it is run within the
implementation as well as to real-time threads. The priority inheritance protocol must
be implemented by default.

All threads waiting to acquire a resource must be queued in priority order. This
applies to the processor as well as to synchronized blocks. If threads with the same
exact priority are possible under the active scheduling policy, threads with the same
priority are queued in FIFO order. (Note that these requirements apply only to the
required base scheduling policy and hence use the specific term “priority”). In
particular:

« Threads waiting to enter synchronized blocks are granted access to the synchronized
block in priority order.

« Ablocked thread that becomes ready to run is given access to the processor in priority
order.

« A thread whose execution eligibility is explicitly set by itself or another thread is
given access to the processor in priority order.

18

» Athread that performsyaie1d() will be given access to the processor after waiting
threads of the same priority.

» However, threads that are preempted in favor of a thread with higher priority may be
given access to the processor at any time as determined by a particular
implementation. The implementation is required to provide documentation stating
exactly the algorithm used for granting such access.

The RTSJ does not require any particular garbage collection algorithm. All
implementations of the RTSJ must, however, support the @lassgeCollector
and implement all of its methods.

Optionally Required Components

The RTSJ does not, in general, support the concept of optional components of the
specification. Optional components would further complicate the already difficult task
of writing WORA (Write Once Run Anywhere) software components for real-time
systems. However, understanding the difficulty of providing implementations of
mechanisms for which there is no underlying support, the RTSJ does provide for a
few exceptions. Any components that are considered optional will be listed as such in
the class definitions.

The most notable optional component of the specification is the
POSIXSignalHandler. A conformant implementation must support POSIX signals if
and only if the underlying system supports them. Also, the class
RawMemoryFTloatAccess is required to be implemented if and only if the JVM itself
supports floating point types.

Documentation Requirements

In order to properly engineer a real-time system, an understanding of the cost
associated with any arbitrary code segment is required. This is especially important
for operations that are performed by the runtime system, largely hidden from the
programmer. (An example of this is the maximum expected latency before the
garbage collector can be interrupted.)

The RTSJ does not require specific performance or latency numbers to be
matched. Rather, to be conformant to this specification, an implementation must
provide documentation regarding the expected behavior of particular mechanisms.
The mechanisms requiring such documentation, and the specific data to be provided,
will be detailed in the class and method definitions.

DESIGN 19

Parameter Objects

A number of constructors in this specification take objects generically named
feasibility parameters (Classes namegtring>Parameters where<string>
identifies the kind of parameter). When a referencererameters object is given as
a parameter to a constructor the-ameters object becomes bound to the object
being created. Changes to the values irpirameters object affect the constructed
object. For example, if a reference tS@edulingParameters object,sp, is given to
the constructor of RealtimeThread, rt, then calls tap.setPriority () will

change the priority oft. There is no restriction on the number of constructors to
which a reference to a singlarameters object may be given. If Barameters
object is given to more than one constructor, then changes to the values in the
Parameters object affecill of the associated schedulable objects. Note that this is a
one-to-many relationshipot a many-to-many relationship, that is, a schedulable
object (e.g., an instance RdaltimeThread) must have zero or one associated
instance of eacharameter object type.

Caution: <string>Parameter objects are explicitly unsafe in multithreaded
situations when they are being changed. No synchronization is done. It is assumed
that users of this class who are mutating instances will be doing their own
synchronization at a higher level.

Java Platform Dependencies

In some cases the classes and methods defined in this specification are dependent on
the underlying Java platform.

1. TheComparable interface is available in Java(tm) 2 v1.2 1nd 1.3 and not in what
was formally known as JDK’s 1.0 and 1.1. Thus, we expect implementations of
this specification which are based on JDK’s 1.0 or 1.1 to inclddeparable
interface.

2. The clas®awMemoryFloatAccess is required if and only if the underlying Java
Virtual Machine supports floating point data types.

20

CHAPTER

Thread's

This section contains classes that:

» Provide for the creation of threads that have more precise scheduling semantics than
java.lang.Thread.
» Allow the use of areas of memory other than the heap for the allocation of objects.
 Allow the definition of methods that can be asynchronously interrupted.
» Provide the scheduling semantics for handling asynchronous events.
The RealtimeThread class exterjdsa.lang.Thread. TheReleaseParameters,
SchedulingParameters, MemoryParameters provided to th®ealtimeThread
constructor allow the temporal and processor demands of the thread to be
communicated to the system.

TheNoHeapRealtimeThread class extendiealtimeThread. A
NoHeapRealtimeThread is not allowed to allocate or even reference objects from the
Java heap, and can thus safely execute in preference to the garbage collector.

Semantics and Requirements

This list establishes the semantics and requirements that are applicable across the
classes of this section. Semantics that apply to particular classes, constructors,
methods, and fields will be found in the class description and the constructor, method,
and field detail sections.

1. The default scheduling policy must manage the execution of instances of
RealtimeThread andNoHeapRealtimeThread.

2. Any scheduling policy present in an implementation must be available to

21

22

instances oRealtimeThread andNoHeapRealtimeThread.

3. The function of allocating objects in memory in areas defined by instances of
ScopedMemory oOr its subclasses shall be available only to logic within instances of
RealtimeThread andNoHeapRealtimeThread.

4. The invocation of methods that thr@gynchronouslyInterruptedException
has the indicated effect only when the invocation occurs in the context of
instances oRealtimeThread andNoHeapRealtimeThread.

5. Instances of theoHeapRealtimeThread class have an implicit execution
eligibility logically higher than the garbage collector.

6. Instances of theealtimeThread class may have an execution eligibility logically
lower than the garbage collector.

7. Changing values ifichedulingParameters, ProcessingParameters,
ReleaseParameters, ProcessingGroupParameters, Or use of
Thread.setPriority() must not affect the correctness of any implemented
priority inversion avoidance algorithm.

Rationale

The Java platform’s priority-preemptive dispatching model is very similar to the
dispatching model found in the majority of commercial real-time operating systems.
However, the dispatching semantics were purposefully relaxed in order to allow
execution on a wide variety of operating systems. Thus, it is appropriate to specify
real-time threads by merely extendifigva.1ang.Thread. TheRealtimeParameters
andMemoryParameters provided to th&ealtimeThread constructor allow for a
number of common real-time thread types, including periodic threads.

TheNoHeapRealtimeThread class is provided in order to allow time-critical
threads to execute in preference to the garbage collector. The memory access and
assignment semantics of theHeapRealtimeThread are designed to guarantee that
the execution of such threads does not lead to an inconsistent heap state.

THREADS 23

3.1 RealtimeThread

Syntaxipublic class RealtimeThread extends java.lang.Thread implements
Schedulablejys

Direct Known SubclassedloHeapRealtimeThread,;

All Implemented Interfacegava.lang.Runnabl&chedulable s

RealtimeThread extendsjava.lang.Thread and includes classes and methods
to get and set parameter objects, manage the execution of those threads with a
ReleaseParameters,; type ofPeriodicParameters,s;, and waiting. A
RealtimeThreadobject must be placed in a memory area such that thread logic may
unexceptionally access instance variables and such that Java methods on
java.lang.Thread (e.g., enumerate and join) complete normally except where such
execution would cause access violations. (Implementation hint: They could be
allocated irHeapMemoryg;)

3.1.1 Constructors

public RealtimeThread()
Create a real-time thread. All parameter values are null. The default values
for null parameter objects are dependent on the value of the default
Scheduler;,; at the time the thread is created.

public RealtimeThread(SchedulingParameters,, scheduling)
Create a real-time thread with the gi\sthedulingParametersyy .

Parameters:
scheduling - TheSchedulingParameters,, associated with this
(and possibly otheRealtimeThread).
public RealtimeThread(SchedulingParametersy, scheduling,
ReleaseParametersy; release)
Create a real-time thread with the gi\&thedulingParameters,, and

ReleaseParameters,s.

Parameters:
scheduling - TheSchedulingParametersy, associated with this
(and possibly otheRealtimeThread).
release - TheReleaseParameters,; associated with this (and
possibly otheRealtimeThread).

public RealtimeThread(SchedulingParameters,, scheduling,
ReleaseParametersy,; release,

24

REALTIME THREAD

MemoryParameters ;9 memory, MemoryAreag, area,
ProcessingGroupParameterss, group,
java.lang.Runnable logic)

Create a real-time thread with the given characteristics and a

java.lang.Runnable .

Parameters:

scheduling - TheSchedulingParameters,, associated with this
(and possibly otheRealtimeThread).

release - TheReleaseParameters,; associated with this (and
possibly otheRealtimeThread).

memory - TheMemoryParameters ;9 associated with this (and
possibly otheRealtimeThread).

area - TheMemoryAreag, associated with this.

group - TheProcessingGroupParameters;s, associated with this
(and possibly otheRealtimeThread).

3.1.2 Methods

public void addToFeasibility()
Inform the scheduler and cooperating facilities that this thread’s feasibility

parameters should be considered in feasibility analysis until further
notified.

public static RealtimeThread,; currentRealtimeThread()
This will throw aClassCastException if the current thread is not a

RealtimeThread.

public synchronized void deschedulePeriodic()
Stop unblockingublic boolean waitForNextPeriod() 4 for a periodic
schedulable object. If this does not have a typeedfiodicParameters 5
as itReleaseParameters,; nothing happens.

public MemoryAreag, getMemoryArea()
Get the currentiemoryAreagy .

Returns: The current memory area in which allocations occur.

public MemoryParameters;9 getMemoryParameters()
Return a reference to tiemoryParameters ;9 Object.

public ProcessingGroupParameterss, getProcessingGroupParameters()
Return a reference to tifeocessingGroupParameters;s, object.

public ReleaseParameters,; getReleaseParameters()
Returns a reference to tReleaseParameters,; Object.

public Scheduler;s getScheduler()

THREADS 25

Get the scheduler for this thread.

public SchedulingParameters,, getSchedulingParameters()
Return a reference to tisehedulingParametersy, object.

public synchronized void dinterrupt()
Set the state of the genedisynchronouslyInterruptedException;ss tO
pending.

Overrides:java.lang.Thread.interrupt() in class java.lang.Thread

public void removeFromFeasibility()
Inform the scheduler and cooperating facilities that this thread’s feasibility
parameters should not be considered in feasibility analysis until further
notified.

public synchronized void schedulePeriodic()
Begin unblockingublic boolean waitForNextPeriod(),s for a
periodic thread. Typically used when a periodic schedulable objectis in an
overrun condition. The scheduler should recompute the schedule and
perform admission control. If this does not have a type of
PeriodicParametersy; as itReleaseParameters,; nothing happens.

public void setMemoryParameters(MemoryParameters;9 parameters)
Set the reference to tMemoryParameters ;9 Object.

public void
setProcessingGroupParameters (ProcessingGroupParam
eterssy parameters)
Set the reference to ti*eocessingGroupParameters;, object.

public void setReleaseParameters(ReleaseParameters,; parameters)
Set the reference to tiReleaseParameters,; object.

public void setScheduler(Schedulerss scheduler)
Set the scheduler. This is a reference to the scheduler that will manage the
execution of this thread.

Throws: I11egalThreadStateException - Thrown when
((Thread.isAlive() & Not Blocked) == true). (Where
blocked means waiting ithread.wait(), Thread.join(), or
Thread.sleep())

public void setSchedulingParameters(SchedulingParametersy
scheduling)

Set the reference to tisehedulingParametersy, object.

public static void sleep(Clock;;p clock, HighResolutionTimeg, time)
An accurate timer with nanosecond granularity. The actual resolution
available for the clock must be queried from somewhere else. The time

REALTIME THREAD

base is the give@lock;;4 . The sleep time may be relative or absolute. If
relative, then the calling thread is blocked for the amount of time given by
the parameter. If absolute, then the calling thread is blocked until the
indicated point in time. If the given absolute time is before the current time,
the call to sleep returns immediately.

Throws: InterruptedException

public static void sleep(HighResolutionTimeg; time)
An accurate timer with nanosecond granularity. The actual resolution
available for the clock must be queried from somewhere else. The time
base is the defaultlock;;4 . The sleep time may be relative or absolute. If
relative, then the calling thread is blocked for the amount of time given by
the parameter. If absolute, then the calling thread is blocked until the
indicated point in time. If the given absolute time is before the current time,
the call to sleep returns immediately.

Throws: InterruptedException

public boolean waitForNextPeriod()
Used by threads that have a referencerRe@laaseParameters,; type of
PeriodicParameters,s to block until the start of each period. Periods
start at either the start timeRariodicParameters,; or when
this.start() is called. This method will block until the start of the next
period unless the thread is in either an overrun or deadline miss condition.
If both overrun and miss handlers are null and the thread has overrun its
cost or missed a deadlipeb1ic boolean waitForNextPeriod(),s Will
immediately return false once per overrun or deadline miss. It will then
again block until the start of the next period (unless, of course, the thread
has overrun or missed again). If either the overrun or deadline miss
handlers are not null and the thread is in either an overrun or deadline miss
conditionpublic boolean waitForNextPeriod() s Will block until the
handler corrects the situation (possibly by calbnglic synchronized
void schedulePeriodic() s5). public boolean
waitForNextPeriod() 4 throws lllegalThreadStateException if this does
not have a reference tRaleaseParametersy; type of
PeriodicParametersy;s.

Returns: True when the thread is not in an overrun or deadline miss
condition and unblocks at the start of the next period.

Throws: I11egalThreadStateException

THREADS 27

3.2 NoHeapRealtimeThread

Syntax:public class NoHeapRealtimeThread extends RealtimeThread;;

All Implemented Interfacegava.lang.Runnablechedulable ;s

A NoHeapRealtimeThread is a specialized form dfealtimeThread,; . Because
an instance afioHeapRealtimeThread may immediately preempt any implemented
garbage collector logic contained in ign O is never allowed to allocate or reference
any object allocated in the heap nor it is even allowed to manipulate the references to
objects in the heap. For example, if a and b are objects in immortal memory, b.p is
reference to an object on the heap, and a.p is type compatible with b.p, then a
NoHeapRealtimeThread is notallowed to execute anyting like the following:

a.p = b.p; b.p = null;

Thus, it is always safe forNHeapRealtimeThread to interrupt the garbage
collector at any time, without waiting for the end of the garbage collection cycle or a
defined preemption point. Due to these restrictiomngHaapRealtimeThread object
must be placed in a memory area such that thread logic may unexceptionally access
instance variables and such that Java methodaea Tang. Thread (e.g., enumerate
and join) complete normally except where execution would cause access violations.
(Implementation hint: They could be allocatediiiortalMemoryg, .) The
constructors ofloHeapRealtimeThread require a reference &xopedMemoryg, Or
ImmortalMemory,, . When the thread is started, all execution occurs in the scope of
the given memory area. Thus, all memory allocation performed with the “new”
operator is taken from this given area.

3.2.1 Constructors

public NoHeapRealtimeThread(SchedulingParametersy, scheduling,
MemoryAreagy area)
Create aoHeapRealtimeThread.

Parameters:
scheduling - A SchedulingParametersy, object that will be
associated with this. A null value means this will not have an
associatedchedulingParameters,, object.
area - A MemoryAreagy Object. Must be 8copedMemoryg, OF
ImmortalMemory,, type. A null value causes an
lllegalArgumentException to be thrown.

Throws: I11egalArgumentException

28 NOHEAPREALTIME THREAD

public NoHeapRealtimeThread(SchedulingParametersy, scheduling,
ReleaseParametersy; release, MemoryAreag, area)

Create aloHeapRealtimeThread.

Parameters:

scheduling - A SchedulingParameters,, object that will be
associated with this. A null value means this will not have an
associatedchedulingParameters,, Object.

release - A ReleaseParameters,; object that will be associated
with this. A null value means this will not have an associated
ReleaseParameters,; Object.

area - A MemoryAreag, Object. Must be 8copedMemory, oOr
ImmortalMemory,, type. A null value causes an
lllegalArgumentException to be thrown.

Throws: I11egalArgumentException

public NoHeapRealtimeThread(SchedulingParametersy, scheduling,
ReleaseParameters,; release,
MemoryParameters ;9 memory, MemoryAreag, area,
ProcessingGroupParameterss, group,
java.lang.Runnable logic)

Create aloHeapRealtimeThread.

Parameters:

scheduling - A SchedulingParameters,, object that will be
associated with this. A null value means this will not have an
associatedchedulingParameters,, Object.

release - A ReleaseParametersy; object that will be associated
with this. A null value means this will not have an associated
ReleaseParameters,; Object.

memory - A MemoryParameters,9 Object that will be associated with
this. A null value means this will not have a
MemoryParameters,q Object.

area - A MemoryAreag, Object. Must be 8copedMemoryg, oOr
ImmortalMemoryg, type. A null value causes an
lllegalArgumentException to be thrown.

group - A ProcessingGroupParameterss, object that will be
associated with this. A null value means this will not have an
associate®rocessingGroupParameterss, Object.

Togic - A Runnable whoseun() method will be executed for this.

Throws: I11egalArgumentException

THREADS 29

RealtimeThread Example

The simplest way to create a thread is to accept the default parameters from the
constructor and override the run method with the desired behavior for the thread. This
can be done with a new class definition:

public class MyThread extends RealtimeThread {
public void run() {

do thread task

}
The thread can then be created with:

RealtimeThread tl = new MyThread();
An alternative would be to use a local inner class based on RealtimeThread,

overriding the run method. Here is a local inner class implementation:
RealtimeThread t3 = new RealtimeThread() {
public void run() {
do_whatever_you_want();

}

3
A thread can be created with just priority information:

SchedulingParameters sp =
new SchedulingParameters(RealtimeThread.getNormPriority()-1);
RealtimeThread t2 = new RealtimeThread(sp) {
public void run(Q) {
do_whatever_you_want();
}
} ;
A real-time thread that is created with scheduling parameters but without release
parameters will have no cost information available for feasibility analysis. The
scheduler doesn’t perform admission control on these non-scheduled threads. When
doing static priority analysis, it's important to use a disjoint set of priorities for the
statically analyzed (scheduled) threads from the ones assigned to non-scheduled
threads, with the scheduled threads executing in preference to non-scheduled threads.
A logical division might be at RealtimeThread.getNormPriority(), as employed above,
although this may unduly limit the range available for scheduled threads in systems

that provide the minimum number of real-time priorities.

30

NOHEAPREALTIME THREAD

SCHEDULING 31

CHAPTER

Scheduhng

This section contains classes that:

« Allow the definition of schedulable objects.
« Manage the assignment of execution eligibility to schedulable objects.
« Perform feasibility analysis for sets of schedulable objects.
 Control the admission of new schedulable objects.
» Manage the execution of instances of the AsyncEventHandler and RealtimeThread
classes.
 Assign release characteristics to schedulable objects.
 Assign execution eligibility values to schedulable objects.
 Define temporal containers used to enforce correct temporal behavior of multiple
schedulable objects.
The scheduler required by this specification is fixed-priority preemptive with 28
unique priority levels. It is represented by the classorityScheduler and is called
thebase scheduler.

The schedulable objects required by this specification are defined by the classes
RealtimeThread, NoHeapRealtimeThread, and AsyncEventHandler. Each of these is
assigned processor resources according to their release characteristics, execution
eligibility, and processing group values. Any subclass of these objects or any class
implementing the Schedulable interface are schedulable objects and behave as the
these required classes.

An instance of the SchedulingParameters class contains values of execution
eligibility. A schedulable object is considered to have the execution eligibility in the
SchedulingParameters object used in the constructor of the schedulable object. For
implementations providing only the base scheduling policy, the previous statement
holds for the specific typeriorityParameters (a subclass of
SchedulingParameters), Implementations providing additional scheduling policies
or execution eligibility assignment policies which require an application visible field

32

NOHEAPREALTIME THREAD

to contain execution eligibility theSchedulingParamters must be subclassed and
the previous statement then holds for the specific subclass type. If, however,
additionally provided scheduling policies or execution eligibility asignment policies
do not require application visibility of execution eligibility or it appears in another
parameter object (e.g., the earliest deadline first scheduling uses deadline as the
execution eligibility metric and would thus be visibleRil easeParameters), then
SchedulingParameters need not be subclassed.

An instance of the ReleaseParameters class or its subclasses, PeriodicParameters,
AperiodicParameters, and SporadicParameters, contains values that define a particular
release discipline. A schedulable object is considered to have the release
characteristics of a single associated instance of the ReleaseParameters class. In all
cases the Scheduler uses these values to perform its feasibility analysis over the set of
schedulable objects and admission control for the schedulable object. Additionally,
for those schedulable objects whose associated instance of ReleaseParameters is an
instance of PeriodicParameters, the scheduler manages the behavior of the object’s
waitForNextPeriod() method and monitors overrun and deadline-miss conditions. In
the case of overrun or deadline-miss the scheduler changed the behavior of the
waitForNextPeriod()and schedules the appropriate handler.

An instance of the ProcessingGroupParameters class contains values that define a
temporal scope for a processing group. If a schedulable object has an associated
instance of the ProcessingGroupParameters class, it is said to execute within the
temporal scope defined by that instance. A single instance of the
ProcessingGroupParameters class can be (and typically is) associated with many
schedulable objects. The combined processor demand of all of the schedulable objects
associated with an instance of the ProcessingParameters class must not exceed the
values in that instance (i.e., the defined temporal scope). The processor demand is
determined by the Scheduler.

Semantics and Requirements

This list establishes the semantics and requirements that are applicable across the
classes of this section and the required scheduling algorithm. Semantics that apply to
particular classes, constructors, methods and fields will be found in the class
description and the constructor, method, and field detail sections.

1. The base scheduler must support at least 28 unique values in the priorityLevel
field of an instance of PriorityParameters.

2. Higher values in the priorityLevel field of an instance of PriorityParameters have
a higher execution eligibility.

SCHEDULING 33

3. In (1) unique means that if two schedulable objects have different values in the
priorityLevel field in their respective instances of PriorityParameters, the
schedulable object with the higher value will always execute in preference to the
schedulable object with the lower value when both are ready to execute.

4. An implementation must make available some native priorities which are lower
than the 28 required real-time priorities. These are to be used for regular Java
threads (i.e., instances of threads which are not instances of RealtimeThread,
NoHeapRealtimeThread, or AsyncEventHandler classes or subclasses). The ten
traditional Java thread priorities may have an arbitrary mapping into the native
priorities. These ten traditional Java thead priorities and the required minimum 28
unigue real-time thread priorities shall be from the same space. Assignment of
any of these (minimum) 38 priorities to real-time threads or traditional Java
threads is legal. It is the responsibility of application logic to make rational
priority assignments.

5. The dispatching mechanism must allow the preemption of the execution of
schedulable objects at a point not governed by the preempted object.

6. For schedulable objects managed by the base scheduler no part of the system may
change the execution eligibility for any reason other than implementation of a
priority inversion algorithm. This does not preclude additional schedulers from
changing the execution eligibility of schedulable objects —- which they manage
—- according to the scheduling algorithm.

7. Threads that are preempted in favor of a higher priority thread may be placed in
the appropriate queue at any position as determined by a particular
implementation. The implementation is required to provide documentation
stating exactly the algorithm used for such placement.

8. If an implementation provides any schedulers other than the base scheduler it
shall provide documentation explicitly stating the semantics expressed by 8
through 11 in language and constructs appropriate to the provided scheduling
algorithms.

9. All instances oRelativeTime used in instances @focessingParameters,
SchedulingParameters, andReleaseParameters are measured from the time at
which the associated thread (or first such thread) is started.

10. PriorityScheduler.getNormPriority() shall be set to
((PriorityScheduler.getMaxPriority() -
PriorityScheduler.getMinPriority())/3) +
PriorityScheduler.getMinPriority().

11. If instances okealtimeThread or NoHeapRealtimeThread are constructed
without a reference to a SchedulingParameters obfagteglulingParamters
object is created and assigned the values of the current thread. This does not

34

NOHEAPREALTIME THREAD

imply that other schedulers should follow this rule. Other schedulers are free to
define the default scheduling parameters in the absence of a given
SchedulingParameters object.

12. The policy and semantics embodied in 1 through 15 above and by the descriptions
of the refered to classes, methods, and their interactions must be available in all
implementations of this specification.

13. This specification does not require any particular feasibility algorithm be
implemented in the Scheduler object. Those implementations that choose to not
implement a feasibility algorithm shall return success whenever the feasibility
algorithm is executed.

14. Implementations that provide a scheduler with a feasibility algorithm are required
to clearly document the behavior of that algorithm

The following hold for theeriorityScheduler:

1. A blocked thread that becomes ready to run is added to the tail of any runnable
gueue for that priority.

2. For a thread whose effective priority is changed as a result of explicitly setting
priorityLevel this thread or another thread is added to the tail of the runnable
queue for the newriorityLevel.

3. A thread that performsyeeld() goes to the tail of the runnable queue for its
prioritylLevel.

Rationale

As specified the required semantics and requirements of this section establish a
scheduling policy that is very similar to the scheduling policies found on the vast
majority of real-time operating systems and kernels in commercial use today. By
requirement 16, the specification accommodates existing practice, which is a stated
goal of the effort.

The semantics of the classes, constructors, methods, and fields within allow for
the natural extension of the scheduling policy by implementations that provide
different scheduler objects.

Some research shows that, given a set of reasonable common assumptions, 32
unique priority levels are a reasonable choice for close-to-optimal scheduling
efficiency when using the rate-monotonic priority assignment algorithm (256 priority
levels better provide better efficiency). This specification requires at least 28 unique
priority levels as a compromise noting that implementations of this specification will

SCHEDULING 35

exist on systems with logic executing outside of the Java Virtual Machine and may
need priorities above, below, or both for system activities.

4.1 Schedulable

Syntaxipublic interface Schedulable extends java.lang.Runnable

All Superinterfacesjava.lang.Runnable

All Known Implementing ClassedsyncEventHandler,9, RealtimeThread,;

Handlers and other objects can be run 8¢Beduler ;4 if they provide arun()
method and the methods defined below. J¢teduler;, uses this information to
create a suitable context to executerine() method.

4.1.1 Methods

public void addToFeasibility()
Inform theScheduler;; and cooperating facilities that this thread’s
feasibility parameters should be considered in feasibility analysis until
further notified.

public MemoryParameters;9 getMemoryParameters()
Return theMemoryParameters ;9 Of this schedulable object.

public ReleaseParameters,; getReleaseParameters()
Return thereleaseParameters,; of this schedulable object.

public Scheduler;ss getScheduler()
Return thescheduler;, for this schedulable object.

public SchedulingParameters,, getSchedulingParameters()
Return theschedulingParametersy, of this scheduable object.

public void removeFromFeasibility()
Inform theScheduler;; and cooperating facilities that this thread’s
feasibility parameters should not be considered in feasibility analysis until
further notified.

public void setMemoryParameters(MemoryParameters;9 memory)
Set theMemoryParameters,4 Of this schedulable object.

Parameters:
memory - TheMemoryParameters,9 0bject. If null nothing happens.

36 SCHEDULER

public void setReleaseParameters(ReleaseParameters,; release)
Set thereleaseParameters 3 for this schedulable object.

Parameters:
release - TheReleaseParameters,; object. If null nothing
happens.

public void setScheduler(Scheduler3s; scheduler)
Set thesScheduler ;s for this schedulable object.

Parameters:
scheduler - TheScheduler;s object. If null nothing happens.
public void setSchedulingParameters(SchedulingParametersyy
scheduling)
Set theSchedulingParameters,, Of this scheduable object.

Parameters:
scheduling - TheSchedulingParameters,, object. If null nothing
happens.

4.2 Scheduler

SyntaxX:public abstract class Scheduler

Direct Known Subclasse®rioritySchedulersg

An instance ofcheduler manages the execution of schedulable objects and may
implement a feasibility algorithm. The feasibility algorithm may determine if the
known set of schedulable objects, given their particular execution ordering (or priority
assignment), is a feasible schedule. Subclasssheduler are used for alternative
scheduling policies and should defineiaatance) class method to return the
default instance of the subclass. The name of the subclass should be descriptive of the
policy, allowing applications to deduce the policy available for the scheduler obtained
viapublic static Scheduler36 getDefaultScheduler();, (€.9.,EDFScheduler).

4.2.1 Constructors
public Scheduler()

4.2.2 Methods

protected abstract void addToFeasibility(Schedulable3s; schedulable)

SCHEDULING 37

Inform the scheduler that this threaris easeParameters,; should be
considered in feasibility analysis until further notified.

public boolean changeIfFeasible(Schedulablez; schedulable,
ReleaseParameters,; release,
MemoryParameters ;9 memory)

Returns true if, after changing tBehedulable;; s release and GC
parameters isFeasible would return true. The parameters wil be changed. If
the resulting system would not be feasible, this method returns false and no
changes are made.

Parameters:
schedulable - TheSchedulable;s object for which to check
addmitance. If null nothing happens.
release - The proposedeleaseParameters,; . If null, no change
is made.
memory - The proposedemoryParameters ,q. If null, no change is
made.

public static Schedulerzs; getDefaultScheduler()
Return a reference to the default scheduler.

pubTlic abstract java.lang.String getPolicyName()
Used to determine the policy of tReheduler.

Returns: A String object which is the name of the scheduling policy used
by this.
pubTlic abstract boolean isFeasible()
Returns true if and only if the system is able to satisfy the constraints
expressed in the release parameters of the existing schedulable objects.

protected abstract void removeFromFeasibility(Schedulable;s
schedulable)
Inform the scheduler that this threarlsl easeParameters,; should not

be considered in feasibility analysis until further notified.

public static void setDefaultScheduler(Scheduler;ss scheduler)
Set the default scheduler. This is the scheduler given to instances of
RealtimeThread,; when they are constructed. The default scheduler is set
to the required®riorityScheduler;g at startup.

Parameters:
scheduler - TheScheduler that becomes the default scheduler
assigned to new threads. If null nothing happens.

38 PRIORITYSCHEDULER

4.3 PriorityScheduler

Syntaxipublic class PriorityScheduler extends Schedulerss

Class for priority-based scheduling. The default instance is the required priority
scheduler which does fixed priority, preemptive scheduling.

4.3.1 Constructors
public PriorityScheduler()

4.3.2 Methods

protected void addToFeasibility(Schedulablezs s)
Inform the scheduler that this threaris easeParameters,; should be
considered in feasibility analysis until further notified.

Overrides:protected abstract void
addToFeasibility(Schedulable35 schedulable) ;4 in class
Schedulersg
public boolean changeIfFeasible(Schedulable3s; schedulable,
ReleaseParameters,; release,
MemoryParameters,9 memory)
Returns true if, after changing tBehedulable;s’s release and GC
parameters isFeasible would return true. The parameters wil be changed. If
the resulting system would not be feasible, this method returns false and no
changes are made.

Overrides:public boolean changeIfFeasible(Schedulable35
schedulable, ReleaseParameters43 release,
MemoryParameters79 memory) 3, in classScheduler s,

Parameters:
schedulable - TheSchedulable;s object for which to check
addmitance. If null nothing happens.
release - The proposedeleaseParametersys . If null, no change
is made.
memory - The proposedlemoryParameters ;4. If null, no change is
made.

public void fireSchedulable(Schedulable;s schedulable)
Triggers the execution ofschedulable;s object (like an
AsyncEventHandlery,g).

SCHEDULING 39

Parameters:
schedulable - TheSchedulable;; object to make active.

public int getMaxPriority()
Returns the maximum priority available for a thread managed by this

scheduler.

pubTlic static int getMaxPriority(java.lang.Thread thread)
If the given thread is scheduled by the requitetbrityScheduler the
maximum priority of theeriorityScheduler is returned otherwise
Thread.MAX_PRIORITY is returned.

Parameters:
thread - An instance of Thread. If null the maximum priority of the
requiredPriorityScheduler is returned.
pubTlic int getMinPriority()
Returns the minimum priority available for a thread managed by this
scheduler.

pubTlic static int getMinPriority(java.lang.Thread thread)
If the given thread is scheduled by the requiretbrityScheduler the
minimum priority of thePriorityScheduler is returned otherwise
Thread.MIN_PRIORITY is returned.

Parameters:
thread - An instance of Thread. If null the minimum priority of the
requiredPriorityScheduler is returned.

public int getNormPriority()
Returns the normal priority available for a thread managed by this

scheduler.

public static int getNormPriority(java.lang.Thread thread)
If the given thread is scheduled by the requiretbrityScheduler the
normal priority of thePriorityScheduler is returned otherwise
Thread.NORM_PRIORITY is returned.

Parameters:
thread - An instance of Thread. If null the normal priority of the
requiredPriorityScheduler is returned.

pubTlic java.lang.String getPolicyName()
Used to determine the policy of the Scheduler.

Overrides:public abstract java.lang.String getPolicyName() 37in
classScheduler g

40 SCHEDULINGPARAMETERS

Returns: A String object which is the name of the scheduling policy used
by this.
public static PrioritySchedulers;g instance()
Return a pointer to an instancepefiorityScheduler.

public boolean -isFeasible()
Returns true iff the system is able to satisfy the constraints expressed in the

release parameters of the existing schedulable objects.

Overrides:public abstract boolean isFeasible();,in class
Scheduler;zg
protected void removeFromFeasibility(Schedulable;s s)
Inform the scheduler that this threarisl easeParameters,; should not
be considered in feasibility analysis until further notified.

Overrides:protected abstract void
removeFromFeasibility(Schedulable35 schedulable);;in
classScheduler ;g

4.4 SchedulingParameters

Syntax:ipublic abstract class SchedulingParameters

Direct Known Subclasse®riorityParameters ;

Subclasses dfchedulingParameters (PriorityParametersy;,
ImportanceParameters,,, and any others defined for particular schedulers) provide
the parameters to be used by fwbeduler;; . Changes to the values in a parameters
object affects the scheduling behaviour of all sheedulable;; objects to which itis
bound.

Caution: Subclasses of this class are explicitly unsafe in multithreaded situations
when they are being changed. No synchronization is done. It is assumed that users of
this class who are mutating instances will be doing their own synchronization at a
higher level.

4.4.1 Constructors

public SchedulingParameters()

SCHEDULING 41

4.5 PriorityParameters

Syntaxipublic class PriorityParameters extends SchedulingParametersg

Direct Known SubclassesSmportanceParameters,,

Instances of this class should be assigned to threads that are managed by
schedulers which use a single integer to determine execution order. The base
scheduler required by this specification and represented by the class
PrioritySchedulersg is such a scheduler.

4.5.1 Constructors

public PriorityParameters(int priority)
Create an instance 8thedulingParameters,, with the given priority.

Parameters:
priority - The priority assigned to a thread. This value is used in
place of the value returned by
java.lang.Thread.setPriority(int) .

45.2 Methods

pubTlic int getPriority()
Get the priority.

pubTlic void setPriority(int priority)
Set the priority.

Parameters:
priority - The new value of priority.

Throws: I11egalArgumentException - Thrown if the given priority value
is less than the minimum priority of the scheduler of any of the
associated threads or greater then the maximum priority of the
scheduler of any of the associated threads.

public java.lang.String toString()

Overrides:java.lang.Object.toString() in class java.lang.Object

42

IMPORTANCEHPARAMETERS

4.6 ImportanceParameters

Syntax:ipublic class ImportanceParameters extends PriorityParameters,;

Importance is an additional scheduling metric that may be used by some priority-
based scheduling algorithms during overload conditions to differentiate execution
order among threads of the same priority.

In some real-time systems an external physical process determines the period of
many threads. If rate-monotonic priority assignment is used to assign priorities many
of the threads in the system may have the same priority because their periods are the
same. However, it is conceivable that some threads may be more important that others
and in an overload situation importance can help the scheduler decide which threads
to execute first. The base scheduling algorithm representedilayityScheduler g
is not required to use importance. However, the RTSJ strongly suggests to
implementers that a fairly simple subclas®oforityScheduler;g that uses
importance can offer value to some real-time applications.

4.6.1 Constructors

public ImportanceParameters(int priority, int importance)
Create an instance DfiportanceParameters.

Parameters:
priority - The priority assigned to a thread. This value is used in
place of java.lang.Thread.priority.
importance - The importance value assigned to a thread.

4.6.2 Methods

public int getImportance()
Get the importance value.

public void setImportance(int importance)
Set the importance.

public java.lang.String toString()

Overrides:public java.lang.String toString(),; in class
PriorityParametersy;

SCHEDULING 43

4.7 ReleaseParameters

Syntaxipublic abstract class ReleaseParameters

Direct Known Subclasse#iperiodicParameters,; PeriodicParameters s

The abstract top-level class for release characteristics of threads. When a
reference to &eleaseParameters object is given as a parameter to a constructor, the
ReleaseParameters oObject becomes bound to the object being created. Changes to
the values in theeleaseParameters object affect the constructed object. If given to
more than one constructor, then changes to the valuesRaTi&eseParameters
object affectall of the associated objects. Note that this is a one-to-many relationship
andnota many-to-many.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class who
are mutating instances will be doing their own synchronization at a higher level.

Caution: The cost parameter time should be considered to be measured against
the target platform.

4.7.1 Constructors

protected ReleaseParameters(RelativeTime;y, cost,
RelativeTime;y, deadline,
AsyncEventHandler;,9 overrunHandler,
AsyncEventHandler,9 missHandler)

Subclasses use this constructor to cre@elaaseParameters type object.

Parameters:

cost - Processing time units per interval. On implementations which
can measure the amount of time a schedulable object is
executed, this value is the maximum amount of time a
schedulable object receives per interval. On implementations
which cannot measure execution time, this value is used as a
hint to the feasibility algorithm. On such systems it is not
possible to determine when any particular object exceeds cost.
Equivalent tcRelativeTime(0,0) if null.

deadline - The latest permissible completion time measured from
the release time of the associated invocation of the schedulable
object. Changing the deadline might not take effect after the
expiration of the current deadline. More detail provided in the
subclasses.

44 RELEASEPARAMETERS

overrunHandler - This handler is invoked if an invocation of the
schedulable object exceeds cost. Not required for minimum
implementation. If null, nothing happens on the overrun
condition, and waitForNextPeriod returns false immediatly and
updates the start time for the next period.

missHandler - This handler is invoked if thaun () method of the
schedulable object is still executing after the deadline has
passed. Although minimum implementations do not consider
deadlines in feasibility calculations, they must recognize
variable deadlines and invoke the miss handler as appropriate. If
null, nothing happens on the miss deadline condition.

4.7.2 Methods

public RelativeTime;p, getCost()
Get the cost value.

public AsyncEventHandler;,9 getCostOverrunHandler()
Get the cost overrun handler.

public RelativeTime;y, getDeadline()
Get the deadline.

public AsyncEventHandler;,y getDeadlineMissHandler()
Get the deadline miss handler.

public void setCost(RelativeTime;y, cost)
Set the cost value.

Parameters:

cost - Processing time units per period or per minimum interarrival
interval. On implementations which can measure the amount of
time a schedulable object is executed, this value is the maximum
amount of time a schedulable object receives per period or per
minimum interarrival interval. On implementations which
cannot measure execution time, this value is used as a hint to the
feasibility algorithm. On such systems it is not possible to
determine when any particular object exceeds or will exceed
cost time units in a period or interval. Equivalent to
RelativeTime(0,0) if null.

public void setCostOverrunHandler(AsyncEventHandler;,9 handler)
Set the cost overrun handler.

Parameters:

SCHEDULING 45

handler - This handler is invoked if an invocation of the schedulable
object exceeds cost. Not required for minimum implementation.
See comments igetCost().

public void setDeadline(RelativeTime;y, deadline)
Set the deadline value.

Parameters:
deadline - The latest permissible completion time measured from
the release time of the associated invocation of the schedulable
object. For a minimum implementation for purposes of
feasibility analysis, the deadline is equal to the period or
minimum interarrival interval. Other implementations may use
this parameter to compute execution eligibility.

public void setDeadlineMissHandler(AsyncEventHandler;,9 handler)
Set the deadline miss handler.

Parameters:
handler - This handler is invoked if theun() method of the
schedulable object is still executing after the deadline has
passed. Although minimum implementations do not consider
deadlines in feasibility calculations, they must recognize
variable deadlines and invoke the miss handler as appropriate.

4.8 PeriodicParameters

SyntaXipublic class PeriodicParameters extends ReleaseParameters,;

This release parameter indicates thafpilteic boolean
waitForNextPeriod() s method on the associatechedulable;s; object will be
unblocked at the start of each period. When a referenceeioi édicParameters
object is given as a parameter to a constructoPdhéodicParameters object
becomes bound to the object being created. Changes to the values in the
PeriodicParameters object affect the constructed object. If given to more than one
constructor then changes to the values inftei odi cParameters object affeciall of
the associated objects. Note that this is a one-to-many relationshippadagnany-to-
many.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class who
are mutating instances will be doing their own synchronization at a higher level.

RERIODICPARAMETERS

4.8.1 Constructors

public PeriodicParameters(HighResolutionTimeg; start,
RelativeTime;p, period, RelativeTimejy, cost,
RelativeTime;y, deadline,
AsyncEventHandler;,9 overrunHandler,
AsyncEventHandler;,9 missHandler)
Create @eriodicParameters object.

Parameters:

start - Time at which the first period begins. IRalativeTimezq, ,
this time is relative to the first time the schedulable object
becomes schedulahlschedulable timele.g., wherstart() is
called on a thread). If axbsoluteTimegg and it is before the
schedulable time, start is equivalent to the schedulable time.

period - The period is the interval between successive unblocks of
public boolean waitForNextPeriod() 5. Must be greater
than zero when entering feasibility analysis.

cost - Processing time per period. On implementations which can
measure the amount of time a schedulable object is executed,
this value is the maximum amount of time a schedulable object
receives per period. On implementations which cannot measure
execution, time this value is used as a hint to the feasibility
algorithm. On such systems it is not possible to determine when
any particular object exceeds or will exceed cost time units in a
period. Equivalent tBelativeTime(0,0) if null.

deadline - The latest permissible completion time measured from
the release time of the associated invocation of the schedulable
object. For a minimum implementation for purposes of
feasibility analysis, the deadline is equal to the period. Other
implementations may use this parameter to compute execution
eligibility. If null, deadline will equal the period.

overrunHandler - This handler is invoked if an invocation of the
schedulable object exceeds cost in the given period. Not
required for minimum implementation. If null, nothing happens
on the overrun condition.

missHandler - This handler is invoked if theun() method of the
schedulable object is still executing after the deadline has
passed. Although minimum implementations do not consider
deadlines in feasibility calculations, they must recognize
variable deadlines and invoke the miss handler as appropriate. If
null, nothing happens on the miss deadline condition.

SCHEDULING 47

4.8.2 Methods

public RelativeTime;y, getPeriod()
Get the period.

public HighResolutionTimeg; getStart()
Get the start time.

public void setPeriod(RelativeTime;y, period)
Set the period.

Parameters:
period - The period is the interval between successive unblocks of
public boolean waitForNextPeriod() . Also used in the
feasibility analysis and admission control algorithms.

public void setStart(HighResolutionTimeg; start)
Set the start time.

Parameters:
start - Time at which the first period begins.

4.9 AperiodicParameters

Syntaxipublic class AperiodicParameters extends ReleaseParameters,;

Direct Known SubclassesSporadicParameters g

This release parameter object characterizes a schedulable object that may
become active at any time. When a referenceai@ &iodicParameters,, objectis
given as a parameter to a constructorAgeiodicParameters,, object becomes
bound to the object being created. Changes to the values in the
AperiodicParameters,; object affect the constructed object. If given to more than
one constructor then changes to the values iagleiodicParameters,, object
affectall of the associated objects. Note that this is a one-to-many relationshipand
a many-to-many.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class who
are mutating instances will be doing their own synchronization at a higher level.

4.9.1 Constructors

48 SORADICPARAMETERS

public AperiodicParameters(RelativeTime;y, cost,
RelativeTimezy, deadline,
AsyncEventHandler;,9 overrunHandler,
AsyncEventHandler;,9 missHandler)

Create amperiodicParameters,, object.

Parameters:

cost - Processing time per invocation. On implementations which
can measure the amount of time a schedulable object is
executed, this value is the maximum amount of time a
schedulable object receives. On implementations which cannot
measure execution time, this value is used as a hint to the
feasibility algorithm. On such systems it is not possible to
determine when any particular object exceeds cost. Equivalent
toRelativeTime(0,0) if null.

deadline - The latest permissible completion time measured from
the release time of the associated invocation of the schedulable
object. Not used in feasibility analysis for minimum
implementation. If null, the deadline will be
ReTativeTime(Long.MAX_VALUE,999999).

overrunHandler - This handler is invoked if an invocation of the
schedulable object exceeds cost. Not required for minimum
implementation. If null, nothing happens on the overrun
condition.

missHandler - This handler is invoked if theun () method of the
schedulable object is still executing after the deadline has
passed. Although minimum implementations do not consider
deadlines in feasibility calculations, they must recognize
variable deadlines and invoke the miss handler as appropriate. If
null, nothing happens on the miss deadline condition.

4.10 SporadicParameters

Syntax:ipublic class SporadicParameters extends AperiodicParametersy;

A notice to the scheduler that the associated schedulable object’s run method will
be released aperiodically but with a minimum time between releases. When a
reference to 8poradicParameters object is given as a parameter to a constructor,
theSporadicParameters object becomes bound to the object being created. Changes
to the values in theporadicParameters object affect the constructed object. If given

SCHEDULING 49

to more than one constructor, then changes to the valuesSpottuii cParameters
object affectall of the associated objects. Note that this is a one-to-many relationship
andnota many-to-many.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class who
are mutating instances will be doing their own synchronization at a higher level.

4.10.1Constructors

public SporadicParameters(RelativeTime;p, minInterarrival,
RelativeTime;y, cost, RelativeTimejy, deadline,
AsyncEventHandler;,9 overrunHandler,
AsyncEventHandler;,9 missHandler)
Create &poradicParameters object.

Parameters:

minInterarrival - The release times of the schedulable object will
occur no closer than this interval. Must be greater than zero
when entering feasibility analysis.

cost - Processing time per minimum interarrival interval. On
implementations which can measure the amount of time a
schedulable object is executed, this value is the maximum
amount of time a schedulable object receives per interval. On
implementations which cannot measure execution time, this
value is used as a hint to the feasibility algorithm. On such
systems it is not possible to determine when any particular
object exceeds cost. EquivalenRtd ativeTime(0,0) if null.

deadline - The latest permissible completion time measured from
the release time of the associated invocation of the schedulable
object. For a minimum implementation for purposes of
feasibility analysis, the deadline is equal to the minimum
interarrival interval. Other implementations may use this
parameter to compute execution eligibility. If null, deadline will
equal the minimum interarrival time.

overrunHandler - This handler is invoked if an invocation of the
schedulable object exceeds cost. Not required for minimum
implementation. If null, nothing happens on the overrun
condition.

missHandler - This handler is invoked if theun() method of the
schedulable object is still executing after the deadline has
passed. Although minimum implementations do not consider
deadlines in feasibility calculations, they must recognize

50

PROCESSINGGROUPPARAMETERS

variable deadlines and invoke the miss handler as appropriate. If
null, nothing happens on the miss deadline condition.

4.10.2Methods

public RelativeTime;p, getMinimumInterarrival ()
Get the minimum interarrival time.

public void setMinimumInterarrival (RelativeTimesz, minimum)
Set the minimum interarrival time.

Parameters:
minimum - The release times of the schedulable object will occur no
closer than this interval. Must be greater than zero when
entering feasibility analysis.

4.11 ProcessingGroupParameters

Syntax:public class ProcessingGroupParameters

This is associated with one or more schedulable objects for which the system
guarantees that the associated objects will not be given more time per period than
indicated by cost. For all threads with a reference to an instance of
ProcessingGroupParameters p and a reference to an instance of
AperiodicParameters,,; no more than p.cost will be allocated to the execution of
these threads in each interval of time given by p.period after the time indicated by
p.start. When a reference t®@mcessingGroupParameters object is given as a
parameter to a constructor thcessingGroupParameters object becomes bound
to the object being created. Changes to the values in the
ProcessingGroupParameters Object affect the constructed object. If given to more
than one constructor, then changes to the values frtltessingGroupParameters
object affectall of the associated objects. Note that this is a one-to-many relationship
andnota many-to-many.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class who
are mutating instances will be doing their own synchronization at a higher level.

Caution: The cost parameter time should be considered to be measured against
the target platform.

SCHEDULING 51

4.11.1Constructors

public ProcessingGroupParameters(HighResolutionTimeg, start,
RelativeTime;y, period, RelativeTimejy, cost,
RelativeTime;y, deadline,
AsyncEventHandler;,9 overrunHandler,
AsyncEventHandler,9 missHandler)

Create &@rocessingGroupParameters object.

Parameters:

start - Time at which the first period begins.

period - The period is the interval between successive unblocks of
waitForNextPeriod().

cost - Processing time per period.

deadline - The latest permissible completion time measured from
the start of the current period. Changing the deadline might not
take effect after the expiration of the current deadline.

overrunHandler - This handler is invoked if theun () method of
the schedulable object of the previous period is still executing at
the start of the current period.

missHandler - This handler is invoked if thain() method of the
schedulable object is still executing after the deadline has
passed.

4.11.2Methods

public RelativeTimezy, getCost()
Get the cost value.

public AsyncEventHandler;,9 getCostOverrunHandler()
Get the cost overrun handler.

Returns: An AsyncEventHandler;,9 Object that is cost overrun handler of
this.

public RelativeTime;y, getDeadline()
Get the deadline value.

Returns: A RelativeTime;y, Object that represents the deadline of this.

public AsyncEventHandler;,9 getDeadlineMissHandler()
Get the deadline missed handler.

Returns: An AsyncEventHandler,4 Object that is deadline miss handler
of this.

public RelativeTime;y, getPeriod()
Get the period.

52 PROCESSINGGROUPPARAMETERS

Returns: A RelativeTime;y, Object that represents the period of time of
this.

public HighResolutionTimeg; getStart()
Get the start time.

Returns: A HighResolutionTimeg, Object that represents the start time of
this.

public void setCost(RelativeTime;y, cost)
Set the cost value.

Parameters:
cost - The schedulable objects with a reference to this receive
cumulatively no more than cost time per period on
implementations that can collect execution time per thread.

public void setCostOverrunHandler(AsyncEventHandler;,9 handler)
Set the cost overrun handler.

Parameters:
handler - This handler is invoked if thein() method of the
schedulable object of the previous period is still executing at the
start of the current period.

public void setDeadline(RelativeTime;y, deadline)
Set the deadline value.

Parameters:
deadline - The latest permissible completion time measured from
the start of the current period. Not used in a minimum
implementation. Other implmentations may use this parameter
to compute execution eligibility. The default value is the same as
period.

public void setDeadlineMissHandler(AsyncEventHandler;,9 handler)
Set the deadline miss handler.

Parameters:
handler - This handler is invoked if theun() method of the
schedulable object is still executing after the deadline has
passed.

public void setPeriod(RelativeTime;y, period)
Set the period.

Parameters:
period - Interval used to enforce allocation of processing resources
to the associated schedulable objects. Also used in the feasibility
analysis and admission control algorithms.

SCHEDULING 53

public void setStart(HighResolutionTimeg; start)
Set the start time.

Parameters:
start - Time at which the first period begins.

Scheduler Example

An implementation may provide a scheduler other than the required minimum
scheduler. If you wish to use that scheduler to manage your threads, you need to find
out about the alternative scheduler. In some cases, the alternative scheduler may be
installed as the default scheduler for the implementation. In others, it may be
necessary to locate the scheduler in order to use it to schedule threads. The following
method shows how a scheduler implementing a policy can be located and the instance
to the singleton object obtained:

public static Scheduler findScheduler(String policy) {
String className = System.getProperty(“javax.realtime.scheduler.
S
policy);
Class clazz;
try {
if (className != null
&& (clazz = Class.forName(className)) != null) {
return (Scheduler)clazz.getMethod(“instance”,null).invoke(null,n
ull);
}
} catch (ClassNotFoundException notFound) {
} catch (NoSuchMethodException noSuch) {
} catch (SecurityException security) {
} catch (ITlegalAccessException access) {
} catch (I11egalArgumentException arg) {
} catch (InvocationTargetException target) {
}
r

eturn null;

}
To find, say, an EDF scheduler, the above method requires that the system property
javax.realtime.scheduler.EDF have been set to the fully qualified class name for the

54

PROCESSINGGROUPPARAMETERS

EDF scheduler class. Thus, to get an EDF scheduler and use it to schedule a periodic
thread, t1, we do:

Scheduler scheduler = findScheduler(“EDF”);
if (scheduler != null) {
RealtimeThread tl1 =
new RealtimeThread(
null, /* default scheduling parameters */
new PeriodicParameters(
null, /*start immediately*/
new RelativeTime(100, @), /* period */
new RelativeTime(5, @), /* cost */
new RelativeTime(50, @), /* deadline */
null,
null),
null,
null,
null) {
public void run() {
thread processing

}
Once the scheduler is found, it is also possible to set it as the default scheduler for all
subsequent thread creations. This is done with a call to
Scheduler.setDefaultScheduler:
try {
Scheduler.setDefaultScheduler(scheduler);
} catch (SecurityException security) {
};
Finally, you can test the current default scheduler to see if it implements the
scheduling policy you want:
boolean useEDF = false;
try {
if (Scheduler.getDefaultScheduler() .getPolicyName() .equals(“EDF”

N AL
Life is grand, use EDF to your heart’s content.

useEDF = true;

ProcessingGroup Example

Processing groups are used to provide information to the scheduler about aperiodic or
sporadic activities —- either threads or asynchronous event handlers —- for the
purposes of the feasibility analysis. The processing group carries information about
the cost, period and deadline associated with aperiodic or sporadic activities that have
been grouped together for the purposes of completing the analysis. The following will

SCHEDULING 55

identify a processing group that accounts for up to 10 milliseconds of execution
during any 100 millisecond interval:

SchedulingParameters sp =
new SchedulingParameters(RealtimeThread.getNormPriority());
ProcessingGroupParameters group =
new ProcessingGroupParameters(null, /* start when released */
new RelativeTime(100, @), /* period */
new RelativeTime(10, @), /* cost */
null, /* deadline == period */
null, /* cost overrun handler */
null); /* deadline miss handler */
Every thread that is created within this processing group should have a reference to

the same processing group parameters object. The identity of the object is important
to convey to the feasibility algorithm what group it is, in addition to the information
about the group itself, so that the cost and period aren’t accounted for more than once.
Thus, after the first thread is added:

RealtimeThread tl = new RealtimeThread(
sp, /* scheduling parameters */
new AperiodicParameters(
new RelativeTime(10,0), /* cost */
new RelativeTime(300, @), /* deadline */
null, /* cost overrun handler */
null), /* deadline miss handler */
null, /* memory parameters */
group,
null) {
public void run() {

do thread task

}
we can add a second thread that goes in the same group:

RealtimeThread t2 = new RealtimeThread(
sp, /* scheduling parameters */
new AperiodicParameters(
new RelativeTime(5,0), /* cost */
new RelativeTime(200, @), /* deadline */
null, /* cost overrun handler */
null), /* deadline miss handler */
null, /* memory parameters */
group,
null) {
public void run() {

do thread task
}

56

PROCESSINGGROUPPARAMETERS

The priority of the SchedulingParameters should be assigned according to the period
of the processing group (relative to the periods of other periodic activities). This will
effect both threads:
try {
sp.setPriority (GROUP_PRIORITY);

} catch(AdmissionControlException ace) {
System.out.print(“Not allowed to set priority\n”);

}
When we release the first thread, the group is factored in to the feasibility analsysis,
and the thread will be admitted if the group can be accomodated in the schedule:
try {
tl.release();
} catch (AdmissionControlException ael) {

}
When we release the second thread, the group is already in the schedule. The only

admission control is performed by the scheduler on the basis of the cost and deadline
for the thread. If it fits in the processing group, it will be admitted.
try {
t2.release();
} catch (AdmissionControlException ae2) {
The processing group has too much to complete the thread’s work before the deadline

}
NOTE: Cost overrun is unique for processing groups. The cost overrun handler will
be invoked at the end of any period when there is still work to be done for any thread
in the group, assuming the scheduler implementation can do cost accounting.

}

MEMORY MANAGEMENT 57

CHAPTER

Memory Managemént

This section contains classes that:

« Allow the definition of regions of memory outside of the traditional Java heap.

« Allow the definition of regions of scoped memory, that is, memory regions with a
limited lifetime.

« Allow the definition of regions of memory containing objects whose lifetime matches
that of the application.

« Allow the definition of regions of memory mapped to specific physical addresses.

« Allow the specification of maximum memory area consumption and maximum
allocation rates for individual real-time threads.

* Allow the programmer to query information characterizing the behavior of the
garbage collection algorithm, and to some limited ability, alter the behavior of that
algorithm.

Semantics and Requirements

The following list establishes the semantics and requirements that are applicable
across the classes of this section. Semantics that apply to particular classes,
constructors, methods and fields will be found in the class description and the
constructor, method, and field detail sections.

1. SomeMemoryArea classes are required to have linear (in object size) allocation
time. The linear time attribute requires that, ignoring performance variations due
to hardware caches or similar optimizations and execution of any static
initializers the execution time of new must be bounded by a polynomial, f(n),
where n is the size of the object and for all n>0, f(n) <= Cn for some constant C.

2. Execution time of object constructors is explicitly not considered in any bounds.

58

3.

10.

11.

12.

PROCESSINGGROUPPARAMETERS

A memory scope is represented by an instance sktpedMemory class. When
a new scope is entered, by calling éheer () method of the instance or by
starting an instance @kaltimeThread Or NoHeapRealtimeThread whose
constructors were given a reference to an instanseopkdMemory, all
subsequent uses of thew keyword within the program logic of the scope will
allocate the memory from the memory represented by that instance of
ScopedMemory. When the scope is exited by returning fromdhe=r () method
of the instance dcopedMemory, all subsequent uses of thev operation will
allocate the memory from the area of memory associated with the enclosing
scope.

. Each instance of the cla&sopedMemory or its subclasses must contain a

reference count of the number of scopes in which it is being used.

. The reference count for an instancsafpedMemory or one of its subclasses is

increased by one each time a reference to the instance is given to the constructor
of aRealtimeThread Or aNoHeapRealtimeThread, when a scope is opened for

the instance (by calling thenter () method of the instance), and for each scope
opened within its scope (whether for this instance or another instance)..

. The reference count forszopedMemory area is decreased by one when returning

from an invocation of itenter() method, when an instanceRefaltimeThread

or NoHeapRealtimeThread to which the area is associated through a reference in
the thread'slemoryParameters object exits, or when an inner scope returns from
its enter () method (whether for this instance or another instance).

. When the reference count for an instance of the stagedMemory or its

subclasses is decremented from one to zero, all objects within that area are
considered unreachable and as candidates for reclamation. The finalizers for each
object in the memory associated with an instance@fedMemory are executed

to completion before any statement in any thread attempts to access the memory
area.

. Scopes may be nested. When a nested scope is entered, all subsequent allocations

are taken from the memory associated with the new scope. When the nested scope
is exited, the previous scope is restored and subsequent allocations are again
taken from that scope.

. AnyMemoryArea that is associated withNoHeapRealtimeThread may not move

any objects.

Objects created in any immortal memory area live for the duration of the
application. The finalizers are only run when the application is terminated.
Each instance of the virtual machine will have exactly one instance of the class
ImmortalMemory.

Each instance of the virtual machine will have exactly one instance of the class

MEMORY MANAGEMENT 59

HeapMemory.

13. Each instance of the virtual machine will behave as if there is an area of memory
into which allClass objects are placed and which is unexceptionally
referenceable byoHeapRealtimeThreads.

14. Strict assignment rules placed on assignments to or from memory areas prevent
the creation of dangling pointers, and thus maintain the pointer safety of Java.
The restrictions are listed in the following table:

Reference to Reference to Reference to
Heap Immortal Scoped

Heap Yes Yes No

Immortal Yes Yes No
Scoped Yes Yes Yes, if same, outer,
or shared scope
Local Yes, if same, outer,

. Yes Yes

Variable or shared scope

15. An implementation must ensure that the above checks are performed before the
statement is executed. (This includes the possibility of static analysis of the
application logic).

Rationale

Languages that employ automatic reclamation of blocks of memory allocated in what
is traditionally called the heap by program logic also typically use an algorithm called
a garbage collector. Garbage collection algorithms and implementations vary in the
amount of non-determinancy they add to the execution of program logic. To date, the
expert group believes that no garbage collector algorithm or implementation is known
that allows preemption at points that leave the inter-object pointers in the heap in a
consistent state and are sufficiently close in time to minimize the overhead added to
task switch latencies to a sufficiently small enough value which could be considered
appropriate for all real-time systems.

Thus, this specification provides the above described areas of memory to allow
program logic to allocate objects in a Java-like style, ignore the reclamation of those
objects, and not incur the latency of the implemented garbage collection algorithm.

60

MEMORYAREA

5.1 MemoryArea

Syntax:ipublic abstract class MemoryArea

Direct Known Subclasse$ieapMemory g, ImmortalMemory .y,
ImmortalPhysicalMemory ;4, ScopedMemoryg,

MemoryArea is the abstract base class of all classes dealing with representations
of allocatable memory areas, including the immortal memory area, physical memory
and scoped memory areas.

5.1.1 Constructors
protected MemoryArea(long sizeInBytes)

Parameters:
sizeInBytes - The size of th@emoryArea to allocate, in bytes.

5.1.2 Methods

public void enter(java.lang.Runnable logic)
Assaociate this memory area to the current real-time thread for the duration
of the execution of theun() method of the givefiava.lang.Runnable .
During this bound period of execution, all objects are allocated from the
memory area until another one takes effect, oether () method is
exited. A runtime exception is thrown if this method is called from thread
other than ®ealtimeThread,; OrNoHeapRealtimeThread,; .

Parameters:
Togic - The runnable object whosen() method should be
executed.

public static MemoryAreag, getMemoryArea(java.lang.Object object)
Return thevemoryArea in which the given object is located.

public Tong memoryConsumed()
An exact count, in bytes, of the all of the memory currently used by the
system for the allocated objects.

Returns: The amount of consumed in bytes.

public Tong memoryRemaining()
An approximation to the total amount of memory currently available for
future allocated objects, measured in bytes.

MEMORY MANAGEMENT 61

Returns: The amount of remaining memory in bytes.
public synchronized java.lang.Object newArray(java.lang.Class type,

int number)
Allocate an array of T in this memory area.

Parameters:
type - The class of the elements of the new array.
number - The number of elements in the new array.

Returns: A new array of classype, oOf number elements.

Throws: I11egalAccessException - The class or initializer is
inaccessible.
InstantiationException - The array cannot be instantiated.
OutOfMemoryError - Space in the memory area is exhausted.

pubTlic synchronized java.lang.Object newInstance(java.lang.Class
type)
Allocate an object in this memory area.

Parameters:
type - The class of which to create a new instance.

Returns: A new instance of claaspe.

Throws: I11egalAccessException - The class or initializer is
inaccessible.

InstantiationException - The specified class object could not be
instantiated. Possible causes are: it is an interface, it is abstract,
it is an array, or an exception was thrown by the constructor.

OutOfMemoryError - Space in the memory area is exhausted.

pubTlic Tong size()
Query the size of the memory area. The returned value is the current size.
Current size may be larger than initial size for those areas that are allowed
to grow.

Returns: The size of the memory area in bytes.

5.2 HeapMemory

Syntaxipublic final class HeapMemory extends MemoryAreagy

TheHeapMemory class is a singleton object that allows logic within other scoped
memory to allocate objects in the Java heap.

62

IMMORTAL MEMORY

5.2.1 Methods

public static HeapMemorygs; instance()
Return a pointer to the singletésapMemory space

Returns: The singletorieapMemory object.

5.3 ImmortalMemory

Syntaxipublic final class ImmortalMemory extends MemoryAreag,

ImmortalMemory iS @ memory resource that is shared among all threads. Objects
allocated in the immortal memory live until the end of the application. Objects in
immortal memory are never subject to garbage collection, although some GC
algorithms may require a scan of the immortal memory.ilAmortalobject may only
contain reference to other immortal objects or to heap objects. Unlike standard Java
heap objects, immortal objects continue to exist even after there are no other
references to them.

5.3.1 Methods

public static ImmortalMemoryg, instance()
Return a pointer to the singletommortalMemory space.

5.4 ScopedMemory

SyntaxX:public abstract class ScopedMemory extends MemoryAreagy

Direct Known Subclasses:TMemory s, ScopedPhysicalMemory 7;, VTMemorygs

ScopedMemory is the abstract base class of all classes dealing with
representations of memory spaces with a limited lifetime.SEhgedMemory area is
valid as long as there are real-time threads with access to it. A reference is created for
each accessor when either a real-time thread is created wislaidhedMemory object
as its memory area, or a real-time thread rungdb®ic void
enter(java.lang.Runnable logic)4, Mmethod for the memory area. When the last

MEMORY MANAGEMENT 63

reference to the object is removed, by exiting the thread or exitirgthe()
method, finalizers are run for all objects in the memory area, and the area is emptied.

A ScopedMemory area is a connection to a particular region of memory and
reflects the current status of it. The object does not necessarily contain direct
references to the region of memory that is implementation dependent.

When aScopedMemory area is instantiated, the object itself is allocated from the
current memory allocation scheme in use, but the memory space that object represents
is not. Typically, the memory for scopedMemory area might be allocated using native
method implementations that make appropriate usaldfoc() andfree() or
similar routines to manipulate memory. Tdreer () method ofScopedMemory is the
mechanism used to activate a new memory scope. Entry into the scope is done by
calling the method:

public void enter(Runnable r)

Wherer is a Runnable object whosen() method represents the entry point to
the code that will run in the new scope. Exit from the scope occurs when the O
completes. Allocations of objects withinrun() are done with thecopedMemory
area. Whemr.run() is complete, the scoped memory area is no longer active. Its
reference count will be decremented and if it is zero all of the objects in the memory
area finalized and collected.

Objects allocated from $copedMemory area have a unique lifetime. They cease
to exist on exiting @ub1ic void enter(java.lang.Runnable logic)g, method or
upon exiting the last real-time thread referencing the area, regardless of any references
that may exist to the object. Thus, to maintain the safety of Java and avoid dangling
references, a very restrictive set of rules appbctpedMemory area objects:

1. A reference to an object firopedMemory can never be stored in an Object
allocated in the Java heap.
2. A reference to an object SzopedMemory can never be stored in an Object

allocated infmmortalMemoryg .

3. Areference to an object BtopedMemory can only be stored in Objects allocated

in the same&copedMemory area, or into a —- more inner -SeopedMemory area

nested by the use of ikater () method.

4. References to immortal or heap objatiaybe stored into an object allocated in a

ScopedMemory area.

5.4.1 Constructors

pubTlic ScopedMemory(long size)
Create a nevBcopedMemory area with a particular size.

SCOPEOMEMORY

Parameters:
size - The size of the neWcopedMemory area in bytes. If size is less
than or equal to zero nothing happens.

5.4.2 Methods

public void enter(java.lang.Runnable logic)
Associate thiScopedMemory area to the current real-time thread for the
duration of the execution of then() method of the given
java.lang.Runnable . During this bound period of execution, all objects
are allocated from thecopedMemory area until another one takes effect, or
theenter () method is exited. A runtime exception is thrown if this method
is called from thread other tharR@a1timeThread,; or
NoHeapRealtimeThread,; .

Overrides:public void enter(java.lang.Runnable Togic)gp in class
MemoryAreagy

Parameters:
Togic - The runnable object which contains the code to execute.

public int getMaximumSize()
Get the maximum size this memory area can attain. If this is a fixed size
memory area, the returned value will be equal to the initial size.

public MemoryAreag, getOuterScope()
Find theScopedMemory area in effect, for the curreRéaltimeThread;;,

prior to the current invocation ofsaopedVMemoryenter} method.

Returns: The containing scope. If this is the outermost scoped memory
then theMemoryAreag, associated with the thread.

public java.lang.Object getPortal ()
Return a reference to the portal object in this instanseapledMemory.

Returns: The portal object or null if there is no portal object.

public void setPortal(java.lang.Object object)
Set the argument to the portal object in the memory area represented by
this instance ofcopedMemory

Parameters:
object - The object which will become the portal for this. If null the
previous portal object remains the portal object for this or if
there was no previous portal object then there is still no portal
object for this.

MEMORY MANAGEMENT 65

55 VTMemory

Syntaxipublic class VIMemory extends ScopedMemoryg,

The execution time of an allocation fronveMemory area may take a variable
amount of time. However, sine@Memory areas are not subject to garbage collection
and object wihtin may not be moved these areas can be used by instances of
NoHeapRealtimeThread,; .

5.5.1 Constructors

public VIMemory(int initial, int maximum)
Create arTMemory of the given size.

Parameters:
initial - The size in bytes of the memory to initially allocate for
this area.
maximum - The maximum size in bytes this memory area can grow to.

5.6 LTMemory

Syntaxipublic class LTMemory extends ScopedMemoryg,

LTMemory represents a memory area, allocatecRpettimeThread,;, or for a
group of real-time threads, guaranteed by the system to have linear time allocation.
The memory area described byTemory instance does not exist in the Java heap,
and is not subject to garbage collection. Thus, it is safe to us®emory object as the
memory area associated witNaleapRealtimeThread,;, or to enter the memory
area using theublic void enter(java.lang.Runnable logic)4, method within a
NoHeapRealtimeThread,,. An LTMemory area has an initial size. Enough memory
must be committed by the completion of the constructor to satisfy this initial
requirement. (Committed means that this memory must always be available for
allocation). The initial memory allocation must behave, with respect to successful
allocation, as if it were contiguous; i.e., a correct implementation must guarantee that
any sequence of object allocations that could ever succeed without exceeding a
specified initial memory size will always succeed without exceeding that initial
memory size and succeed for any instanceTokemory with that initial memory size.
(Note: It is important to understand that the above statementraesquire that if

66

LTMEMORY

the initial memory size is N and (sizeof(objectl) + sizeof(object2) + ... +
sizeof(objectn) = N) the allocations of objects 1 through n will necessarily succeed.)
Execution time of an allocator allocating from this initial area must be linear in the
size of the allocated object. Execution time of an allocator allocating from memory
between initial and maximum is allowed to vary. Furthermore, the underlying system
is not required to guarantee that memory between initial and maximum will always
be available. (Note: to ensure that all requested memory is available set inital and
maximum to the same value) See alk@ioryAreagy ScopedMemoryg,

RealtimeThread,; NoHeapRealtimeThread,,

5.6.1 Constructors

public LTMemory(long initialSizeInBytes, Tong maxSizelInBytes)
Create a TMemory of the given size.

Parameters:
initialSizeInBytes - The size in bytes of the memory to allocate
for this area. This memory must be committed before the
completion of the constructor.
maxSizeInBytes - The size in bytes of the memory to allocate for
this area.

ScopedMemory Example

A real-time thread —- including the primordial thread will perform allocations from
within the memory area assigned to the thread. The default memory area is the Java
heap. Allocations can be performed from a different memory area in one of two ways:
entering a new scope, or calling newlnstance or newArray on a different memory area.
To enter a new scope that has constant time allocation:

final ScopedMemory scope = new CTMemory(1l6 * 1024);
enter will call the run method of the given object with memory area as the object pool
for allocations. Allnew operations will come from the constant-time pool until a new
scope is entered, or the run method completes.

scope.enter(new Runnable() {

pubTlic void run(Q) {
Do some time-critical operations

try {
To allocate from the heap within this scope:

HeapMemory.instance() .newInstance(Class.forName(“Foo”));

MEMORY MANAGEMENT 67

To allocate from the previous scope within this one

scope.getOuterScope() .newInstance(Class.forName(“Fo0”));
} catch (ClassNotFoundException e) {
} catch (I11egalAccessException ia) {
} catch (InstantiationException ie) {

}
}

b;
}

ScopedMemory Example 2

A real-time thread may be associated with a memory area when it is createswAll
operations will allocate objects for the thread from the object pool provided by the
memory area.

final ScopedMemory scope = new CTMemory(16 * 1024);
RealtimeThread tl = new RealtimeThread(null, null,
new MemoryParameters(scope), null,
new Runnable() {
pubTlic void run() {
do some stuff

}
Additional threads can share the same memory area, and the reference count will be
incremented.

RealtimeThread t2 = new RealtimeThread(null, null,
new MemoryParameters(scope), null,
new Runnable() {
pubTlic void run() {
do some other stuff

3

68

PHYSICALMEMORYFACTORY

Wait for the threads to finish

boolean interrupted = false;
do {
try {
tl.join(Q);
} catch (InterruptedException ie) {
interrupted = true;

3
} while (interrupted);
interrupted = false;
do {
try {
t2.join(Q);
} catch (InterruptedException ie) {
interrupted = true;

}
} while (interrupted);
After this point, the threads are dead, and the reference count will have dropped to
zero so finalizersay be run. If we now try to create a new thread using the memory
area:
RealtimeThread t3 = new RealtimeThread(null, null,
new MemoryParameters(scope), null,
new Runnable() {
public void run() {
do some other stuff

}
The constructor will block until the finalizers have completed. It will then be safe to
release the thread:

try {
t3.release();
} catch (AdmissionControlException ac2) {

}

Errors encountered in the example

Exception in thread “main” java.lang.NoSuchMethodError: main

5.7 PhysicalMemoryFactory

Syntax:public class PhysicalMemoryFactory
ThePhysicalMemoryFactory is available for use by the various physical

memory accessor objects to create objects of the correct type that are bound to areas
of physical memory with the appropriate characteristics —- or with appropriate

MEMORY MANAGEMENT 69

accessor behavior. Examples of characteristics that might be specified are: DMA
memory, accessors with byte swapping, etc. The implementation will provide a
default factory. OEMs may provide derived factories that allow additional
characteristics to be specified.

5.7.1 Fields

public static final java.lang.String ALIGNED
Specify this to identify aligned memory.

public static final java.lang.String BYTESWAP
Specify this if byte swapping should be used.

public static final java.lang.String DMA
Specify this to identify DMA memory.

public static final java.lang.String SHARED
Specify this to identify shared memory.

5.7.2 Methods

protected synchronized java.lang.Object create(java.lang.Object
memoryType, java.lang.Class physMemType,
long base, long size)
Used to actually create the physical memory accessor.

Parameters:
memoryType - Description of the memory type required.
physMemType - Indicates the type of physical memory object to
construct.
base - The physical address of the start of the region.
size - The size of the region in bytes.
protected synchronized Tong getTypedMemoryBase(java.lang.Object
memoryType, Tong size)
Get the base address of a range of memory of the correct type that is at least
the size specified.

Parameters:
size - The desired size of the memory range.

70 IMMORTAL PHYSICALMEMORY

5.8 ImmortalPhysicalMemory

Syntax:ipublic class ImmortalPhysicalMemory extends MemoryAreag,

An instance ofimmortalPhysicalMemory allows objects to be allocated from a
range of physical memory with particular attributes, determined by themory type
This memory area has the same restrictive set of assignment rules as
ImmortalMemorys, memory areas and may be used in any constructor where
ImmortalMemory,, IS appropriate. Objects allocated in immortal physical memory
have a lifetime greater than the application as do objects allocated in immortal
memory.

5.8.1 Constructors

protected ImmortalPhysicalMemory(ImmortalPhysicalMemory;, memory,
long base, long size)
Constructor for use by the memory object factory.

protected ImmortalPhysicalMemory(long base, long size)

5.8.2 Methods

public static ImmortalPhysicalMemory;, create(java.lang.Object
type, Tlong size)

Parameters:
type - An object representing the type of memory required (e.g.,
dma, sharejl- used to define the base address and control the
mapping. The passed object is typically provided by the vendor
of the physical memory or the implementation vendor.
size - The size of the memory area in bytes.

Throws: SecurityException - The application doesn't have permissions
to access physical memory or the given type of memory.
SizeOutOfBoundsException;sg - The size is negative or extends
into an invalid range of memory.
UnsupportedPhysicalMemoryExceptionsgy - Thrown if the
underlying hardware does not support the given type.

public static ImmortalPhysicalMemory,, create(java.lang.Object
type, long base, long size)

Parameters:

MEMORY MANAGEMENT

type - An object representing the type of memory required (e.qg.,
dma, sharejl The passed object is typically provided by the
vendor of the physical memory or the implementation vendor.

base - The physical memory address of the region

size - The size of the memory area in bytes.

Throws: SecurityException - The application doesn’t have permissions
to access physical memory or the given range of memory.
OffsetOutOfBoundsException;sg - The address is invalid.
SizeOutOfBoundsException;sg - The size is negative or extends
into an invalid range of memory.
UnsupportedPhysicalMemoryException;g - Thrown if the
underlying hardware does not support the given type.

public static void setFactory(PhysicalMemoryFactorygg factory)
Set the physical memory factory to the given argument.

Parameters:
factory - A physical memory factory which will be the factory for
PhysicalMemoryFactorygg at the completion of this method.

5.9 ScopedPhysicalMemory

SyntaXipublic class ScopedPhysicalMemory extends ScopedMemoryg,

An instance ofcopedPhysicalMemory allows objects to be allocated from a
range of physical memory with particular attributes, determined by their memory
type. This memory area has the same restrictive set of assignment rules as
ScopedMemorys, Memory areas.

5.9.1 Constructors

protected ScopedPhysicalMemory(long base, long size)
Constructor for use by the memory object factory.

protected ScopedPhysicalMemory(ScopedPhysicalMemory,; memory,
Tong base, long size)
Constructor for use by the memory object factory.

5.9.2 Methods

RAWMEMORYACCESS

public static ScopedPhysicalMemory;; create(java.lang.Object type,
long base, long size)

Parameters:
type - An Object representing the type of memory required (e.g.,
dma, sharel
base - The physical memory address of the area.
size - The size of the area in bytes.

Throws: SecurityException - The application doesn’t have permissions
to access physical memory or the given range of memory.
0ffsetOutOfBoundsException;sg - The address is invalid.
SizeOutOfBoundsExceptionysg - The size is negative or extends
into an invalid range of memory.
UnsupportedPhysicalMemoryExceptionygy - Thrown if the
underlying hardware does not support the given type.

public static void setFactory(PhysicalMemoryFactorygg factory)
Sets the factory that will be used to genesat@edPhysicalMemory
instances.

Parameters:
factory - ThePhysicalMemoryFactorygzg Which will become the
factory for this. If null the previous factory remains as the
factory for this.

5.10 RawMemoryAccess

SyntaxXpublic class RawMemoryAccess

Direct Known SubclasseRawMemoryFloatAccess;;

An instance oRawMemoryAccess models a range of physical memory as a fixed-
size sequence of bytes. A full complement of accessor methods allow the contents of
the physical memory area to be accessed through offsets from the base, interpreted as
byte, short, int, or long data values or as arrays of these types.

Whether the offset addresses the high-order or low-order byte is based on the
value of the BYTE_ORDER static boolean variable in ckas3timeSystemys, .

TheRawMemoryAccess class allows a real-time program to implement device
drivers, memory-mapped /O, flash memory, battery-backed RAM, and similar low-
level software.

MEMORY MANAGEMENT 73

A raw memory area cannot contain references to Java objects. Such a capability
would be unsafe (since it could be used to defeat Java’s type checking) and error-
prone (since it is sensitive to the specific representational choices made by the Java
compiler).

Many of the constructors and methods in this class throw
OffsetOutOfBoundsException;sg. This exception means that the value given in the
offset parameter is either negative or outside the memory area.

Many of the constructors and methods in this class throw
SizeOutOfBoundsException;sg. This exception means that the value given in the
size parameter is either negative, larger than an allowable range, or would cause an
accessor method to access an address outside of the memory area.

5.10.1Constructors

protected RawMemoryAccess(long base, long size)
protected RawMemoryAccess(RawMemoryAccess;, memory, long base,
Tong size)
Constructor reserved for use by the memory object factory.

5.10.2Methods

public static RawMemoryAccess;, create(java.lang.Object type,
Tong size)

Parameters:
type - An Object representing the type of memory required (e.g.,
dma, sharejl- used to define the base address and control the
mapping
size - The size of the area in bytes.

Throws: SecurityException - The application doesn’'t have permissions
to access physical memory or the given type of memory.
0ffsetOutOfBoundsException;sg - The address is invalid.
SizeOutOfBoundsException;sg - The size is negative or extends
into an invalid range of memory.
UnsupportedPhysicalMemoryException;g - Thrown if the
underlying hardware does not support the given type.

pubTic static RawMemoryAccess;, create(java.lang.Object type,
Tong base, long size)

Parameters:
type - An Object representing the type of memory required (e.g.,
dma, sharejl

74 RAWMEMORYACCESS

base - The physical memory address of the region
size - The size of the area in bytes.

Throws: SecurityException - The application doesn’t have permissions
to access physical memory or the given range of memory.
OffsetOutOfBoundsException;sg - The address is invalid.
SizeOutOfBoundsException;sg - The size is negative or extends
into an invalid range of memory.
UnsupportedPhysicalMemoryException;gy - Thrown if the
underlying hardware does not support the given type.

public byte getByte(long offset)
Get the byte at the givaerffset.

Throws: SizeOutOfBoundsExceptionysg,
O0ffsetOutOfBoundsExceptionjsg
public void getBytes(long offset, byte[] bytes, int low,
int number)
Getnumber bytes starting at the given offset in this and assign them into the
byte array starting at positidrw.

Throws: SizeOutOfBoundsException;sg,
OffsetOutOfBoundsExceptionysg

public int getInt(long offset)
Get theint at the giveroffset.

Throws: SizeOutOfBoundsException;sg,
OffsetOutOfBoundsExceptionysg

public void getInts(long offset, int[] ints, int Tow, int number)
Getnumber int values starting at the giveiffset in this, to theint array
starting at positionow.

Throws: SizeOutOfBoundsExceptionysg,
OffsetOutOfBoundsExceptionysg

public Tong getLong(long offset)
Get the long value at the givefifset.

Throws: SizeOutOfBoundsException;sg,
OffsetOutOfBoundsExceptionysg
public void getLongs(long offset, long[] Tongs, int low,
int number)
Getnumber Tong values starting at the giverfifset in this, to thelong
array starting at positiotow.

MEMORY MANAGEMENT 75

Throws: SizeOutOfBoundsExceptionjsg,
OffsetOutOfBoundsExceptionjsg

public Tong getMappedAddress()
Return the virtual memory location at which the memory region is mapped.

Returns: The virtual address to which this is mapped (for reference
purposes). Same as the base address if virtual memory isn’t
supported.

pubTlic short getShort(long offset)
Get the short at the giveiffset.

Throws: SizeOutOfBoundsExceptionjsg,
OffsetOutOfBoundsExceptionisg
pubTlic void getShorts(long offset, short[] shorts, int low,
int number)
Getnumber shorts starting at the given offset in this, from the short array
starting at positionow.

Throws: SizeOutOfBoundsExceptionjsg,
OffsetOutOfBoundsExceptionisg

public Tong map()
Map the physical address range into virtual memory. No-op if the system
doesn’t support virtual memory.

Returns: The virtual address to which this is mapped (for reference
purposes).
public Tong map(long base)
Map the physical address range into virtual memory at the specified
location. No-op if the system doesn’t support virtual memory.

Parameters:
base - The location to map to in the virtual address space.

Returns: The virtual address to which this is mapped (for reference
purposes).
public Tong map(long base, Tong size)
Map the physical address range into virtual memory at the specified
location. No-op if the system doesn’t support virtual memory.

Parameters:
base - The location to map to in the virtual address space.
size - The size of the block to map in.

Returns: The virtual address to which this is mapped (for reference
purposes).

RAWMEMORYACCESS

public void setByte(long offset, byte value)
Set the byte at the giverffset.

Throws: SizeOut0fBoundsExceptionsg,
OffsetOutOfBoundsExceptionysg
public void setBytes(long offset, byte[] bytes, int low,
int number)
Setnumber bytes starting at the givertfset in this, from the byte array
starting at positionow.

Throws: SizeOutOfBoundsExceptionysg,
OffsetOutOfBoundsExceptionysg

public void setInt(long offset, int value)
Set theint value at the givenffset.

Throws: SizeOutOfBoundsExceptionysg,
OffsetOutOfBoundsExceptionysg

public void setInts(long offset, int[] ints, int Tow, int number)
Setnumber int values starting at the giverifset in this, from theint

array starting at positiorow.

Throws: SizeOutOfBoundsExceptionysg,
OffsetOutOfBoundsExceptionysg

public void setLong(long offset, long value)
Set thelong value at the giveroffset starting at positionow.

Throws: SizeOutOfBoundsExceptionysg,
OffsetOutOfBoundsExceptionysg

public void setlLongs(long offset, Tong[] longs, int Tow, int n)
Setnumber Tong valuesstarting at the givexffset in this, from thelong

array starting at positiorow.

Throws: SizeOutOfBoundsExceptionysg,
OffsetOutOfBoundsExceptionysg

pubTlic void setShort(long offset, short value)
Set the short at the giverfifset.

Throws: SizeOutOfBoundsExceptionysg,
OffsetOutOfBoundsExceptionysg
public void setShorts(long offset, short[] shorts, int low,
int number)
Setnumber shorts starting at the giverifset in this, from the short array
starting at positionow.

MEMORY MANAGEMENT 77

Throws: SizeOutOfBoundsExceptionjsg,
OffsetOutOfBoundsExceptionjsg
public void unmap()
Unmap the physical address range from virtual memory. No-op if the
system doesn’t support virtual memory.

5.11 RawMemoryFloatAccess

Syntaxipublic class RawMemoryFloatAccess extends RawMemoryAccess,

This class holds the accessor methods for accessing a raw memory area by float
and double types. Implementations are required to implement this class if and only if
the underlying Java Virtual Machine supports floating point data types.

Many of the constructors and methods in this class throw
0ffsetOutOfBoundsException;sg. This exception means that the value given in the
offset parameter is either negative or outside the memory area.

Many of the constructors and methods in this class throw
SizeOutOfBoundsException;sg. This exception means that the value given in the
size parameter is either negative, larger than an allowable range, or would cause an
accessor method to access an address outside of the memory area.

5.11.1Constructors

protected RawMemoryFloatAccess(long base, Tong size)
protected RawMemoryFloatAccess (RawMemoryAccess,, memory, Tong base,
long size)
Constructor reserved for use by the memory object factory

5.11.2Methods

public static RawMemoryFloatAccess;,
createFloatAccess(java.lang.Object type,
long size)

Parameters:
type - An Object representing the type of memory required (e.g.,
dma, sharejl- used to define the base address and control the
mapping
size - The size of the area in bytes.

78 RaWMEMORYFLOATACCESS

Throws: SecurityException - The application doesn’t have permissions

to access physical memory or the given type of memory.

0ffsetOutOfBoundsException;sg - The address is invalid.

SizeOutOfBoundsExceptionysq - The size is negative or extends
into an invalid range of memory.

UnsupportedPhysicalMemoryExceptionygy - Thrown if the
underlying hardware does not support the given type.

public static RawMemoryFloatAccess;,

createFloatAccess(java.lang.Object type,
long base, long size)

Parameters:
type - An Object representing the type of memory required (e.g.,
dma, sharejl
base - The physical memory address of the area.
size - The size of the rea in bytes.

Throws: SecurityException - The application doesn’t have permissions
to access physical memory or the given range of memory.
OffsetOutOfBoundsException;sg - The address is invalid.
SizeOutOfBoundsExceptionysq - The size is negative or extends
into an invalid range of memory.
UnsupportedPhysicalMemoryExceptionygy - Thrown if the
underlying hardware does not support the given type.

public byte getDouble(long offset)
Get the double at the giverfifset.

Throws: SizeOutOfBoundsException;sg,
0ffsetOutOfBoundsExceptionjsg
public void getDoubles(long offset, double[] doubless, int Tow,
int number)
Getnumber double values starting at the giverfifset in this, and assigns
them into thelouble array starting at positiotow.

Throws: SizeOutOfBoundsException;sg,
OffsetOutOfBoundsExceptionysg

public byte getFloat(long offset)
Get the float at the giveitfset.

Throws: SizeOutOfBoundsExceptionjsg,
OffsetOutOfBoundsExceptionysg

public void getFloats(long offset, float[] floats, int low,
int number)

MEMORY MANAGEMENT 79

Getnumber float values starting at the giverifset in this and assign
them into thebyte array starting at positiorow.

Throws: SizeOutOfBoundsException;sg,
OffsetOutOfBoundsExceptionisg

pubTlic void setDouble(long offset, double value)
Set the double at the givefifset.

Throws: SizeOutOfBoundsException;sg,
OffsetOutOfBoundsExceptionisg
public void setDoubles(long offset, double[] doubles, int Tow,
int number)
Setnumber double values starting at the giverifset in this, from the
double array starting at positiotow.

Throws: SizeOutOfBoundsExceptionjsg,
OffsetOutOfBoundsExceptionjsg

public void setFloat(long offset, float value)
Set the float at the giverffset.

Throws: SizeOutOfBoundsExceptionjsg,
OffsetOutOfBoundsExceptionjsg
pubTlic void setFloats(long offset, float[] floats, int Tlow,
int number)
Setnumber float values starting at the giveiffset in this,from thebyte

array starting at positiotow.

Throws: SizeOutOfBoundsExceptionjsg,
OffsetOutOfBoundsExceptionisg

5.12 MemoryParameters

SyntaXipublic class MemoryParameters

Memory parameters can be given on the constructRéadfcimeThread,; and
AsyncEventHandler;,o. These can be used both for the purposes of admission
control by the scheduler and for the purposes of pacing the garbage collector to satisfy
all of the thread allocation rates. When a referenceiém@yParameters object is
given as a parameter to a constructormieryParameters object becomes bound
to the object being created. Changes to the values ietloeyParameters object
affect the constructed object. If given to more than one constructor, then changes to

80 MEMORYPARAMETERS

the values in thBemoryParameters object affectll of the associated objects. Note
that this is a one-to-many relationship aroda many-to-many.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class who
are mutating instances will be doing their own synchronization at a higher level.

5.12.1Fields

public static final long NO_MAX

5.12.2Constructors

public MemoryParameters(long maxMemoryArea, Tong maxImmortal)
Create semoryParameters object with the given values.

Parameters:

maxMemoryArea - A limit on the amount of memory the thread may
allocate in the memory area. Units are in bytes. If zero, no
allocation allowed in the memoryArea. To specify no limit, use
NO_MAX or a value less than zero.

maxImmortal - A limit on the amount of memory the thread may
allocate in the immortal area. Units are in bytes. If zero, no
allocation allowed in immortal. To specify no limit, use
NO_MAX or a value less than zero.

Throws: I11egalArgumentException
public MemoryParameters(long maxMemoryArea, long maxImmortal,
long allocationRate)
Create aemoryParameters object with the given values.

Parameters:

maxMemoryArea - A limit on the amount of memory the thread may
allocate in the memory area. Units are in bytes. If zero, no
allocation allowed in the memoryArea. To specify no limit, use
NO_MAX or a value less than zero.

maxImmortal - A limit on the amount of memory the thread may
allocate in the immortal area. Units are in bytes. If zero, no
allocation allowed in immortal. To specify no limit, use
NO_MAX or a value less than zero.

allocationRate - A limit on the rate of allocation in the heap. Units
are in bytes per second. If zero, no allocation is allowed in the
heap. To specify no limit, use NO_MAX or a value less than
zero.

MEMORY MANAGEMENT 81

Throws: I11egalArgumentException

5.12.3Methods

public Tong getAllocationRate()
Get the allocation rate. Units are bytes per second.

pubTlic Tong getMaxImmortal()
Get the limit on the amount of memory the thread may allocate in the
immortal area. Units are in bytes.

public Tong getMaxMemoryArea()
Get the limit on the amount of memory the thread may allocate in the
memory area. Units are in bytes.

public void setAllocationRate(long rate)
A limit on the rate of allocation in the heap.

Parameters:
rate - Units are in bytes per second. If zero, no allocation is allowed
in the heap. To specify no limit, use NO_MAX or a value less
than zero.

public boolean setMaxImmortal(Tong maximum)
Set the limit on the amount of memory the thread may allocate in the
immortal area.

Parameters:
maximum - Units are in bytes. If zero, no allocation is allowed in the
immortal area. To specify no limit, use NO_MAX or a value less
than zero.

Returns: False if any of the threads have already allocated more than the
given value. In this case the call has no effect.

pubTlic boolean setMaxMemoryArea(long maximum)
Set the limit on the amount of memory the thread may allocate in the
memory area.

Parameters:
maximum - Units are in bytes. If zero, no allocation allowed in the
memoryArea. To specify no limit, use NO_MAX or a value less
than zero.

Returns: False if any of the threads have already allocated more than the
given value. In this case the call has no effect.

82

GARBAGECOLLECTOR

5.13 GarbageCollector

Syntax:ipublic abstract class GarbageCollector

Direct Known SubclasseSncrementalCollectorExamplegs,
MarkAndSweepCollectorExampleg,

The system shall provide dynamic and static information characterizing the
temporal behavior and imposed overhead of any garbage collection algorithm
provided by the system. This impormation shall be made available to applications via
methods on subclasses@afrbageCollector. Implementations are allowed to
provide any set of methods in subclasses as long as the temporal behavior and
overhead are sufficiently categorized. The implementations are also required to fully
document the subclasses. In addition, the method(a)buageCollector shall be
made available by all implementations. SBe&rementalCollectorExampleg; and
MarkAndSweepCollectorExampleg,

5.13.1Constructors
public GarbageCollector()

5.13.2Methods

public abstract RelativeTime;y, getPreemptionLatency()
Instances ORealtimeThread,; are allowed to preempt the execution of
the garbage collector (instanceNofieapRealtimeThread,, preempt
immediately but instances R&altimeThread,; must wait until the
collector reaches a preemption-safe point). Preemption latency is a
measure of the maximum timek@altimeThread,; may have to wait for
the collector to reach a preemption-safe point.

Returns: The preempting latency of this if applicable. May return zero if
there is no collector avaiable.

MEMORY MANAGEMENT 83

5.14 IncrementalCollectorExample

Syntax:public class IncrementalCollectorExample extends
GarbageCollectorg;
This class is provided as an example only and is not required on any
implementation, even ones which employ an incremental collector.

5.14.1Constructors

pubTic IncrementalCollectorExample()

5.14.2 Methods

public Tong getMaximumReclamationRate()
Maximum reclamation rate the garbage collector can sustain. This is a
dynamically assigned value dependent on schedule.

Returns: Return value is measured in kilobytes per second.

public RelativeTime;y, getPreemptionLatency()
The instantiation of the abstract method in GarbageCollector.

Overrides:public abstract RelativeTimel@2
getPreemptionLatency() g, in clasGarbageCollectoryg,

public int getReadBarrierOverhead()
Overhead of the read barrier. Given in percentage of the cost of a field
access.

public int getWriteBarrierOverhead()
Overhead of the write barrier. Given in percentage of the cost of an
assignment.

public void setReclamationRate(int rate)
The reclamation rate as a ratio: 1 / number of kilobytes scanned per
kilobyte allocated. Used by incremental collection algorithms to pace their
reclamation rate.

Parameters:
rate - The new reclamation rate. Ignored if collector does not

84 MARKANDSWEEFCOLLECTOREXAMPLE

5.15 MarkAndSweepCollectorExample

Syntax:public class MarkAndSweepCollectorExample extends
GarbageCollectorg;

This class is provided as an example only and is not required on any
implementation, even ones which employ an incremental collector.

5.15.1Constructors
pub1ic MarkAndSweepCollectorExample()

5.15.2Methods

public RelativeTime;y, getPreemptionLatency()
The instantiation of the abstract method in GarbageCollector.

Overrides:public abstract RelativeTimel@2
getPreemptionLatency() g, in clasGarbageCollectoryg,

SYNCHRONIZATION 85

CHAPTER

Synchronizatidn

This section contains classes that:

« Allow the application of the priority ceiling emulation algorithm to individual objects.

* Allow the setting of the system default priority inversion algorithm.

 Allow wait-free communication between real-time threads and regular Java threads.
The specification strengthens the semantics of Java synchronization for use in real-
time systems by mandating monitor execution eligibility control, commonly referred
to as priority inversion control. BonitorControl class is defined as the superclass
of all such execution eligibility control algorithnP:iorityInheritance is the
default monitor control policy; the specification also defines a
PriorityCeilingEmulation option.

The wait-free queue classes provide protected, concurrent access to data shared
between instances ¢éva.lang.Thread andNoHeapRealtimeThread.

Semantics and Requirements

This list establishes the semantics and requirements that are applicable across the
classes of this section. Semantics that apply to particular classes, constructors,
methods and fields will be found in the class description and the constructor, method,
and field detail sections.

1. Threads waiting to enter synchronized blocks are priority queue ordered. If
threads with the same priority are possible under the active scheduling policy
such threads are queued in FIFO order.

2. Any conforming implementation must provide an implementation of the
synchronized primitive with default behavior that ensures that there is no
unbounded priority inversion. Furthermore, this must apply to code if it is run

MONITORCONTROL

within the implementation as well as to real-time threads.
3. The Priority Inheritance monitor control policy must be implemented.

4. Implementations that provide a monitor control algorithm in addition to those
described herein are required to clearly document the behavior of that algorithm.

Rationale

Java monitors, and especially the synchronized keyword, provide a very elegant
means for mutual exclusion synchronization. Thus, rather than invent a new real-time
synchronization mechanism, this specification strengthens the semantics of Java
synchronization to allow its use in real-time systems. In particular, this specification
mandates priority inversion control. Priority inheritance and priority ceiling emulation
are both popular priority inversion control mechanisms; however, priority inheritance
is more widely implemented in real-time operating systems and so is the default
mechanism in this specification.

By design the only mechanism required by this specification which can enforce
mutual exclusion in the traditional sense is the keywgrdhronized. Noting that
the specification allows the usesyihchronized by both instances of
java.lang.Thread, RealtimeThread, andNoHeapRealtimeThread and that such
flexibility precludes the correct implementationaofy known priority inversion
algorithm when locked objects are accessed by instandgasaflang. Thread and
NoHeapRealtimeThread, it is incumbent on the specification to provide alternate
means for protected, concurrent data access by both types of threads (protected means
access to data without the possibility of corruption). The three wait-free queue classes
provide such access.

6.1 MonitorControl

SyntaxXpublic abstract class MonitorControl

Direct Known Subclasse®riorityCeilingEmulationg,, PriorityInheritancegg

Abstract superclass for all monitor control policy objects.

6.1.1 Constructors

SYNCHRONIZATION 87

public MonitorControl ()

6.1.2 Methods

public static void setMonitorControl (MonitorControlggs policy)
Control the default monitor behavior for object monitors used by
synchronized statements and methods in the system. The type of the policy
object determines the type of behavior. Conforming implementations must
support priority ceiling emulation and priority inheritance for fixed priority
preemptive threads.

Parameters:
policy - The new monitor control policy. If null nothing happens.
public static void setMonitorControl(java.lang.Object monitor,
MonitorControlgs policy)
Has the same affect astMonitorControl(), except that the policy only
affects the indicated object monitor.

Parameters:
monitor - The monitor for which the new policy will be in use. The
policy will take effect on the first attempt to lock the monitor
after the completion of this method. If null nothing will happen.
policy - The new policy for the object. If null nothing will happen.

6.2 PriorityCeilingEmulation

Syntaxipublic class PriorityCeilingEmulation extends MonitorControlgs

Monitor control class specifying use of the priority ceiling emulation protocol for
monitor objects. Objects under the influence of this protocol have the effect that a
thread entering the monitor has its effective priority —- for priority-based dispatching
—- raised to the ceiling on entry, and is restored to its previous effective priority when
it exits the monitor. See algonitorControlg; andPriorityInheritancegg

6.2.1 Constructors

pubTlic PriorityCeilingEmulation(int ceiling)
Create @riorityCeilingEmulation object with a given ceiling.

Parameters:
ceiling - Priority ceiling value.

88

FRIORITYINHERITANCE

6.2.2 Methods

public int getDefaultCeiling()
Get the priority ceiling for thi8riorityCeilingEmulation object.

6.3 Prioritylnheritance

Syntaxipublic class PriorityInheritance extends MonitorControlgg

Monitor control class specifying use of the priority inheritance protocol for
object monitors. Objects under the influence of this protocol have the effect that a
thread entering the monitor will boost the effective priority of the thread in the
monitor to its own effective priority. When that thread exits the monitor, its effective
priority will be restored to its previous value. See #llaoi torControlg,; and
PriorityCeilingEmulationg;

6.3.1 Constructors

public PriorityInheritance()

6.3.2 Methods

public static PriorityInheritancegg instance()
Return a pointer to the singleteniorityInheritance.

6.4 WaitFreeDequeue

SyntaxX:public class WaitFreeDequeue

The wait-free queue classes facilitate communication and synchronization
between instances RéaltimeThread,; andjava.lang.Thread . See
WaitFreeWriteQueueg, OrWaitFreeReadQueueg, for more details. Instances of this
class create WaitFreeWriteQueueg, and aWaitFreeReadQueueg, and make calls
on the respectiveead() andwrite() methods.

6.4.1 Constructors

SYNCHRONIZATION 89

public WaitFreeDequeue(java.lang.Thread writer,
java.lang.Thread reader, int maximum,
MemoryAreag, area)

A queue with unsynchronized and nonblockirgd() andwrite()
methods and synchronized and blockirgd O andwrite() methods.

Parameters:
writer - An instance of Thread.
reader - An instance of Thread.
maximum - Then maximum number of elements in the both the
WaitFreeReadQueueg, and thewaitFreeWriteQueuey; .
area - TheMemoryAreag, in which this object and internal elements
are allocated.

Throws: InstantiationException, ClassNotFoundException,
I1legalAccessException, I1legalArgumentException

6.4.2 Methods

public java.lang.Object blockingRead()
A synchronized call of theead () method of the underlying
WaitFreeWriteQueuey, . This call blocks on queue empty and will wait
until there is an element in the queue to return.

Returns: An java.lang.0Object from this.

public boolean blockingWrite(java.lang.Object object)
A synchronized call of therite() method of the underlying
WaitFreeReadQueuegqy . This call blocks on queue full and waits until there
is space in this.

Parameters:
object - Thejava.lang.0Object to place in this.

Returns: True ifobject is now in this.

Throws: MemoryScopeExceptionys;

pubTlic boolean force(java.lang.Object object)
If this is full then this call overwrites the last object written to this with the
given object. If this is not full this call is equivalent to the
nonBlockingWrite() call.

Parameters:
object - Thejava.lang.0Object which will overwrite the last
object is this is full. Otherwisebject will be placed in this.

public java.lang.Object nonBlockingRead()

WAIT FREEREADQUEUE

An unsynchronized call of theead () method of the underlying
WaitFreeReadQueuegy .

Returns: An java.lang.0Object object read from this. If there are no
elements in this then null is returned.

public boolean nonBlockingWrite(java.lang.0Object object)
An unsynchronized call of theite() method of the underlying
WaitFreeWriteQueuey, . This call does not block on queue full.

Parameters:
object - Thejava.lang.0Object to attempt to place in this.

Returns: True if theobject is now in this otherwise returns false.

Throws: MemoryScopeExceptionys;

6.5 WaitFreeReadQueue

SyntaxXpublic class WaitFreeReadQueue

The wait-free queue classes facilitate communication and synchronization
between instances RéaltimeThread,; andjava.lang.Thread . The problem is
that synchronized access objects shared between real-time threads and threads might
cause the real-time threads to incur delays due to execution of the garbage collector.

Theread() method of this class does not block on a imagined queue-empty
condition variable. If theead () is called on an empty queue null is returned. If two
real-time threads intend to read from this queue they must provide their own
synchronization.

The write method of this queue is synchronized and may be called by more than
one writer and will block on queue empty.

6.5.1 Constructors

public WaitFreeReadQueue(java.lang.Thread writer,
java.lang.Thread reader, int maximum,
MemoryAreagy memory)

A queue with an unsynchronized and nonblockiagd () method and a
synchronized and blockingite() method. The memory areas of the
given threads are found. If these memory areas are the same the queue is

SYNCHRONIZATION 91

created in that memory area. If these memory areas are different the queue
is created in the memory area accessible by the most restricted thread type.

Parameters:
writer - An instance ofiava.lang.Thread .
reader - An instance ofiava.lang.Thread .
maximum - The maximum number of elements in the queue.
memory - TheMemoryAreag, in which this object and internal
elements are stored.

Throws: I11egalAccessException, ClassNotFoundException,
InstantiationException, ITTegalArgumentException
public WaitFreeReadQueue(java.lang.Thread writer,
java.lang.Thread reader, int maximum,
MemoryAreagy memory, boolean notify)
A queue with an unsynchronized and nonblockiesd () method and a
synchronized and blockingite() method.

Parameters:
writer - An instance ofiava.lang.Thread .
reader - An instance ofava.lang.Thread .
maximum - The maximum number of elements in the queue.
memory - TheMemoryAreag, in which this object and internal
elements are stored.
notify - Whether or not the reader is notified when data is added.

Throws: I11egalAccessException, ClassNotFoundException,
InstantiationException, ITTegalArgumentException

6.5.2 Methods

pubTlic void clear()
Set this to empty.

pubTlic boolean +isEmpty()
Used to determine if this is empty.

Returns: True if this is empty and false if this is not empty.

public boolean {isFull()
Used to determine if this is full.

Returns: True if this is full and false if this is not full.

pubTlic java.lang.Object read()
Returns the next element in the queue unless the queue is empty. If the
queue is empty null is returned.

92

WAIT FREEWRITEQUEUE

public int size()
Used to determine the number of elements in this.

Returns: An integer which is the number of empty positions in this.

public void waitForData()
If this is emptywaitForData() waits on the event until the writer inserts

data. Note that true priority inversion does not occur since the writer locks
a different object and the notify is executed by MsgncEventHandler;,q
which hasoHeap characteristics.

public synchronized boolean write(java.lang.0Object object)
The synchronized and blocking write. This call blocks on queue full and
will wait until there is space in the queue.

Parameters:
object - Thejava.lang.0Object thatis placed in this.

Throws: MemoryScopeExceptions;

6.6 WaitFreeWriteQueue

Syntax:pub1 ic class WaitFreeWriteQueue

The wait-free queue classes facilitate communication and synchronization
between instances RéaltimeThread,; andjava.lang.Thread . The problem is
that synchronized access objects shared between real-time threads and threads might
cause the real-time threads to incur delays due to execution of the garbage collector.

Thewrite method of this class does not block on a imagined queue-full
condition variable. If th@rite() method is called on an full queue false is returned.
If two real-time threads intend to read from this queue they must provide their own
synchronization.

The read() method of this queue is synchronized and may be called by more
than one writer and will block on queue empty.

6.6.1 Constructors

public WaitFreeWriteQueue(java.lang.Thread writer,
java.lang.Thread reader, int maximum,
MemoryAreagy memory)
A queue with an unsynchronized and nonblockirgte () method and a

synchronized and blocking:ad) method

SYNCHRONIZATION 93

Parameters:
writer - An instance oflava.lang.Thread .
reader - An instance ofiava.lang.Thread .
maximum - The maximum number of elements in the queue.
memory - TheMemoryAreag, in which this object and internal
elements are allocated

Throws: InstantiationException, ClassNotFoundException,
ITTegalAccessException, ITTegalArgumentException

6.6.2 Methods

pubTlic void bind(java.lang.Thread writer, java.lang.Thread reader,
MemoryAreag, memory)
Binds two threads together for the purpose of using this in each thread. If
two un-related (by common fixed memory area) threads are bound

together, only immortal objects can be placed in the queue.

Parameters:
writer - Thejava.lang.Thread object which will write to this.
reader - Thejava.lang.Thread object which will read from this.
memory - The newMemoryAreag, t0 use to test against the memory
area of objects placed into this.

Throws: InstantiationException, IT11legalAccessException,
ITTegalArgumentException

pubTlic void clear()
Set this to empty.

pubTlic boolean force(java.lang.Object object)
Force thisjava.lang.0bject to replace the last one. If the reader should
happen to have just removed the oth&va.lang.0Object justas we were
updating it, we will return false. False may mean that it just saw what we
put in there. Either way, the best thing to do is to just write again —- which
will succeed, and check on the readers side for consecutive identical read
values.

public boolean 1isEmpty()
Used to determine if this is empty.

Returns: True if this is empty and false if this is not empty.

public boolean {disFull()
Used to determine if this is full.

Returns: True if this is full and false if this is not full.

94 WAIT FREEWRITEQUEUE
public synchronized java.lang.Object read()
A synchronized read on the queue.

Returns: Thejava.lang.0bject read or null if this is empty.

public int size()
Used to determine the number of elements in this.

Returns: An integer which is the number of empty positions in this.

public boolean write(java.lang.Object object)
Try to insert an element into the queue.

Parameters:
object - Thejava.lang.0Object to insert.

Returns: True if the insert succeeded, false if not.

Throws: MemoryScopeExcepti onysy

TIME 95

CHAPTER

Timé

This section contains classes that:

« Allow description of a point in time with up to nanosecond accuracy and precision
(actual accuracy and precision is dependent on the precision of the underlying
system).

« Allow distinctions between absolute points in time, times relative to some starting
point, and a new construct, rational time, which allows the efficient expression of
occurances per some interval of relative time..

The time classes required by the specificatioageResolutionTime,
AbsoTuteTime, RelativeTime, andRationalTime.

Instances ofiighResolutionTime are not created, as the class exists to provide
an implementation of the other three classes. An instantsofuteTime
encapsulates an absolute time expressed relative to midnight January 1, 1970 GMT.
An instance oRelativeTime encapsulates a point in time that is relative to some
other time value. InstanceskftionalTime express a frequency by a numerator of
typelong (the frequency) and a denominator of tppeéativeTime. If instances of
RationalTime are given to certain constructors or methods the activity occurs for
frequency times every interval. For example, HeriodicTimer is given an instance
of RationalTime of (29,232) then the system will guarantee that the timer will fire
exactly 29 times every 232 milliseconds even if the system has to slightly adjust the
time between firings.

Semantics and Requirements

This list establishes the semantics and requirements that are applicable across the
classes of this section. Semantics that apply to particular classes, constructors,

WAIT FREEWRITEQUEUE

methods and fields will be found in the class description and the constructor, method,
and field detail sections.

1. All time objects must maintain nanosecond precision and report their values in
terms of millisecond and nanosecond constituents.

2. Time objects must be constructed from other time objects, or from millisecond/
nanosecond values.

3. Time objects must provide simple addition and subtraction operations, both for
the entire object and for constituent parts.

4. Time objects must implement themparable interface if it is available. The
compareTo() method must be implemented even if the interface is not available.

5. Any method of constructor that acceptaaionalTime of (X,y) must gurantee
that its activity occurs exactly x times in every y milliseconds even if the intervals
between occurrances of the activity have to be adjusted slightly. The RTSJ does
not impose any required distriibution on the lengths of the intervals but strongly
suggests that implementations attempt to make them of approximately equal
lengths.

Rationale

Time is the essence of real-time systems, and a method of expressing absolute time
with sub-millisecond precision is an absolute minimum requirement. Expressing time
in terms of nanoseconds has precedent and allows the implementation to provide
time-based services, such as timers, using whatever precision it is capable of while the
application requirements are expressed to an arbitrary level of precision.

The expression of millisecond and nanosecond constituents is consistent with
other Java interfaces.

The expression of relative times allows for time-based metaphors such as
deadline-based periodic scheduling where the cost of the task is expressed as a
relative time and deadlines are usually represented as times relative to the beginning
of the period.

TIME 97

7.1 HighResolutionTime

Syntaxipublic abstract class HighResolutionTime implements
java.lang.Comparable

Direct Known SubclassegtbsoluteTimegg, RelativeTime;y,

All Implemented Interfacegava.lang.Comparable

Used to express time with nanosecond accuracy. This class is never used directly:
it is abstract and has no public constructors. Instead, use one of its subclasses
AbsoluteTimegg, RelativeTime;y,, OrRationalTime;ys . When an APl is defined
that has amighResolutionTime as a parameter, it can take either an absolute,
relative, or rational time and will do something appropriate. All of the arithmetic
functions come in both allocating and non-allocating forms.

The standard Javiava.util.Date class uses milliseconds as its basic unit in
order to provide sufficient range for a wide variety of applications. Real-time
programming generally requires nanosecond resolution, but even a 64 bit real-time
clock based in nanoseconds would be problematic in some situations, so a compound
format composed of 64 bits of millisecond timing, and 32 bits of nanoseconds within
a millisecond, was chosen.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class who
are mutating instances will be doing their own synchronization at a higher level.

7.1.1 Methods

public abstract AbsoluteTimegy absolute(Clock;;y clock,
AbsoluteTimegg dest)
Convert this time to an absolute time, relative to some clock. Convenient

for situations where you really need an absolute time, but would like to
allow relative times to be used too. Allocates a destination object if
necessary. See the derived class comments for more specific information.

Parameters:
clock - TheClock;;, reference for relative times.
dest - If null, a new object may or may not need to be allocated for
the result.

Returns: AbsoluteTimegg Vversion of this object.

public int compareTo(HighResolutionTimeg; time)

HIGHRESOLUTIONTIME

Compare thisiighResolutionTime with the specified

HighResolutionTime. This method is provided in preference to individual
methods for each of the six boolean comparison operators (<, ==, >, >=, I=,
<=). The suggested idiom for performing these comparisons is:
(x.compareTo(y) <op> 0), where <op> is one of the six comparison
operators.

public int compareTo(java.lang.Object object)
For the Comparable interface.

public boolean equals(HighResolutionTimeg, time)
Return true if the argument object has the same values as this>.

Parameters:
time - Values are compared to this.

public boolean equals(java.lang.Object object)
Return true if the argument istdghResolutionTime reference and has the
same values as this.

Overrides:java.lang.Object.equals(java.lang.Object) in class
java.lang.Object

Parameters:
object - Values are compared to this.
public final Tong getMilliseconds()
Return the milliseconds component of this.
Returns: The milliseconds component of the time past the epoch
represented by this.
public final int getNanoseconds()
Return nanoseconds component of this.
Returns: The nanoseconds component of the time past the epoch
represented by this.
public int hashCode()

Overrides:java.lang.Object.hashCode() in class java.lang.Object

public void set(HighResolutionTimeg; time)
Changes the time represented by the argument to some time between the
invocation of the method and the return of the method.

Parameters:
time - TheHighResolutionTime which will be set to represent the
current time.

public void set(long millis)

TIME 99

Set the millisecond component of this to the given argument.

Parameters:
mi1lis - This value will be the value of the millisecond component
of this at the completion of the call.di111s is negative the
millisecond value of this is set to the negative value. Although
logically this may represent time before the epoch, invalid
results may occur if BighResolutionTime representing time
before the epoch is given as a parameter to other methods.

pubTlic void set(long millis, int nanos)
Set the millisecond and nanosecond components of this to the given
arguments. Ifi11is plus nanos result in a negative value the time
represented by this is time before the epoch. Although reasonable invalid
results may occur if AighResolutionTime representing time before the
epoch is given as a parameter to other methods.

Parameters:
mi1lis - This value will be the value of the millisecond component
of this at the completion of the call.
nanos - This value will be the value of the nanosecond component of
this at the completion of the call.

7.2 AbsoluteTime

Syntaxipublic class AbsoluteTime extends HighResolutionTimey;

All Implemented Interfacegava.lang.Comparable

An object that represents a specific point in time given by milliseconds plus
nanoseconds past the epoch (January 1, 1970, 00:00:00 GMT). This representation
was designed to be compatible with the standard Java representation of an absolute
time in thejava.util.Date class.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class who
are mutating instances will be doing their own synchronization at a higher level.

7.2.1 Constructors

pubTlic AbsoluteTime()
Equivalent to nevabsoluteTime(0,0)

100 ABSOLUTETIME

public AbsoluteTime(AbsoluteTimegg time)
Make a newAbsoluteTimegg Object from the giveAbsoluteTimegg
object.

Parameters:
time - TheAbsoluteTimegy Object used as the source for the copy.

public AbsoluteTime(java.util.Date date)
Equivalent to newbsoluteTime(date.getTime(),0).

Parameters:
date - Thejava.util.Date representation of time past the epoch.

public AbsoluteTime(long millis, int nanos)
Constructs anbsoluteTimegg Object, which means a timmg114s
milliseconds plusianos nanoseconds past 00:00:00 GMT on January 1,
1970. If the addition ofii11is andnanos results in a negative value,
although reasonable in that it represents a time before the epoch, then
invalid output may occur when this is used as an argument to other
methods.

Parameters:
mi1lis - The milliseconds component of the time past the epoch.
nanos - The nanosecond component of the time past the epoch.

7.2.2 Methods

public AbsoluteTimegg absolute(Clock;;y clock,
AbsoluteTimegg destination)
Convert this time to an absolute time. FomasoluteTimegq, this is real
easy: it just returns itself. Presume that this time is already relative to the
given clock.

Overrides:public abstract AbsoluteTime99 absolute(Clockl110
clock, AbsoluteTime99 dest)gq;in class
HighResolutionTimeg;

Parameters:
clock - Clock;; ON which this is based.
destination - Converted to an absolute time.

public AbsoluteTimegg add(long millis, int nanos)
A new object is allocated for the result.

Parameters:
millis - Values are added to this.
nanos - Rest of value added to this.

TIME 101

public AbsoluteTimegg add(long millis, int nanos,
AbsoluteTimegg destination)
If destination is non-null, the result is placed there aédtination is

returned. Otherwise a new obiject is allocated for the result.

Parameters:
millis - Value is added to this.
nanos - Rest of value added to this.
destination - Result is placed here if non-null.

Returns: An AbsoTuteTimegq . A result is always returned. A new object is
created ifdestination is null.

public final AbsoluteTimegy add(RelativeTime;y, time)
Returnthis+b. A new object is allocated for the result.

Parameters:
time - Values are added to this.
public AbsoluteTimegg add(RelativeTime;y, time,
AbsoluteTimegg destination)
Returnthis+time. If dest is non-null, the resultis placed there aded t is
returned. Otherwise a new object is allocated for the result.

Parameters:
time - Values are added to this.
destination - Result is placed here if non-null.

Returns: An AbsoTuteTimegq . A result is always returned. A new object is
created ifdest is null.

public java.util.Date getDate()
Return the time past the epoch represented by thigasautil.Date .

public void set(java.util.Date date)
Change the time represented by this.

Parameters:
date - java.util.Date which becomes the time represented by this
after the completion of this method.

public final RelativeTime;y, subtract(AbsoluteTimegg time)
Returnthis-time. A new object is allocated for the result.

Parameters:
time - Values are added to this.

public RelativeTimejy, subtract(AbsoluteTimegg time,
RelativeTimezy, destination)

102 RELATIVETIME

Returnthis-time. If destination is non-null, the result is placed there
anddestination is returned. Otherwise a new object is allocated for the
result

Parameters:
time - Values are subtracted from this.
destination - Result is placed here if non-null.

Returns: An AbsoluteTimegg . A resultis always returned. A new object is
created ifdestination is null.

public final AbsoluteTimegg subtract(RelativeTime;y, time)
Returnthis-time. A new object is allocated for the result.

Parameters:
time - Values are added to this.
public AbsoluteTimegg subtract(RelativeTime;y, time,
AbsoluteTimegg destination)
Returnthis-time. If destination is non-null, the result is placed there
anddestination is returned. Otherwise a new object is allocated for the
result

Parameters:
time - Values are subtracted from this.
destination - Result is placed here if non-null.

Returns: An AbsoluteTimegq . A result is always returned. A new object is
created ifdestination is null.

public java.lang.String toString()
Return a printable version of this Time, in a format that matches
java.util.Date.toString() with a postfix to detail the sub-second
value

Overrides:java.lang.Object.toString() in class java.lang.Object

7.3 RelativeTime

Syntax:ipublic class RelativeTime extends HighResolutionTimey;

Direct Known Subclasse®RationalTime s

All Implemented Interfacegava.lang.Comparable

TIME 103

An object that represents a time interval millis/LE3+nanos/1E9 seconds long. It
generally is used to represent a time relativeota

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class who
are mutating instances will be doing their own synchronization at a higher level.

7.3.1 Constructors

public RelativeTime()
Equivalent to nevRelativeTime(0,0).

public RelativeTime(long millis, int nanos)
Construct a newelativeTime object from the given millisecond and
nanosecond components.

public RelativeTime(RelativeTimezy, time)
Construct a newelativeTime object from the giveRelativeTime.

7.3.2 Methods

public AbsoluteTimegg absolute(Clock;;y clock,
AbsoluteTimegg destination)
Convert this time to an absolute time. F®edativeTime, this involved
adding the clock’s conception of now to this interval and constructing a

newAbsoluteTimegy based on the sum.

Overrides:public abstract AbsoluteTime99 absolute(Clockl1®
clock, AbsoluteTime99 dest)q;in class
HighResolutionTimey;

Parameters:
clock - If null Clock.getRealtimeClock() is used.
destination - If null it is set toc.getTime () otherwise
c.getTime(dest) is called.

public RelativeTimejp, add(long millis, int nanos)
A new object is allocated for the result.

Parameters:
mil1lis - Values are added to this.
nanos - Rest of value added to this.
public RelativeTimesp, add(long millis, int nanos,
RelativeTimezy, destination)
If destination is non-null, the result is placed there aédtination is
returned. Otherwise a new obiject is allocated for the result.

104 RELATIVETIME

Parameters:
millis - Value is added to this.
nanos - Rest of value added to this.
destination - Result is placed here if non-null.

Returns: A RelativeTime. A result is always returned. A new object is
created ifdestination is null.

public final RelativeTime;yp, add(RelativeTimesy, time)
Returnthis+time. A new object is allocated for the result.

Parameters:
time - Values are added to this.
public RelativeTime;p, add(RelativeTimey, time,
RelativeTime;y, destination)
Returnthis+time. If destination is non-null, the result is placed there
anddestination is returned. Otherwise a new object is allocated for the
result.

Parameters:
time - Values are added to this.
destimation - Result is placed here if non-null.

Returns: A RelativeTime. A Result is always returned. A new object is
created ifdestination is null.

public void addInterarrivalTo(AbsoluteTimegg destination)
Add this time to ambsoluteTimegq . It is almost the same as
destination.add(this,dest) except that it accounts for (i.e., divides by)
the frequency.

public RelativeTime;y, getInterarrivalTime(RelativeTimesy,
destination)
Return the interarrival time that is the result of dividing this interval by its
frequency. For &elativeTime, andRationalTime;ys S With a frequency
of 1, it just returns this. The interarrival time is necessarily an
approximation.

public final RelativeTime;,, subtract(RelativeTimezy, time)
Returnthis-time. A new object is allocated for the result.

Parameters:
time - Values are added to this.

public RelativeTimejy, subtract(RelativeTimesy, time,
RelativeTime;y, destination)

TIME 105

Returnthis-time. If destination is non-null, the result is placed there
anddestination is returned. Otherwise a new object is allocated for the
result

Parameters:
time - Values are subtracted from this.
destination - Result is placed here if non-null.

Returns: A RelativeTime. A result is always returned. A new object is
created ifdestination is null.

public java.lang.String toString()
Return a printable version of this time.

Overrides:java.lang.Obiject.toString() in class java.lang.Object

7.4 RationalTime

SyntaXppublic class RationalTime extends RelativeTimep,

All Implemented Interfacegava.lang.Comparable

An object that represents a time interval millis/1LE3+nanos/1E9 seconds long that
is divided into subintervals by some fequency. This is generally used in periodic
events, threads and feasibility analysis to specify periods where there is a basic period
that must be adhered to strictly (the interval), but within that interval the periodic
events are supposed to hapfrequencytimes, as uniformly spaced as possible, but
clock and scheduling jitter is moderately acceptable.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this class who
are mutating instances will be doing their own synchronization at a higher level.

7.4.1 Constructors

pubTlic RationalTime(int frequency)
Equivalent to nevRationalTime(frequency,1000,0) which represents a
cycles-per-second value.

public RationalTime(int frequency, long millis, int nanos)
Create ®ationalTime that indicate$requency occurrances of something
(e.qg. firings of @eriodicTimer;14) in an interval of time millis/
1E3+nanos/1E9 seconds long.

106 RATIONAL TIME

Parameters:
frequency - The number of occurrances indicated for the given
time.
millis - The millisecond component of the time interval.
nanos - The nanosecond component of the time interval.

Throws: I11egalArgumentException - Thrown if thefrequence, mi1lis,
or nanos value is less than zero, or if the computed time interval
is less than or equal to zero.

public RationalTime(int frequency, RelativeTimejy, interval)
Create ®ationalTime that indicate$requency occurrances of something

(e.g. firings of @eriodicTimer;;4) in aninterval of time.

Parameters:
frequency - The number of occurrances indicated for the given
interval.
interval - The interval expressed agelativeTimeyp; .

Throws: I11egalArgumentException - Thrown if thefrequence is less
than zero.

7.4.2 Methods

public AbsoluteTimegg absolute(Clock;;y clock,
AbsoluteTimegg destination)
Convert this time to an absolute time, relative to some clock. Convenient

for situations where you really need an absolute time, but would like to
allow rational times to be used too. Allocates a destination object if
necessary. See the derived class comments for more specific information.

Overrides:public AbsoluteTime99 absolute(Clock11® clock,
AbsoluteTime99 destination)jpzin classRelativeTimey,

Parameters:
clock - TheClock;;4 reference for relative times.
destination - If null, a new object may or may not need to be
allocated for the result.

Returns: An AbsoluteTimegg Version of this object.

public void addInterarrivalTo(AbsoluteTimegg destination)
Add this time to ambsoluteTimegq . It is almost the same as
destination.add(this,destination) except that it accounts for (i.e.,
divides by) the frequency.

TIME 107

Overrides:public void addInterarrivalTo(AbsoluteTime99
destination) 194 iN ClasRelativeTime;y,

public int getFrequency()
Return the frequency component of this.

public RelativeTime;y, getInterarrivalTime(RelativeTime;y, dest)
Return the interarrival time that is the result of dividing this interval by it's
frequency. FoRationalTime instances with a frequency of 1, it just
returns this. The interarrival time is necessarily an approximation (partly
because of numerical imprecision and partly because of clock/scheduling
jitter).

Overrides:public RelativeTimel02
getInterarrivalTime(RelativeTimel@2 destination)p,in
classrRelativeTime;y,

public void set(long millis, int nanos)

Change the indicated interval of this to the sum of the values of the

arguments.

Overrides:public void set(long millis, int nanos)ggin class
HighResolutionTimey;

Throws: I11egalArgumentException - Thrown if themi1lis, ornanos
value is less than zero, or if the computed time interval is less
than or equal to zero.

public void setFrequency(int frequency)
Change the frequency of this to the given value.

Throws: ArithmeticException - Thrown if the frequency is less than
zero.

HighResolutionTime Example

HighResolutionTime defines the base class for AbsoluteTime and RelativeTime. You
cannot create HighResolutionTime objects directly, you must use one of the
subclasses:

AbsoluteTime at;
All high resolution times are a normal java time: a long(64 bit) time in milliseconds;
plus an offset in nanoseconds. All constructors take the same (milliseconds,
nanoseconds) parameters, along with some variants for convenience:

at = new AbsoluteTime(System.currentTimeMillis(), 0);
System.out.print(“at=" + at + “\n”);

108

RATIONAL TIME

Relative times refer to an interval and can be added to another time:

RelativeTime step = new RelativeTime(@, 500); // 500 nanoseconds
System.out.print(“sum=" + at.add(step) + “\n”);
Offset computations can be performed more simply with built in methods:

System.out.print(“sum2=" + at.addNanoseconds(500) + “\n”);
All of the math methods return their results as a HighResolutionTime. They all

normally allocate a new object for their return value, but they all also have alternative
forms that allow the destination to be specified:

AbsoTuteTime dest = new AbsoluteTime(0, 0);
at.add(step, dest);
System.out.print(“sum3=" + dest + “\n”);
The destination can be the same as the object to which the method is applied. This

allows for in-place modification of the time:

at.addNanoseconds (500, at);
System.out.print(“sum4=" + at + “\n”);

Output from running the example

at=Thu Mar 23 14:01:04 PST 2000+517ms

sum=Thu Mar 23 14:01:04 PST 2000+517000500ns
sum2=Thu Mar 23 14:01:04 PST 2000+517001000ns
sum3=Thu Mar 23 14:01:04 PST 2000+517000500ns
sum4=Thu Mar 23 14:01:04 PST 2000+517001000ns

TIMERS 109

CHAPTER

Timers

This section contains classes that:

« Allow creation of a timer whose expiration is either periodic or set to occur at a
particular time as kept by a system-dependent time base (clock).
 Trigger some behavior to occur on expiration of a timer, using the asynchronous event
mechanisms provided by the specification.
The classes provided by this section@reck, Timer, PeriodicTimer, and
OneShotTimer.

An instance of th€lock class is provided by the implementation. There is
normally one clock provided, the system real-time clock. This object provides the
mechanism for triggering behavior on expiration of a timer. It also reports the
resolution of timers provided by the implementation.

An instance oPeriodicTimer fires an AsyncEvent at constant intervals.

An instance obneShotTimer describes an event that is to be triggered exactly
once at either an absolute time, or at a time relative to the creation of the timer. It may
be used as the source for timeouts.

Instances ofimer are not used. Theimer class provides the interface and
underlying implementation for both one-shot and periodic timers.

Semantics and Requirements

This list establishes the semantics and requirements that are applicable across the
classes of this section. Semantics that apply to particular classes, constructors,
methods and fields will be found in the class description and the constructor, method,
and field detail sections.

110

CLocK

1. TheClock class shall be capable of reporting the achievable resolution of timers
based on that clock.

2. TheoneShotTimer class shall ensure that a one-shot timer is triggered exactly
once, regardless of whether or not the timer is enabled after expiration of the
indicated time.

3. ThePeriodicTimer class shall allow the period of the timer to be expressed in
terms of &RelativeTime Or aRationalTime. In the latter case, the
implementation shall provide a best effort to perform any correction necessary to
maintain the frequency at which the event occurs.

4. If a periodic timer is enabled after expiration of the start time, the first event shall
occur immediately and thus mark the start of the first period.

Rationale

The importance of the use of one-shot timers for timeout behavior and the vagaries in
the execution of code prior to enabling the timer for short timeouts dictate that the
triggering of the timer should be guaranteed. The problem is exacerbated for periodic
timers where the importance of the periodic triggering outweighs the precision of the
start time. In such cases, it is also convenient to allow, for example, a relative time of
zero to be used as the start time for relative timers.

In many situations, it is important that a periodic task be represented as a
frequency and that the period remain synchronized. In these cases, a relatively simple
correction can be enforced by the implementation at the expense of some additional
overhead for the timer.

8.1 Clock

Syntax:public abstract class Clock

A clock advances from the past, through the present, into the future. It has a
concept ohowthat can be queried throughblic AbsoluteTime99 getTime() 17,
and it can have events queued on it which will be fired when their appointed time is
reached. There are many possible subclasses of clocks: real-time clocks, user time
clocks, simulation time clocks. The idea of using multiple clocks may at first seem
unusual but we allow it as a possible resource allocation strategy.

TIMERS 111

Consider a real-time system where the natural events of the system have different
tolerances for jitter (jitter refers to the distribution of the differences between when
the events are actually raised or noticed by the software and when they should have
really occurred according to time in the real-world). Assume the system functions
properly if eventA is noticed or raised within plus or minus 100 seconds of the actual
time it should occur but evel® must be noticed or raised within 100 microseconds of
its actual time. Further assume, without loss of generality, that eveamdB are
periodic. An application could then create two instance®eef odicTimer;;, based
on two clocks. The timer for eveBtshould be based ontaock which checks its
gueue at least every 100 microseconds but the timer for &x@ntld be based on a
Clock that checked its queue only every 100 seconds. This use of two clock reduces
the queue size of the accurate clock and thus queue management overhead is reduced.

8.1.1 Constructors
pubTic Clock()

8.1.2 Methods

public static Clock;;yp getRealtimeClock()
There is always one clock object available: a realtime clock that advances
in sync with the external world. This is the defallléck.

Returns: An instance of the defautflock.

public abstract RelativeTimezy, getResolution()
Return the resolution of the clock, that is, the interval between ticks. Note
that neither a clock or any software using this clock can know about events
that occur between ticks. In some sense all events happen in the past and
we only care if the past gets too long.

Returns: A RelativeTime;,, Object representing the resolution of this.

public AbsoluteTimegy getTime()
Return the current time in a freshly allocated object.

Returns: An AbsoluteTimegg that represents the current time of this.

public abstract void getTime(AbsoluteTimegg time)
Return the current time in an existing object. The time represented by the
givenAbsoluteTimegg iS changed some time between the invocation of the
method and the return of the method.

Parameters:
time - TheAbsoluteTimegy Object which will have its time
changed. If null then nothing happens.

112 TIMER

public abstract void setResolution(RelativeTime;y, resolution)
Sets the resolution of this. For some hardware clocks setting resolution is

impossible and if called for one those nothing happens.

Parameters:
resolution - The new resolution of this.

8.2 Timer

Syntax:ipublic abstract class Timer extends AsyncEvent;,;

Direct Known Subclasse®ineShotTimer;;3, PeriodicTimer;,

A Timer is a timed event that measures time relative to a givetk;;, . This
class defines basic functionality available to all timers. Applications will generally use
eitherPeriodicTimer;;, to create an event that is fired repeatedly at regular
intervals, olneShotTimer;;3 for an event that just fires once at a specific time. A
timer is always based on@ock ;4 , Which provides the basic facilities of something
that ticks along following some time line (real-time, cpu-time, user-time, simulation-
time, etc.). All timers are created disabled and do nothingaatitt) is called.

8.2.1 Constructors

protected Timer(HighResolutionTimeg; t, Clockizp C,
AsyncEventHandler;,9 handler)

Create @imer.

Parameters:
t - The time to fire the event. Will be converted to absolute time.
¢ - TheClock;;4 0on which to base this time. If null, the system
realtime clock is used.
handler - The default handler to use for this event. If null, no
handler is associated with it and nothing will happen when this
event fires until a handler is provided.

8.2.2 Methods

public ReleaseParameters,; createReleaseParameters()

Overrides:public ReleaseParameters43
createReleaseParameters() 1,5 iN ClassAsyncEventy,;

TIMERS 113

public void disable()
Disable this timer, preventing it from firing. It may subsequently be re-
enabled. If the timer is disabled when its fire time occurs, then it will not
fire. However, a disabled timer continues to count while it is disabled, and
if it is subsequently re-enabled before its fire time occurs and is enabled
when its fire time occurs it will fire then. If it is enabled after its fire time
has occurred then it will fire immediately.

public void enable()
Re-enable this timer after it has been disabled.

public Clock;;p getClock()
Used to determine the clock with which this is associated and is thus used

to decrement the implicit counter for this.

Returns: A Clock;; Object which is the clock associated with this.
public AbsoluteTimegg getFireTime()

Get the time at which this event will fire. The value returned is not

dependent on whether or not this is enabled or disabled.

Returns: An AbsoluteTimegg Object representing the absolute time at
which this will fire.
public void reschedule(HighResolutionTimeg, time)
Change the scheduled time for this event. Can take either absolute or
relative times.

Parameters:
time - The new time at which this will fire. If null the previous fire
time is still the time at which this will fire.

pubTlic void start()
A Timer starts measuring time from when it is started.

8.3 OneShotTimer

SyntaXipublic class OneShotTimer extends Timer;;,

A timedAsyncEvent;,, that is driven by a clock. It will fire off once, when the
clock time reaches the timeout time. If clock time has already passed the timeout time,
it will fire immediately.

8.3.1 Constructors

114 FERIODICTIMER

public OneShotTimer(HighResolutionTimegy, time,
AsyncEventHandler;,9 handler)

Create an instance asyncEvent;,, that will execute its fire method at the
expriration of the given time.

Parameters:
time - Will fire attime.absolute(). Null equalsnow
handler - TheAsyncEventHandler;,4 that will be scheduled when
AsyncEvent.fire() is executed.
public OneShotTimer(HighResolutionTimegy, start, Clock;;p clock,
AsyncEventHandler;,9 handler)
Create an instance afyncEvent;,,, based on the given clock, that will
execute its fire method at the expriration of the given time.

Parameters:
start - Will fire atstart.absolute(). Null equalshow
clock - The timer will increment based on this clock.
handler - TheAsyncEventHandler;,4 that will be scheduled when
AsyncEvent.fire() is executed.

8.4 PeriodicTimer

Syntax:ipublic class PeriodicTimer extends Timer;;,

An AsyncEvent,; whose fire method is executed periodically according to the
given parameters. If a clock is given calculation of the period uses the increments of
the clock. If an interval is given or set the system gurantees that the fire method will
executeinterval time units after the last execution or its given start time as
appropriate. If one of theighResolutionTimey, argument types is
RationalTime;ys then the system gurantees that the fire method will be executed
exactlyfrequency times every unit time (seationalTime;ys constructors) by
adjusting the interval between executionsife).

This is similar to a thread witheriodicParameters,; except that it is lighter
weight.

If a PeriodicTimer is disabled it still counts and if enabled at some later time it
will fire at its next scheduled fire time.

8.4.1 Constructors

TIMERS 115

public PeriodicTimer(HighResolutionTimeg, start,
RelativeTimezy, interval,
AsyncEventHandler,9 handler)
Create an instance afyncEvent;,, that executes itire() method

periodically.

Parameters:
start - When the first interval begins. Null equatsx
interval - The time between successive executions ofthe()
method.
handler - The instance ofsyncEventHandler,9 that will be
scheduled each time the fire method is executed.
public PeriodicTimer(HighResolutionTimeg, start,
RelativeTime;y, interval, Clockjzp clock,
AsyncEventHandler,9 handler)
Create an instance afyncEvent;,, that executes itire() method

periodically.

Parameters:

start - When the first interval begins. Null equatsn

interval - The time between successive executions ofthe()
method.

clock - TheClock;; Whose increments are used to calculate the
interval.

handler - The instance ofsyncEventHandler,9 that will be
scheduled each time the fire method is executed.

8.4.2 Methods

public ReleaseParameters,; createReleaseParameters()
Create ®ReleaseParameters,; object with the next fire time as the start

time and the interval of this as the period.

Overrides:public ReleaseParameters43
createReleaseParameters() 7, in classTimer;,
pubTlic void fire()
The only real difference between a periodic timer and a one-shot timer is
that a periodic timer contiues to fire once each period.

Overrides:public synchronized void fire()ygin class
AsyncEvent,,
public AbsoluteTimegg getFireTime()
Get the next time at which this will fire. The value returned is not
dependent on whether or not this is enabled or disabled.

116 FERIODICTIMER

Overrides:public AbsoluteTime99 getFireTime();;3iNn classTimer;;,

Returns: An AbsoluteTimegg Object representing the absolute time at
which this will fire.

public RelativeTime;p, getInterval ()
Return the interval of thisimer;, .

Returns: A RelativeTime;y, Object which is the current interval of this.

public void setInterval(RelativeTime;y, interval)
Reset the interval of thigimer;;, .

Timer Example

Here’s a definition of the Scheduling parameters for a high priority task that we'll
create later:

ScheduTlingParameters highPriority =
new SchedulingParameters(RealtimeThread.getMaxPriority());

This method is a generic testbed for showing what timers do:

private static void TestTimer(String title, Timer t)
throws AdmissionControlException

{
System.out.print(“\n” + title + “ test:\n”);

Figure out the start time:

final Tong TO = t.getFireTime().getMilliseconds();
Ask the timer to create the appropriate release parameters:

ReleaseParameters rp = t.createReleaseParameters();
Fill in a guess at the handlers runtime:

rp.setCost(new RelativeTime(1Q, @)); // a guess at runtime in
System.out.print(“ Release parameters=" + rp + “\n”);
Add a handler that prints a message when the timer fires off:

t.addHandler(new AsyncEventHandler(highPriority, rp, null) {
public void handleAsyncEvent() {
System.out.print(“ Timer went off at
+ (System.currentTimeMilTlis() - TQ) + “\n”);
}

b;
Give the timer a kick:

t.start();

TIMERS 117

And wait a while to watch things happen:

try {
Thread.sleep(1000) ;
} catch(InterruptedException ie) {
}
System.out.print(“ After sleeping, t="
+ (System.currentTimeMillis() - T@) + “\n”);
Run the test bed with a one shot timer:

TestTimer(“One Shot”,
new OneShotTimer(new RelativeTime(100, @), null));
Then with a periodic timer:

TestTimer(“Periodic”,
new PeriodicTimer(new RelativeTime(100, 0),
new RelativeTime(100, @), null));

118

Output from running the example

Realtime clock initializer

One Shot test:
Release parameters=javax.realtime.PeriodicParameters@7b7072

12

schedule javax.realtime.OneShotTimer@136228

Clock thread running

20
117
130

waiting 83
deschedule javax.realtime.OneShotTimer@136228
waiting 10000

Timer went off at 33
After sleeping, t=915

Periodic test:
Release parameters=javax.realtime.PeriodicParameters@4672d0

1023
1029
1127
1132
1138
1143
1150
1155
1160
1165
1171
1176
1178
1179
1180
1181
1182
1183
1184
1186
1187
1188
1189
1190
1192
1193
1194
1195
1196
1199
1200
1201
1202
1203
1205
1206
1208
1209

schedule javax.realtime.PeriodicTimer@lbd0d3e
waiting 91

deschedule javax.realtime.PeriodicTimer@lbd@3e
deschedule javax.realtime.PeriodicTimer@lbd0@3e
schedule javax.realtime.PeriodicTimer@lbd0d3e
deschedule javax.realtime.PeriodicTimer@lbd@3e
deschedule javax.realtime.PeriodicTimer@lbd@3e
schedule javax.realtime.PeriodicTimer@lbd03e
deschedule javax.realtime.PeriodicTimer@lbd@3e
deschedule javax.realtime.PeriodicTimer@lbd@3e
schedule javax.realtime.PeriodicTimer@lbd03e
deschedule javax.realtime.PeriodicTimer@lbd@3e
deschedule javax.realtime.PeriodicTimer@lbd03e
schedule javax.realtime.PeriodicTimer@lbd0d3e
deschedule javax.realtime.PeriodicTimer@lbd@3e
deschedule javax.realtime.PeriodicTimer@lbd@3e
schedule javax.realtime.PeriodicTimer@lbd0d3e
deschedule javax.realtime.PeriodicTimer@lbd03e
deschedule javax.realtime.PeriodicTimer@lbd@3e
schedule javax.realtime.PeriodicTimer@lbd0d3e
deschedule javax.realtime.PeriodicTimer@lbd03e
deschedule javax.realtime.PeriodicTimer@lbd@3e
schedule javax.realtime.PeriodicTimer@lbd03e
deschedule javax.realtime.PeriodicTimer@lbd@3e
deschedule javax.realtime.PeriodicTimer@lbd0o3e
schedule javax.realtime.PeriodicTimer@lbd0d3e
deschedule javax.realtime.PeriodicTimer@lbd@3e
deschedule javax.realtime.PeriodicTimer@lbd@3e
schedule javax.realtime.PeriodicTimer@lbd0d3e
deschedule javax.realtime.PeriodicTimer@lbd03e
deschedule javax.realtime.PeriodicTimer@lbd@3e
schedule javax.realtime.PeriodicTimer@lbd0d3e
deschedule javax.realtime.PeriodicTimer@lbd03e
deschedule javax.realtime.PeriodicTimer@lbd@3e
schedule javax.realtime.PeriodicTimer@lbd03e
deschedule javax.realtime.PeriodicTimer@lbd@3e
deschedule javax.realtime.PeriodicTimer@lbd03e
schedule javax.realtime.PeriodicTimer@lbd0d3e
deschedule javax.realtime.PeriodicTimer@lbd0@3e
deschedule javax.realtime.PeriodicTimer@lbd@3e

FERIODICTIMER

TIMERS 119

1212 schedule javax.realtime.PeriodicTimer@lbd03e
1213 deschedule javax.realtime.PeriodicTimer@lbd03e
1214 deschedule javax.realtime.PeriodicTimer@lbd0o3e
1216 schedule javax.realtime.PeriodicTimer@lbd03e
1217 deschedule javax.realtime.PeriodicTimer@lbd@3e
1218 deschedule javax.realtime.PeriodicTimer@lbd@3e
1219 schedule javax.realtime.PeriodicTimer@lbd03e
1220 deschedule javax.realtime.PeriodicTimer@lbd@3e
1221 deschedule javax.realtime.PeriodicTimer@lbd03e
1223 schedule javax.realtime.PeriodicTimer@lbd@3e
1224 deschedule javax.realtime.PeriodicTimer@lbd@3e
1225 deschedule javax.realtime.PeriodicTimer@lbd@3e
12 Timer went off at 107
Timer went off at 159
Timer went off at 159
Timer went off at 159
Timer went off at 160
Timer went off at 160
Timer went off at 160
Timer went off at 160
Timer went off at 161
Timer went off at 161
Timer went off at 161
Timer went off at 161
Timer went off at 162
Timer went off at 162
Timer went off at 162
Timer went off at 162

26 schedule javax.realtime.PeriodicTimer@lbd03e
Timer went off at 164
1284 deschedule javax.realtime.PeriodicTimer@lbd@3e
1285 deschedule javax.realtime.PeriodicTimer@lbd@3e
1287 schedule javax.realtime.PeriodicTimer@lbd03e
Timer went off at 168
1289 deschedule javax.realtime.PeriodicTimer@lbd@3e
1290 deschedule javax.realtime.PeriodicTimer@lbd@3e
1291 schedule javax.realtime.PeriodicTimer@lbd03e
Timer went off at 173
1293 deschedule javax.realtime.PeriodicTimer@lbd03e
1294 deschedule javax.realtime.PeriodicTimer@lbd03e
1295 schedule javax.realtime.PeriodicTimer@lbd@3e
Timer went off at 178
1298 deschedule javax.realtime.PeriodicTimer@lbd@3e
1299 deschedule javax.realtime.PeriodicTimer@lbd@3e
1301 schedule javax.realtime.PeriodicTimer@lbd03e
Timer went off at 182
1303 deschedule javax.realtime.PeriodicTimer@lbd@3e
1304 deschedule javax.realtime.PeriodicTimer@lbd@3e
1305 schedule javax.realtime.PeriodicTimer@lbd03e
Timer went off at 186
1307 deschedule javax.realtime.PeriodicTimer@lbd03e
1308 deschedule javax.realtime.PeriodicTimer@lbd03e
1309 schedule javax.realtime.PeriodicTimer@lbd@3e
Timer went off at 191
1311 deschedule javax.realtime.PeriodicTimer@lbd@3e
1312 deschedule javax.realtime.PeriodicTimer@lbd@3e

120

1314 schedule javax.realtime.PeriodicTimer@lbd@3e
Timer went off at 195

1315 deschedule javax.realtime.PeriodicTimer@lbd@3e
1317 deschedule javax.realtime.PeriodicTimer@lbd03e
1318 schedule javax.realtime.PeriodicTimer@lbd@3e
Timer went off at 199

1320 deschedule javax.realtime.PeriodicTimer@lbd03e
1321 deschedule javax.realtime.PeriodicTimer@lbd03e
1322 schedule javax.realtime.PeriodicTimer@lbd@3e
Timer went off at 204

1324 deschedule javax.realtime.PeriodicTimer@lbd03e
1325 deschedule javax.realtime.PeriodicTimer@lbd03e
1378 schedule javax.realtime.PeriodicTimer@lbd@3e
Timer went off at 260

1380 deschedule javax.realtime.PeriodicTimer@lbd03e
1381 deschedule javax.realtime.PeriodicTimer@lbdd3e
1382 schedule javax.realtime.PeriodicTimer@lbd@3e
Timer went off at 264

1384 deschedule javax.realtime.PeriodicTimer@lbd03e
1385 deschedule javax.realtime.PeriodicTimer@lbd@3e
1387 schedule javax.realtime.PeriodicTimer@lbd@3e
Timer went off at 268

After sleeping, t=907

FERIODICTIMER

ASYNCHRONY 121

CHAPTER

Asynchrony

This section contains classes that:

« Provide mechanisms that bind the execution of program logic to the occurrence of
internal and external events.

« Provide mechanisms that allow the asynchronous transfer of control.

» Provide mechanisms that allow the asynchronous termination of threads.
This specification provides several facilities for arranging asynchronous control of
execution, some of which apply to threads in general while others apply only to real-
time threads. These facilities fall into two main categories: asynchronous event
handling and asynchronous transfer of control (ATC), which includes thread
termination.

Asynchronous event handling is captured by the non-abstracielaggvent
and the abstract classes/ncEventHandler andBoundAsyncEventHandler. An
instance of thasyncEvent class is an object corresponding to the possibility of an
asynchronous event occurrence. An event occurrence may be initiated by either
application logic or by the occurrence diappeningexternal to the JVM (such as a
software signal or a hardware interrupt handler). An event occurrence is expressed in
program logic by the invocation of th&i re() method of an instance of the
AsyncEvent class. The initiation of an event occurrence due to a happening is
implementation dependent.

An instance of the clagsyncEventHandler is an object embodying code that is
scheduled in response to the occurrence of an event-ur®@ method of an instance
of AsyncEventHandler acts like a thread, and indeed one of its constructors takes
references to instancesSithedulingParameters, ReleaseParameters, and
MemoryParameters. However, there is not necessarily a separate thread for each
run() method. The clag®undAsyncEventHandler extendAsyncEventHandler,
and should be used if it is necessary to ensure that a handler has a dedicated thread.

122

FERIODICTIMER

An event count is maintained so that a handler can cope with event bursts —-
situations where an event is fired more frequently than its handler can respond.

Theinterrupt() method injava.lang.Thread provides rudimentary
asynchronous communication by setting a pollable/resettable flag in the target thread,
and by throwing a synchronous exception when the target thread is blocked at an
invocation ofwait(), sTeep(), orjoin(). This specification extends the effect of
Thread.interrupt() and adds an overloaded versiorRi#altimeThread, offering a
more comprehensive and non-polling asynchronous execution control facility. It is
based on throwing and propagating exceptions that, though asynchronous, are
deferred where necessary in order to avoid data structure corruption. The main
elements of ATC are embodied in the clasgnchronouslyInterruptedException
(AIE), its subclasSimed, the interfacanterruptible, and in the semantics of the
interrupt methods iMhread andRealtimeThread.

A method indicates its willingness to be asynchronously interrupted by including
AIE on itsthrows clause. If a thread is asynchronously interrupted while executing a
method that identifies AIE on itirows clause, then an instance of AIE will be
thrown as soon as the thread is outside of a section in which ATC is deferred. Several
idioms are available for handling an AIE, giving the programmer the choice of using
catch clauses and a low-level mechanism with specific control over propagation, or a
higher-level facility that allows specifying the interruptible code, the handler, and the
result retrieval as separate methods.

Semantics and Requirements

This list establishes the semantics and requirements that are applicable to AsyncEvent
objects. Semantics that apply to particular classes, constructors, methods and fields
will be found in the class description and the constructor, method, and field detail
sections.

1. When an instance ekyncEvent occurs (by either program logic or a happening)
all run() methods of instances of theyncEventHandler class that have been
added to the instance MyncEvent by the execution afdddHandler() are
scheduled for execution. This action may or may not be idempotent. Every
occurrence of an event causes a increments a counter in each associated handler.
Handlers may elect to execute logic for each occurrence of the event or not.

2. Instances oksyncEvent andAsyncEventHandler may be created and used by
any program logic.

3. More than one instance &yncEventHandler may be added to an instance of
AsyncEvent.

ASYNCHRONY 123

4. Aninstance oAsyncEventHandler may be added to more than one instance of
AsyncEvent.

This list establishes the semantics and requirements that are applicable to
AsynchronouslyinterruptedException. Semantics that apply to particular classes,
constructors, methods and fields will be found in the class description and the
constructor, method, and field detail sections.

1. Instances of the clagsynchronouslyInterruptedException can be generated
by execution of program logic and by internal virtual machine mechanisms that
are asynchronous to the execution of program logic which is the target of the
exception.

2. Program logic that exists in methods that throw
AsynchronouslyInterruptedException iS subject to receiving an instance of
AsynchronouslyInterruptedException at any time during execution.

3. The RTSJ specifically requires that blocking methodaia.io.* must be
prevented from blocking indefinitely when invoked from a method with AIE in its
throws clause. The implementation, when eithef.fire() or
RealtimeThread.interrupt() is called when control is infava.io.* method
invoked from an interruptible method, may either unblock the blocked call, raise
anIOException on behalf of the call, or allow the call to complete normally if the
implementation determines that the call would eventually unblock.

4. Program logic executing withinsgnchronized block within a method with
AsynchronouslyInterruptedException in itS throws clause is not subject to
receiving an instance of AIE. The interrupted state of the execution context is set
to pending and the program logic will receive the instance when control passes
out of thesynchronized block if other semantics in this list so indicate.

5. Constructors are allowed to inclutk/nchronouslyInterruptedException in
their throws clause and will thus be interruptible.

Definitions

The RTSJ's approach to ATC is designed to follow these principles. It is based on
exceptions and is an extension of the current Java language rules for
java.lang.Thread.interrupt(). The following terms and abbreviations will be
used:

ATC- Asynchronous Transfer of Control

AIE - (Asynchronously Interrupted Exception) The class
javax.realtime.AsynchronouslyInterruptedException, a subclass of
java.lang.InterruptedException.

124 FERIODICTIMER

Al - (Asynchronously Interruptible) A method is said to be asynchronously
interruptible if it includes AIE in its throws clause.

ATC-deferred sectiona synchronized method, a synchronized statement, or any
method or constructor without AIE in its throws clause.

Summary of Operation
In summary, ATC works as follows:

If tis an instance dfealtimeThread Or NoHeapRealtimeThread and
t.interrupt() or AIE.fire() is executed by any thread in the system then:

1. If control is in a ATC-deferred section, then the AIE is put into a pending state.

2. If control is in an Al method and not inty block or a synchronized block, then
the method from which the Al method had been invoked immediately receives the
fired AIE without further execution of the logic in the Al method and the AIE’s
state is set to pending.

3. As with normal Java exception semantics, if control is withiryablock
contained within an Al method control transfers to the first statement of the
appropriatecatch clause. If no appropriatatch clause exists, then the calling
method receives the fired AIE and the AIE’s state is set to pending.

4. If control is in eithemait (), sTeep(), or join(), the thread is awakened and the
fired AIE (which is a subclass afderruptedException) is thrown. Then ATC
follows option 1, 2, or 3 as appropriate.

5. If control is in a non-Al method, control continues normally until the first attempt
to return to an Al method or invoke an Al method. Then ATC follows option 1, 2,
or 3 as appropriate.

6. If control is transferred from a non-Al method to an Al method through the action
of propagating an exception and if an AIE is pending then when the transition to
the Al-method occurs the thrown exception is discarded and replaced by the AIE.

If an AIE is in a pending state then this AIE is thrown only when:

1. Control enters an Al-method.

2. Control returns to an Al-method.

3. Control leaves a synchronized block within an Al-method.
Whenhappened() is called on an AIE or that AIE is superseded by another the first
AIE’s state is made non-pending.

An AIE may be raised while another AIE is pending or in action. Because Al
code blocks are nested by method invocation (a stack-based nesting) there is a natural
precedence among active instances of AIE. Let AIE_O be the AIE raised when
t.interrupt() isinvoked and AIE_i (i=1,...,n, for n unique instances of AIE) be the

ASYNCHRONY 125

AIE raised when AIE_fire() is invoked. Assume stacks grow down and therefore
the phrase “a frame lower on the stack than this frame” refers to a method at a deeper
nesting level. y
1. If the current AIE is an AIE_0 and the new AIE is an AIE_x associated with any
frame on the stack then the new AIE (AIE_X) is discarded.

2. If the current AIE is an AIE_x and the new AIE is an AIE_O, then the current AIE
(AIE_X) is replaced by the new AIE (AIE_0).

3. If the current AIE is an AIE_x and the new AIE is an AIE_y from a frame lower
on the stack, then the new AIE discarded.

4. If the current AIE is an AIE_x and the new AIE is an AIE_y from a frame higher
on the stack, the current AIE is replaced by the new AIE.

Non-Blocking 1/10

The RTSJ will provide mechanisms and programming disciplines to allow
applications to bound waiting on I/O calls. There are two cases: (1) the device on
which I/O is being performed (and thus its associated stream) is no longer needed and
(2) timed, non-blocking I/O (where the device and associated streams remain viable).
For case 1 the RTSJ requires that wheream. close () is called on a stream all

blocked I/O calls will throw appropriate instanceg@fxception. Note that this
requirement adds additional semantics to stream.close() which require blocked calls
to throw an appropriate exception in addition to just checking for closed streams at the
commencement of the 1/O call. For case 2 the RTSJ recommends a programming
discipline in which one thread uses the blocking calls from java.io.* and provides
timed, non-blocking methods used by other threads. (See the examples in the section
on asynchrony).

Rationale

The design of the asynchronous event handling was intended to provide the necessary
functionality while allowing efficient implementations and catering to a variety of
real-time applications. In particular, in some real-time systems there may be a large
number of potential events and event handlers (numbering in the thousands or perhaps
even the tens of thousands), although at any given time only a small number will be
used. Thus it would not be appropriate to dedicate a thread to each event handler. The
RTSJ addresses this issue by allowing the programmer to specify an event handler
either as not bound to a specific thread (the chAagacEventHandler) or alternatively

as bound to a threaddundAsyncEventHandler).

126

FERIODICTIMER

Events are dataless: the fire method does not pass any data to the handler. This
was intentional in the interest of simplicity and efficiency. An application that needs to
associate data with asyncEvent can do so explicitly by setting up a buffer; it will
then need to deal with buffer overflow issues as required by the application.

The ability for one thread to trigger an ATC in another thread is necessary in
many kinds of real-time applications but must be designed carefully in order to
minimize the risks of problems such as data structure corruption and deadlock. There
is, invariably, a tension between the desire to cause an ATC to be immediate, and the
desire to ensure that certain sections of code are executed to completion.

One basic decision was to allow ATC in a method only if the method explicitly
permits this. The default of no ATC is reasonable, since legacy code might be written
expecting no ATC, and asynchronously aborting the execution of such a method could
lead to unpredictable results. Since the natural way to model ATC is with an exception
(AsynchronouslyInterruptedException, or AIE), the way that a method indicates
its susceptibility to ATC is by including AIE on ithrows clause. Causing this
exception to be thrown in a threads an effect of calling.interrupt() was a
natural extension of the semantics of interrupt as currently defined by
java.lang.Thread.

One ATC-deferred section synchronized code. This is a context that needs to
be executed completely in order to ensure a program operates correctly. If
synchronized code is aborted, a shared object could be left in an inconsistent state.

Constructors anélinally clauses are subject to interruption. If a constructor is
aborted, an object might be only partially initialized. ffiaa11y clause is aborted,
needed cleanup code might not be performed. It is the programmer’s responsibility to
ensure that executing these constructs does not induce unwanted ATC latency. Note
that by making synchronized code ATC-deferred, this specification avoids the
problems that causédthread.stop() to be deprecated and that have made the use of
Thread.destroy() prone to deadlock.

A potential problem with using the exception mechanism to model ATC is that a
method with a “catch-all” handler (for exampleatch clause identifyingxception
or evenThrowable as the exception class) can inadvertently intercept an exception
intended for a caller. This problem is avoided by having special semantics for catching
an instance of AIE. Even though a catch clause may catch an AlE, the exception will
be propagated unless the handler invokes the happened method from AIE. Thus, if a
thread is asynchronously interrupted while in a try block that has a handler such as

catch (Throwable e){ return; }

then the AIE instance will still be propagated to the caller.

ASYNCHRONY 127

This specification does not provide a special mechanism for terminating a thread;
ATC can be used to achieve this effect. This means that, by default, a thread cannot be
terminated; it needs to invoke methods that have AIE in thedws clauses.

Allowing termination as the default would have been questionable, bringing the same
insecurities that are found Thread.stop() andThread.destroy().

9.1 AsyncEvent

SyntaxXipublic class AsyncEvent

Direct Known SubclasseSiimer;;,

An asynchronous event represents something that can happen - like a light
turning red. It can have a set of handlers associated with it and the event occurs the
handler is scheduled by the scheduler to which it holds a reference (see
AsyncEventHandler;,9 andSchedulerzg)

A major motivator for this style of building events is that we expect to have lots
of events and lots of event handlers. An event handler is logically very similar to a
thread, but it is intended to have a much lower cost (in both time and space) -
assuming that a relatively small number of events are fired and in the process of being
handled at oncasyncEvent. fire() differs from a method call because the handler
(a) has scheduling parameters and (b) is executed asynchronously.

9.1.1 Constructors
public AsyncEvent()

9.1.2 Methods

public synchronized void addHandler(AsyncEventHandler;,9 handler)
Add a handler to the set of handlers associated with this event. An
AsyncEvent may have more than one associated handler.

Parameters:
handler - The new handler to add to the list of handlers already
associated with this. Handler is null then nothing happens.
Since this affects the constraints expressed in the release parameters
of the existing schedulable objects, this may change the
feasibility of the current schedule.

128

ASYNCEVENT

public void bindTo(java.lang.String happening)
Binds this to an external event (a happening). The meaningful values of
happening are implementation dependent. ThigncEvent is considered
to have occurred whenever the external event occurs.

Parameters:
happening - An implementation dependent value that binds this
AsyncEvent to some external event.

public ReleaseParameters,; createReleaseParameters()
Create ®eleaseParametersy; block appropriate to the timing
characteristics of this event. The default is the most pessimistic:
AperiodicParametersy;. This is typically called by code that is setting up
a handler for this event that will fill in the parts of the release parameters
that it knows the values for, like cost.

public synchronized void fire()
Fire (schedule theun() methods of) the handlers associated with this
event.

public boolean handledBy(AsyncEventHandler;,9 target)
Returns true if and only if this event is handled by this handler.

Parameters:
target - The handler to be tested to determine if it is associated with
this. Returns false ifarget is null.
public synchronized void removeHandler (AsyncEventHandlerj,g
handler)
Remove a handler from the set associated with this event.

Parameters:
handler - The handler to be disassociated from this. If null nothing
happens. If not already associated with this then nothing
happens.

public synchronized void setHandler(AsyncEventHandler;,9 handler)
Associate a new handler with this event, removing all existing handlers.

Since this affects the constraints expressed in the release parameters of the
existing schedulable objects, this may change the feasibility of the current
schedule.

Parameters:
handler - The new and only handler to be associated with this. If
handler is null then no handler will be associated with this (i.e.,
remove all handlers).

ASYNCHRONY 129

9.2 AsyncEventHandler

Syntaxipublic abstract class AsyncEventHandler implements Schedulabless

Direct Known Subclasse®oundAsyncEventHandler;3,

All Implemented Interfacegava.lang.Runnablechedulable s

An asynchronous event handler encapsulates code that gets run at some time after
anAsyncEvent;,, OCCUIS.

Itis essentially gava.lang.Runnable with a set of parameter objects - making
it very much like &ealtimeThread,;. The expectation is that there may be
thousands of events, with corresponding handlers, averaging about one handler per
event. The number of unblocked (i.e., scheduled) handlers is expected to be relatively
small.

It is guaranteed that multiple firings of an event handler will be serialized. It is
also guaranteed that (unless the handler explicitly chooses otherwise) for each firing
of the handler there will be one execution oftihed1eAsyncEvent() method.

There is no restriction on what handlers may do. They may run for a long or short
time, and they may block. (Note: blocked handlers may hold system resources.)

Normally, handlers are bound to an execution context dynamically, when their
AsyncEvent,, occurs. This can introduce a (small) time penalty. For critical
handlers that can not afford the expense, and where this penalty is a problem, use a
BoundAsyncEventHandler;z, .

9.2.1 Constructors

public AsyncEventHandler()
Create a handler whoSehedulingParameters,, are inherited from the
current thread and does not have eitte8easeParameters,; or
MemoryParameters g .

public AsyncEventHandler(boolean nonheap)
Create a handler whose parameters are inherited from the current thread, if
it is aRealtimeThread,;z, or null otherwise.

Parameters:
nonheap - A flag meaning, when true, that this will have
characteristics identical toNbHeapRealtimeThread,;, . A false
value means this will have characteristics identical to a

130 ASYNCEVENTHANDLER

RealtimeThread,; . If true and the current threadrista
NoHeapRealtimeThread,, Or aRealtimeThread,; executing
within aScopedMemorys, Or ImmortalMemorys, Scope then an
lllegalArgumentException is thrown.

public AsyncEventHandler(SchedulingParametersy, scheduling,
ReleaseParameters,; release,
MemoryParameters ;9 memory, MemoryAreag, area,
ProcessingGroupParameterss, group)

Create a handler with the specified parameters.

Parameters:
release - A ReleaseParameters,; object which will be associated

with the constructed instance of this. If null this will have no
ReleaseParameters,s.

scheduling - A SchedulingParametersy, Object which will be
associated with the constructed instance of this. If null this will
be assigned the reference to shBedulingParametersy, of
the current thread.

memory - A MemoryParameters 9 Object which will be associated
with the constructed instance of this. If null this will have no
MemoryParameters g .

area - TheMemoryAreag, for this. If null the memory area will be
that of the current thread.

group - A ProcessingGroupParameters;, object to which this will
be associated. If null this will not be associated with any

processing group.

public AsyncEventHandler(SchedulingParametersy, scheduling,
ReleaseParameters,; release,
MemoryParameters ;9 memory, MemoryAreag, area,
ProcessingGroupParameterss, group,
boolean nonheap)
Create a handler with the specified parameters.

Parameters:
scheduling - A SchedulingParametersy, object which will be

associated with the constructed instance of this. If null this will
be assigned the reference to sheedulingParameters,y Of

the current thread.
release - A ReleaseParameters,; object which will be associated

with the constructed instance of this. If null this will have no

ReleaseParametersy;s.
memory - A MemoryParameters 9 Object which will be associated

with the constructed instance of this. If null this will have no
MemoryParameters g .

ASYNCHRONY 131

area - TheMemoryAreag, for this. Must be a refernce to a
ScopedMemorys, Or ImmortalMemory,, Object ifnH is true.
group - A ProcessingGroupParameterss, Object to which this will
be associated. If null this will not be associated with any
processing group.

nonheap - A flag meaning, when true, that this will have
characteristics identical toNaHeapRealtimeThread,; .

9.2.2 Methods

public void addToFeasibility()
Inform the scheduler and cooperating facilities that this thread’s feasibility
parameters should be considered in feasibility analysis until further
notified.

protected final synchronized int getAndClearPendingFireCount()
Atomically set to zero the number of pending executions of this handler
and returns the value from before it was cleared. This is used in handlers
that can handle multiple firings and that want to collapse them together.
The general form for using this is:

public void handleAsyncEvent() {

int fireCount = getAndClearPendingFireCount();
<handle the events>

}
Returns: The pending fire count.

protected synchronized int getAndDecrementPendingFireCount()
Atomically decrements the number of pending executions of this handler
(if it was non-zero) and returns the value from before the decrement. This
can be used in theand1eAsyncEvent() method in this form to handle
multiple firings:

public void handleAsyncEvent() {

<setup>

do {

<handle the event>
} while(getAndDecrementPendingFireCount()>0);
}

This construction is necessary only in the case where one wishes to avoid
the setup costs since the framework guaranteesdhéiteAsyncEvent ()

will be invoked the appropriate number of times.

Returns: The pending fire count.

protected synchronized int getAndIncrementPendingFireCount()

132 ASYNCEVENTHANDLER

Atomically increments the number of pending executions of this handler
and returns the value from before the increment. Adie1eAsyncEvent ()
method does not need to do this, since the surrounding framework
guarantees that the handler will be re-executed the appropriate number of
times. It is only of value when there is common setup code that is
expensive.

Returns: The pending fire count.

public MemoryAreag, getMemoryArea()
Get the current memory area.

Returns: The current memory area in which allocations occur.

public MemoryParameters;9 getMemoryParameters ()
Get the memory parameters associated with this handler.

Returns: TheMemoryParameters ;9 Object associated with this.

public ProcessingGroupParameterss, getProcessingGroupParameters()
Returns a reference to theocessingGroupParameters;, object.

public ReleaseParameters,; getReleaseParameters()
Get the release parameters associated with this handler.

Returns: TheReleaseParameters,; object associated with this.

public Scheduler;s getScheduler()
Return thescheduler ;4 for this handler.

Returns: The instance of the scheduler managing this.

public SchedulingParameters,, getSchedulingParameters()
Returns a reference to the scheduling parameters object.

Returns: TheSchedulingParametersy, object associated with this.

public abstract void handleAsyncEvent()
Override this method to define the action to be taken by this handler. This
method will be invoked repeatedly while fireCount is greater than zero.

public void removeFromFeasibility()
Inform the scheduler and cooperating facilities that this thread’s feasibility
parameters should not be considered in feasibility analysis until further
notified.

public final void run()
Used by the asynchronous event mechanismisegEvent,; . This
method invokesandleAsyncEvent () repeatedly while the fire count is
greater than zero. Applications cannot override this method and should

ASYNCHRONY 133

thus overridenand1eAsyncEvent() in subclasses with the logic of the
handler.

public void setMemoryParameters(MemoryParameters;9 memory)
Set the memory parameters associated with this handler. When it is next
fired, the executing thread will use these parameters to control memory
allocation. Does not affect the current invocation ofrtine() of this
handler.

Parameters:
memory - A MemoryParameters,9 Object which will become the
MemoryParameters,q associated with this after the method call.
public void
setProcessingGroupParameters (ProcessingGroupParam
eterssy parameters)
Sets the reference to theocessingGroupParameters;, object.

public void setReleaseParameters(ReleaseParameters,; parameters)
Set the release parameters associated with this handler. When it is next
fired, the executing thread will use these parameters to control scheduling.
If the scheduling parameters of a handler is set to null, the handler will be
executed immediately when it is fired, in the thread of the firer. Does not
affect the current invocation of than () of this handler.

Since this affects the constraints expressed in the release parameters of the
existing schedulable objects, this may change the feasibility of the current
schedule.

Parameters:
parameters - A ReleaseParameters,; Object which will become
theReleaseParameters,; associated with this after the method
call.
public void setScheduler(Schedulerss scheduler)
Set the scheduler for this handler. A reference to the scheduler which will
manage the execution of this thread.

Parameters:
scheduler - An instance ofcheduler;,z (or subclasses) which will
manage the execution of this threadsdfieduler is null
nothing happens.

Throws: I11egalThreadStateException

public void setSchedulingParameters(SchedulingParametersy
parameters)

134

BOUNDASYNCEVENTHANDLER

Set the scheduling parameters associated with this handler. When it is next
fired, the executing thread will use these parameters to control scheduling.
Does not affect the current invocation of the () of this handler.

Parameters:
parameters - A SchedulingParameters,, object which will
become thechedulingParameters,, object associated with
this after the method call.

9.3 BoundAsyncEventHandler

SyntaxXpublic abstract class BoundAsyncEventHandler extends
AsyncEventHandler ;g

All Implemented Interfacegava.lang.Runnable&chedulable;s

A bound asynchronous event handler is an asynchronous event handler that is
permanently bound to a thread. Bound asynchronous event handlers are meant for use
in situations where the added timeliness is worth the the overhead of binding the
handler to a thread.

9.3.1 Constructors

public BoundAsyncEventHandler ()
Create a handler whose parameters are inherited from the current thread, if
it is aRealtimeThread,;, or null otherwise.

public BoundAsyncEventHandler(SchedulingParameters,, scheduling,
ReleaseParameters,; release,
MemoryParameters ;9 memory, MemoryAreag, area,
ProcessingGroupParameterss, group,
boolean nonheap)
Create a handler with the specifietl easeParameters,; and

MemoryParameters ;g .

Parameters:
scheduling - A SchedulingParametersy, object which will be
associated with the constructed instance of this. If null this will
be assigned the reference to $hBedulingParametersy, of
the current thread.
release - TheReleaseParameters,; objectfor this. A value of null
will construct this without ®eleaseParameters,; object.

ASYNCHRONY 135

memory - TheMemoryParameters,9 Object for this. A value of null
will construct this without &8lemoryParameters ;9 Object.

area - TheMemoryAreag, for this. Must be a refernce to a
ScopedMemoryg, Of ImmortalMemory,s, Object ifnH is true.

nonheap - A flag meaning, when true, that this will have
characteristics identical toNaHeapRealtimeThread,; .

group - A ProcessingGroupParameterss, object to which this will
be associated. If null this will not be associated with any
processing group.

9.4 Interruptible

SyntaXipublic interface Interruptible

Interruptible is an interface implemented by classes that will be used as
arguments on théoInterruptible() of
AsynchronouslyInterruptedException;zs and its subclassesoInterruptible()
invokes the implementation of the method in this interface. Thus the system can
ensure correctness before invoking () and correctly cleaned up aftem ()
returns.

9.4.1 Methods

public void interruptAction(AsynchronouslyInterruptedExceptionyzg
exception)
This method is called by the system if than () method is excepted. Using
this the program logic can determine if the () method completed
normally or had its control asynchronously transferred to its caller.

Parameters:
exception - Used to invoke methods on
AsynchronouslyInterruptedException;zs from within the
interruptAction() method.

public void run(AsynchronouslyInterruptedExceptionyzs exception)
The main piece of code that is executed when an implemention is given to
doInterruptible(). When you create a class that implements this
interface (usually through an anonymous inner class) you must remember
to include thechrows clause to make the method interruptible. If the
throws clause is omitted thean () method will not be interruptible.

136

ASYNCHRONOUSLMNTERRUPTEEXCEPTION

Parameters:
exception - Used to invoke methods on
AsynchronousTlyInterruptedException;zs from within the
run() method.

Throws: AsynchronouslyInterruptedExceptionyszg

9.5 AsynchronouslylnterruptedException

Syntax:public class AsynchronouslyInterruptedException extends
java.lang.InterruptedException

Direct Known SubclasseSimed;;g

All Implemented Interfacegava.io.Serializable

An special exception that is thrown in response to an attempt to asynchronously
transfer the locus of control ofR@altimeThread;; .

When a method is declared withynchronouslyInterruptedException in its
throws clause the platform is expected to asynchonously throw this exception if
RealtimeThread.interrupt() is called while the method is executing, or if such an
interrupt is pending any time control returns to the method. The internoqt is
thrown while any methods it invokes are executing, unless they are, in turn, declared
to throw the exception. This is intended to allow long-running computations to be
terminated without the overhead or latency of polling with
java.lang.Thread.interrupted() .

Thethrows AsynchronouslyInterruptedException clause is a marker on a
stack frame which allows a method to be statically marked as asynchronously
interruptible. Only methods that are marked this way can be interrupted.

WhenThread.interrupt(), public synchronized void interrupt() s, Or
this.fire() is called, the\synchronouslyInterruptedException is compared
against any currently pendimgynchronouslyInterruptedException on the thread.

If there is none, or if the depth of th&ynchronouslyInterruptedException is less
than the currently pendingynchronouslyInterruptedException —- i.e., it is
targeted at a less deeply nested method call —- it becomes the currently pending
interrupt. Otherwise, it is discarded.

If the current method is interruptible, the exception is thrown on the thread.
Otherwise, it just remains pending until control returns to an interruptible method, at

ASYNCHRONY 137

which point theAsynchronouslyInterruptedException is thrown. When an
interrupt is caught, the caller should invoke liagpened) method on the
AsynchronousTlyInterruptedException in which it is interested to see if it matches
the pendinghsynchronousTlyInterruptedException. If so, the pending
AsynchronousTlyInterruptedException is cleared from the thread. Otherwise, it
will continue to propagate outward.

SinceThread. interrupt() andRealtimeThread.interupt() generate a
system avalable genereynchronouslyInterruptedException which will always
propagate outward through interruptible methods until the generic
AsynchronouslyInterruptedException is identified and stopped. Other sources
(e.g.,this.fire() andTimed;3g) will generate a specific instance of
AsynchronouslyInterruptedException which applications can identify and thus
limit propogation.

9.5.1 Constructors

pubTic AsynchronouslyInterruptedException()
Create an instance a8fynchronouslyInterruptedException.

9.5.2 Methods

public synchronized boolean disable()
Defer the throwing of this exception.ilfiterrupt () is called when this
exception is disabled, the exception is put in pending state. The exception
will be thrown if this exception is subsequently enabled. This is valid only
within a call todoInterruptible(). Otherwise it returns false and does
nothing.

Returns: True if this is disabled otherwise returns false.

public boolean doInterruptible(Interruptible;3s logic)
Execute therun() method of the givelnterruptible;;s. This method
may be on the stack in exactly atealtimeThread,;. An attempt to
invoke this method in a thread while it is on the stack of another or the
same thread will cause an immediate return with a value of false.

Parameters:
code - An instance of alinterruptible;3; whoserun() method
will be called.

Returns: True if the method call completed normally. Returns false if
another call taloInterruptible has not completed.

public synchronized boolean enable()

138 TIMED

Enable the throwing of this exception. This is valid only within a call to
dolinterruptible(). Otherwise it returns false and does nothing.

Returns: True if this is enabled otherwise returns false.

public synchronized boolean fire()
Make this exception the current exceptioddfinterruptible() has been
invoked and not completed.

Returns: True if this was fired. If there is no current invocation of
doInterruptible(), then false is returned with no other effect.
False is also returned if there is a curi@Ihterruptible()
disable() has been called.

public static AsynchronouslyInterruptedException;3s getGeneric()
Return the system generieynchronouslyInterruptedException which
is generated whekealtimeThread.interrupt() is invoked.

pubTlic boolean happened(boolean propagate)
Used with an instance of this exception to see if the current exception is
this exception.

Parameters:
propagate - Propagate the exception if true and this exception is not
the current one. If false, then the state of this is set to
nonpending (i.e., it will stop propagating).
Returns: True if this is the current exception. Returns false if this is not the
current exception.

public boolean isEnabled()
Query the enabled status of this exception.

Returns: True if this is enabled otherwise returns false.

public void propagate()
Cause the current exception to continue up the stack.

9.6 Timed

SyntaxXpublic class Timed extends AsynchronouslyInterruptedExceptionyzs

All Implemented Interfacegava.io.Serializable

ASYNCHRONY 139

Create a scope inR@altimeThread,; for whichinterrupt() will be called at
the expiration of a timer. This timer will begin measuring time at some point between
the timedoInterruptible() is invoked and the time th&n() method of the
Interruptible objectis invoked. Each call @bInterruptible() on an instance of
Timed will restart the timer for the amount of time given in the constructor or the most
recent invocation ofesetTime(). All memory use ofrimed occurs during
construction or the first invocation @ééInterruptible(). Subsequent invokes of
doInterruptible() do not allocate memory.

Usagenew Timed(T).doInterruptible(interruptible);

9.6.1 Constructors

public Timed(HighResolutionTimeg; time)
Create an instance 0fimed with a timer set to timeout. If the time is in the
past theAsynchronouslyInterruptedException;zs mechanism is
immediately activated.

Parameters:
time - The interval of time between the invocation of
doInterruptible() and wheninterrupt() is called on
currentRealtimeThread(). If null the
java.lang.I1legalArgumentException is thrown.

Throws: I11egalArgumentException

9.6.2 Methods

public boolean doInterruptible(Interruptible;3s logic)
Execute a timeout method. Starts the timer and executesitt{¢ method
of the givenInterruptible;;; object.

Overrides:public boolean doInterruptible(Interruptiblel35
logic) ;37 in classAsynchronouslyInterruptedException;sg

Parameters:
logic - Implements afinterruptible;3s run() method. If null
nothing happens.

public void resetTime(HighResolutionTimeg; time)
To reschedule the timeout for the next invocation of dolnterruptible().

Parameters:
time - This can be an absolute time or a relative time. If null the
timeout is not changed.

140

TIMED

AsyncEvent Example

An easy way to construct event handlers is with anonymous inner classes:

AsyncEventHandler h = new AsyncEventHandler() {
public void handleAsyncEvent() {
System.out.print(“The first handler ran!\n”);

}}
They get associated with events by adding them to the event’s handler list. There is a
slight naming issue that sometimes causes confusion: in the java.awt package (and
common gui api usage), an “event’ refers to somethindhfsahappenedn the
realtime package, (and common realtime system usage) an event refers to something
thatmay happerin the future. To have our handler h associated with the inputReady
event:

inputReady.addHandler (h);
Sometime in the future, the event gets fired:

System.out.print(“Test 1\n”);
inputReady.fire();

Thread.yield(Q);
System.out.print(“Fired the event\n”);

Event handlers are like threads in that they have Release, Scheduling and Memory
parameters. This complicates the preceeding example: by default, handlers are created
with the same priority as the creating thread. WihpntReadyis fired,h becomes
runnable, but the current thread is already runnindn j8set sits in the run queue

waiting for the current process to do something that gives up the processor.

For example, we can create a low and high priority handler like this:

ScheduTlingParameters low = new SchedulingParameters(Thread.MIN_PRI
ORITY);
inputReady.setHandler(new AsyncEventHandler(Tow,null,null) {
public void handleAsyncEvent() {
System.out.print(“The low priority handler ran!\n”);
}
s
ScheduTlingParameters high = new SchedulingParameters(Thread.MAX_PR
IORITY);
inputReady.addHandler(new AsyncEventHandlerChigh, null, null) {
public void handleAsyncEvent() {
System.out.print(“The high priority handler ran!\n”);
1
B;

ASYNCHRONY 141

If we fire the event off, the low priority handler doesn’t run until there’s some idle
time on the processor:

System.out.print(“\nTest 2\n”);

inputReady.fire(Q);

System.out.print(“After the fire\n”);

Thread.sleep(100);
System.out.print(“After the sleep\n”);

ReleaseParameters are somewhat problematic with respect to AsyncEvents. They
encapsulate the information needed for feasibility analysis, which consists of a
combination of information about when things happen and about the computation that
is triggered. In the case of AsyncEvents, the knowledge about those two collections of
information is seperated: the event knows about when things happen, while the
handler knows about the computation that is triggered. When setting up
ReleaseParameters for an AsyncEvent, the following pattern should be followed:
ReleaseParameters rp = inputReady.createReleaseParameters();
rp.setCost(new RelativeTime(1,0));
AsyncEventHandler h2 = new AsyncEventHandlerChigh, rp, null){
)Pu?;?c void handleAsyncEvent() { System.out.print(“Whatever...\n
inputly?ead’y.createReIeaseParameters() creates a ReleaseParameters object (actually
some subclass of ReleaseParameters) and populates it with information about when
the event will fire. For example, if inputReady were a PeriodicTimer event,
createReleaseParameters would create a PeriodicParameters object and fill in the
periodicity fields.

System.out.close();

Output from running the example

Test 1
The first handler ran!
Fired the event

Test 2

The high priority handler ran!
After the fire

The low priority handler ran!
After the sleep

AIE Example

An AsynchronouslylnterruptedException allows code to be written so that it can be
aborted in a controlled fashion in response to an action by another thread, or by an
external event. A block of interruptible code is associated with the exception that can
be used to terminate its execution. If the asynchronous exception is fired at any point

142

TIMED

during the execution of the interruptible code, control is transferred to the end of the
executable section of code. If the interruptible code calls some other code that isn't
interruptible and the exception is fired, the exception remains pending until
superseded by a more pertinent exception, or until control returns to the interruptible
section. In the latter case, the interruptible section is then terminated. To make a
block of code interruptible by a particular asynchronous exception, it must be
encapsulated in a class that implements the Interruptible interface. An instance of the
class is passed to the dolnterruptible method on the
AsynchronouslyInterruptedException that AsynchronouslylnterruptedException that
can interrupt the code block. This causes the run method of the interruptible object to
be executed. Execution can be interrupted at any point during the run niéghod.
Only one thread can be executing interruptible code within an asynchronous
exception at a given time. To interrupt more than one thread it is necessary to
multiplex a source, such as an AsyncEvent, to multiple asynchronous exceptions. An
anonymous inner class can be used to code inline interruptible code, as in the
following:

MyInterrupt aie = new MyInterrupt();

aie.doInterruptible(new Interruptible() {

pubTlic void runNonInterruptible() {
do something that can't be interrupted

3
public void run(AsynchronouslyInterruptedException e)
throws AsynchronouslyInterruptedException {
This method can be interrupted at any point in time do something “interrupt’-safe
Call to a non-interruptible method. If the asynchronous exception is fired during

execution of this method, it will be deferred until return from the method.

runNonInterruptible();
We can also disable the asynchronous exception for a period of time. If it is fired, it

will be deferred until it's enabled again:

e.disable();
And enable it again later:

e.enable();
Upon return from run, aie can no longer effect execution of the thread.

public void interruptAction(AsynchronouslyInterruptedException e)
{
}

ASYNCHRONY 143

If we want to know whether the method was actually interrupted, we can make use of
the interruptAction entry point of the Interruptible object. This is only called if the run
method was interrupted.
{
aie.doInterruptible(new Interruptible() {
pubTlic void run(AsynchronouslyInterruptedException e)

throws AsynchronouslyInterruptedException {

do something interrupt-safe

public void interruptAction(AsynchronouslyInterruptedException e)

{
try {
MyInterrupt myAie = (MyInterrupt)e;
myAie.wasInterrupted = true;
} catch (ClassCastException ce) {

}
do something about it - abort or retry
}

AIE Example 2

In order to asynchronously interrupt code running in another thread, it is necessary to
obtain a reference to the AsynchronouslylnterruptedException that the thread is
expecting. This will usually be stored in a field on the thread, or may be kept in a
globally accessible object. Once the reference is obtained, the other thread can be
interrupted by calling the fire method on the asynchronous exception. initialization
code - spawn some threads

getInterrupt().fire();
An asynchronous exception may be bound to an event, in which case, firing the event

will result in the asynchronous exception being fired automatically. The realtime
extensions package does this to implement timed expressions, where expiry of the
timer automatically interrupts the expression:
(new Timed(new RelativeTime(50,0))).doInterruptible(
new Interruptible() {

public void run(AsynchronouslyInterruptedException e) {
The run method will have 50 ms to execute. At the end of this time an asynchronous

exception will be fired, interrupting the run method.

pubTlic void interruptAction(AsynchronouslyInterruptedException e)
{
}

144

TIMED

AIE Example 3

An asynchronous exception may be bound to an AsyncEvent. This allows a single
asynchronous event to be used to interrupt multiple threads. It also allows
implementation dependent external events (happenings) to be used to fire
asynchronous exceptions that interrupt threads.

class Interrupt extends AsynchronouslyInterruptedException {
Nested EventHandler class will fire this asynchronous exception when the event itself

is fired.

private class EventHandler extends AsyncEventHandler {
AsyncEvent event;
AsynchronouslyInterruptedException aie;
public EventHandler(AsyncEvent event,
AsynchronouslyInterruptedException aie) {
super(new SchedulingParameters(RealtimeThread.MAX_PRIORITY),null
,null);
this.event = event;
this.aie = aie;
try {
event.addHandler(this);
} catch (AdmissionControlException e) {

}

}
public void handleAsyncEvent() {
aie.fire();

3

EventHandler handler;
public Interrupt(AsyncEvent event) {
super();
Create the EventHandler for firing the asynchronous exception.

handler = new EventHandler(event, this);
In order to asynchronously interrupt code running in another thread(s), it is necessary

to obtain a reference to the AsyncEvent that has been bound to the asynchronous
exceptions that those threads are expecting. Once the reference is obtained, the other
threads can be interrupted by calling the fire method on the asynchronous event.
initialization code - spawn some threads

getInterrupt().fireQ);

ASYNCHRONY 145

For the special case of POSIX systems, this can also be initiated in response to a
signal:

POSIXSignalHandler.addHandler (POSIXSignalHandler.SIGINT,
new AsyncEventHandler() {

public void handleAsyncEvent() {
AIEExample3.getInterrupt().fire(Q);

}

b;
}
}

AIE Example 4

Interruptible blocks of code can be nested. In this case the asynchronous exception of
the less deeply nested interruptible block takes precedence over the more
asynchronous exception of the more deeply nested block. If an asynchronous
exception is “in flight” for the most deeply nested interruptible block when the other
asynchronous exception is fired, the new exception supersedes the first, causing the
interrupt to transfer control to the end of the outer block. An anonymous inner class
can be used to code inline interruptible code, as in the following:

AsynchronouslyInterruptedException hiPriority =
new AsynchronouslyInterruptedException();
hiPriority.doInterruptible(new Interruptible() {
public void run(AsynchronouslyInterruptedException e)
throws AsynchronouslyInterruptedException {
AsynchronousTlyInterruptedException ToPriority =
new AsynchronouslyInterruptedException();
This method can be interrupted at any point in time by the hiPriority exception

ToPriority.doInterruptible(new Interruptible() {
public void run(AsynchronouslyInterruptedException e)
throws AsynchronouslyInterruptedException {
this method can be interrupted at any point in time by either the hiPriority or the

loPriority exception. In the case of the hiPriority exception, control is transferred to
the end of the outer run method.

public void interruptAction(AsynchronouslyInterruptedException e)
{
}

146 TIMED

SYSTEM AND OPTIONS 147

CHAPTER 10

System and Optio'ns

This section contains classes that:

 Provide a common idiom for binding POSIX signals to instancesyfcEvent
when POSIX signals are available on the underlying platform.
« Provide a class that contains operations and semantics that affect the entire system.
 Provide the security semantics required by the additional features in the entirety of
this specification, which are additional to those required by implementations of the
Java Language Specification.
TheRealtimeSecurity class provides security primarily for physical memory access.

Semantics and Requirements

This list establishes the semantics and requirements that are applicable across the
classes of this section. Semantics that apply to particular classes, constructors,
methods and fields will be found in the class description and the constructor, method,
and field detail sections.

1. The POSIX signal handler class is required to be available when implementations
of this specification execute on an underlying platform that provides POSIX
signals or any subset of signals named with the POSIX names.

2. The RealtimeSecurity class is required.

Rationale

This specification accommodates the variation in underlying system variation in a
number of ways. One of the most important is the concept of optionally required

148

POSIX$NALHANDLER

classes (e.g., the POSIX signal handler class). This class provides a commonality that
can be relied upon by program logic that intends to execute on implementations that
themselves execute on POSIX compliant systems.

TheRealtimeSystem class functions in similar capacity to java.lang.System.
Similarly, therRealtimeSecurity class functions similarly to
java.lang.SecurityManager.

10.1 POSIXSignalHandler

SyntaxXpublic final class POSIXSignalHandler

Use instances afsyncEvent;,, to handle POSIX signals. Usage:
POSIXSignalHandler.addHandler (SIGINT, intHandler);

This class is required to be implemented only if the underlying operating system
supports POSIX signals.

10.1.1Fields

public static final int SIGABRT
Used by abort, replace SIGIOT in the future.

public static final int SIGALRM
Alarm clock.

public static final int SIGBUS
Bus error.

public static final int SIGCANCEL
Thread cancellation signal used by libthread.

public static final int SIGCHLD
Child status change alias (POSIX).

public static final int SIGCLD
Child status change.

public static final int SIGCONT
Stopped process has been continued.

public static final int SIGEMT
EMT instruction.

public static final int SIGFPE
Floating point exception.

SYSTEM AND OPTIONS 149

pubTlic static final int SIGFREEZE
Special signal used by CPR.

public static final int SIGHUP
Hangup.
public static final int SIGILL
lllegal instruction (not reset when caught).

public static final int SIGINT
Interrupt (rubout).

pubTlic static final int SIGIO
Socket I/O possible (SIGPOLL alias).

pubTlic static final int SIGIOT
IOT instruction.

pubTlic static final int SIGKILL
Kill (cannot be caught or ignored).

public static final int SIGLOST
Resource lost (eg, record-lock lost).

public static final int SIGLWP
Special signal used by thread library.

public static final int SIGPIPE
Write on a pipe with no one to read it.

public static final int SIGPOLL
Pollable event occured.

pubTlic static final int SIGPROF
Profiling timer expired.

pubTlic static final int SIGPWR
Power-fail restart.

pubTlic static final int SIGQUIT
Quit (ASCII FS).

public static final int SIGSEGV
Segmentation violation.

public static final int SIGSTOP
Stop (cannot be caught or ignored).

pubTlic static final int SIGSYS
Bad argument to system call.

pubTlic static final int SIGTERM
Software termination signal from Kkill.

150 POSIX$NALHANDLER

public static final int SIGTHAW
Special signal used by CPR.

public static final int SIGTRAP
Trace trap (not reset when caught).

public static final int SIGTSTP
User stop requested from tty.

public static final int SIGTTIN
Background tty read attempted.

public static final int SIGTTOU
Background tty write attempted.

public static final int SIGURG
Urgent socket condition.

public static final int SIGUSR1
User defined signal = 1.

public static final int SIGUSR2
User defined signal = 2.

public static final int SIGVTALRM
Virtual timer expired.

public static final int SIGWAITING
Process’s lwps are blocked.

public static final int SIGWINCH
Window size change.

public static final int SIGXCPU
Exceeded cpu limit.

public static final int SIGXFSZ
Exceeded file size limit.

10.1.2Methods

public static synchronized void addHandler(int signal,
AsyncEventHandler;,9 handler)
Add the givemsyncEventHandler;,4 to the list of handlers of the

AsyncEvent,, of the given signal.

Parameters:
signal - One of the POSIX signals from this (eihjs.SIGLOST).
handler - An AsyncEventHandler;,9 Which will be scheduled
when the given signal occurs.

SYSTEM AND OPTIONS 151

public static synchronized void removeHandler(int signal,
AsyncEventHandler;,9 handler)

Remove the giveAsyncEventHandler;,9 to the list of handlers of the
AsyncEvent,, Of the given signal.

Parameters:
signal - One of the POSIX signals from this (eihjs.SIGLOST).
handler - An AsyncEventHandler;,9 Which will be scheduled

when the given signal occurs.
public static synchronized void setHandler(int signal,
AsyncEventHandler;,9 handler)
Set the giverAsyncEventHandler;,9 as the handler of thesyncEvent,;
of the given signal.

Parameters:
signal - One of the POSIX signals from this (eihjs.SIGLOST).
handler - An AsyncEventHandler;,9 Which will be scheduled
when the given signal occurs. If h is null then no handler will be
associated with this (i.e., remove all handlers).

10.2 RealtimeSecurity

Syntaxipublic class RealtimeSecurity

Security policy object for real-time specific issues. Primarily used to control
access to physical memory.

10.2.1Constructors

public RealtimeSecurity()

10.2.2Methods

pubTlic void checkAccessPhysical ()
Check whether the application is allowed to access physical memory.
Throws: SecurityException - the application doesn't have permission.

pubTlic void checkAccessPhysicalRange(long base, long size)
Check whether the application is allowed to access physical memory

within the specified range.

152 REALTIME SYSTEM

Throws: SecurityException - the application doesn’t have permission.

public void checkSetFactory()
Check whether the application is allowed to set factory objects.

Throws: SecurityException - the application doesn’t have permission.

public void checkSetScheduler()
Check whether the application is allowed to set the scheduler.

Throws: SecurityException - the application doesn't have permission.

10.3 RealtimeSystem

Syntaxpublic class RealtimeSystem

RealtimeSystem provides a means for tuning the behavior of the implementation
by specifying parameters such as the maximum number of locks that can be in use
concurrently, and the monitor control policy. In additi®@aaltimeSystem provides a
mechanism for obtaining access to the security manager, garbage collector and
scheduler, to make queries from them or to set parameters.

10.3.1Fields

public static final byte BIG_ENDIAN
public static final byte BYTE_ORDER
public static final byte LITTLE_ENDIAN

10.3.2Methods

public static GarbageCollectorg, currentGC()
Return a reference to the currently active garbage collector for the heap.

Returns: A GarbageCollectorg, Object which is the current collector
collecting objects on the traditional Java heap.

public int getConcurrentLocksUsed()
Get the maximum number of locks that have been used concurrently. This
value can be used for tuning the concurrent locks parameter, which is used
as a hint by systems that use a monitor cache.

Returns: An int whose value is the number of locks in use at the time of
the invocation of the method.

SYSTEM AND OPTIONS 153

public int getMaximumConcurrentLocks()
Get the maximum number of locks that can be used concurrently without
incurring an execution time increase as set by the
setMaximumConcurrentLocks () methods.

Returns: An int whose value is the maximum number of locks that can be
in simultaneous use.

public static RealtimeSecurity;s; getSecurityManager()
Get a reference to the security manager used to control access to real-time
system features such as access to physical memory.

Returns: A RealtimeSecurity;s; object representing the default real-
time security manager.

public void setMaximumConcurrentLocks(int number)
Set the anticipated maximum number of locks that may be held or waited
on concurrently. Provide a hint to systems that use a monitor cache as to
how much space to dedicate to the cache.

Parameters:
number - An integer whose value becomes the number of locks that
can be in simultaneous use without incurring an execution time
increase. lhumber is less than or equal to zero nothing happens.

public void setMaximumConcurrentlLocks(int number, boolean hard)
Set the anticipated maximum number of locks that may be held or waited
on concurrently. Provide a limit for the size of the monitor cache on
systems that provide one if hard is true.

Parameters:
number - The maximum number of locks that can be in simultaneous
use without incurring an execution time increaseutber is
less than or equal to zero nothing happens.
hard - If true, number sets a limit. If a lock is attempted which would
cause the number of locks to exceedber then a
ResourcelLimitError;sg iS thrown.

public static void setSecurityManager(RealtimeSecurity;s; manager)
Set a new real-time security manager.

Parameters:
manager - A RealtimeSecurity;s; object which will become the
new security managetr.

Throws: SecurityException - Thrown if security manager has already
been set.

154 REALTIME SYSTEM

EXCEPTIONS 155

CHAPTER 11

Excepﬁoné

This section contains classes that:

< Add additional exception classes required by the entirety of the other sections of this
specification.
* Provide for the ability to asynchronously transfer the control of program logic.

Semantics and Requirements

This list establishes the semantics and requirements that are applicable across the
classes of this section. Semantics that apply to particular classes, constructors,
methods and fields will be found in the class description and the constructor, method,
and field detail sections.

1. All classes in this section are required.

2. All exceptions, exceptsynchronouslyInterruptedException, are required to
have semantics exactly as those of their eventual superclassjavihe
hierarchy.

3. Instances of the clagsynchronouslyInterruptedException can be generated
by execution of program logic and by internal virtual machine mechanisms that
are asynchronous to the execution of program logic which is the target of the
exception.

4. Program logic that exists in methods that throw
AsynchronouslyInterruptedException iS subject to receiving an instance of
AsynchronouslyInterruptedException at any time during execution.

156

ILLEGALASSIGNMENTERROR

Rationale

The need for additional exceptions given the new semantics added by the other
sections of this specification is obvious. That the specification attaches new,
nontraditional, exception semanticsAkynchronouslyInterruptedException is,
perhaps, not so obvious. However, after careful though, and given our self-imposed
directive that only well-defined code blocks would be subject to having their control
asynchronously transferred the chosen mechanism is logical.

11.1 lllegalAssignmentError

SyntaxXpublic class I1legalAssignmentError extends java.lang.Error

All Implemented Interfacegava.io.Serializable

The exception thrown on an attempt to make an illegal assignment. For example,
this will be thrown if logic attempts to assign a reference to an object in
ScopedMemoryg, to a field in an object ibmmortalMemoryy; .

11.1.1Constructors

public ITlegalAssignmentError()
A constructor fort11egalAssignmentError.

public IllegalAssignmentError(java.lang.String description)
A descriptive constructor farllegalAssignmentError.

Parameters:
description - Description of the error

11.2 MemoryAccessError

SyntaxX:public class MemoryAccessError extends java.lang.Error

All Implemented Interfacegava.io.Serializable

EXCEPTIONS 157

The exception thrown on an attempt to refer to an object in an inaccessible
MemoryAreag, . FOr example this will be thrown if logic in a
NoHeapRealtimeThread,, attampts to refer to an onject in the traditional Java heap.

11.2.1Constructors

public MemoryAccessError()
A constructor foMemoryAccessError.

public MemoryAccessError(java.lang.String description)
A descriptive constructor fotemoryAccessError.

Parameters:
description - Description of the error.

11.3 MemoryScopeException

SyntaXipublic class MemoryScopeException extends java.lang.Exception

All Implemented Interfacegava.io.Serializable

Thrown if construction of any of the wait-free queues is attempted with the ends
of the queues in incompatible memory areas.

11.3.1Constructors

public MemoryScopeException()
A constructor foMemoryScopeException.

pub1ic MemoryScopeException(java.lang.String description)
A descriptive constructor fofemoryScopeException.

Parameters:
description - A description of the exception.

158 OFFSETOUTOFBOUNDSEXCEPTION

11.4 OffsetOutOfBoundsException

Syntaxipublic class OffsetOutOfBoundsException extends
java.lang.Exception

All Implemented Interfacegava.io.Serializable

Thrown if the constructor of BmmortalPhysicalMemory ,,,
ScopedPhysicalMemory ;; , RawMemoryFloatAccess,;, Of RawMemoryAccess 7, IS
given an invalid address.

11.4.1Constructors

public OffsetOutOfBoundsException()
A constructor foloffsetOutOfBoundsException.

public OffsetOutOfBoundsException(java.lang.String description)
A descriptive constructor f@ffsetOutOfBoundsException.

Parameters:
description - A description of the exception.

11.5 ResourceLimitError

Syntax:public abstract class ResourceLimitError extends java.lang.Error

All Implemented Interfacegava.io.Serializable

Thrown if an attempt is made to exceed a system resrouce limit, such as the
maximum number of locks.

11.5.1Constructors

public ResourceLimitError()
A constructor folResourceLimitError.

public ResourceLimitError(java.lang.String description)
A descriptive constructor f®esourceLimitError.

Parameters:
description - The description of the exception.

EXCEPTIONS 159

11.6 SizeOutOfBoundsException

Syntax:ipublic class SizeOutOfBoundsException extends java.lang.Exception

All Implemented Interfacegava.io.Serializable

Thrown if the constructor of BnmortalPhysicalMemory 5,
ScopedPhysicalMemory,; , RawMemoryFloatAccess;,, Of RawMemoryAccess ;, IS
given an invalid size or if an accessor method on one of the above classes would cause
access to an invalud address.

11.6.1Constructors

public SizeOutOfBoundsException()
A constructor foiSizeOutOfBoundsException.

pubTlic SizeOutOfBoundsException(java.lang.String description)
A descriptive constructor for %i zeOutOfBoundsException.

Parameters:
description - The description of the exception.

11.7 ThrowBoundaryError

Syntaxipublic class ThrowBoundaryError extends java.lang.Error

All Implemented Interfacegava.io.Serializable

The error thrown byublic void enter(java.lang.Runnable logic)y
when ajava.lang.Throwable allocated from memory that is not usable in the
surrounding scope tries to propagate out of the scope piilihéc void
enter(java.lang.Runnable logic)gy .

11.7.1Constructors

pubTic ThrowBoundaryError()
A constructor fofThrowBoundaryError.

pubTlic ThrowBoundaryError(java.lang.String description)
A descriptive constructor fathrowBoundaryError.

160 UNSUPPORTEPHYSICALMEMORYEXCEPTION

Parameters:
description - Description of the error.

11.8 UnsupportedPhysicalMemoryException

Syntax:public class UnsupportedPhysicalMemoryException extends
java.lang.Exception

All Implemented Interfacegava.io.Serializable

Thrown when the underlying hardware does not support the type of physical
memory given to the a physical memaryeate () method. SeeRawMemoryAccess 7,
RawMemoryFloatAccess,; ImmortalPhysicalMemory,, ScopedPhysicalMemory ;;

11.8.1Constructors

public UnsupportedPhysicalMemoryException()
A constructor fotunsupportedPhysicalMemoryException.

public UnsupportedPhysicalMemoryException(java.lang.String
description)
A descriptive constructor forinsupportedPhysicalMemoryException

Parameters:
description - The description of the exception.

161

162

This is a very condensed summary of all of the classes defined in this specification,
listed alphabetically. Itis done in the style introduced by Patrick Chan in his excellent
Java Developers Almanaklere is a legend that shows the meaning of the various
parts of the table:

00O ~NO Ol WN -

(1 W D
jovaxeafime |

Object

@-—) wThread @—} Runnable
wRealtimeThread Schedulable
void addToFeasibility()
@-} | RealtimeThread currentRealtimeThread ()

void deschedulePeriodic ()
MemoryArea getMemoryAreal()
Scheduler getScheduler()
SchedulingParameters getSchedulingParameters ()

void interrupt ()
@—) RealtimeThread ()
RealtimeThread (SchedulingParameters scheduling)
void sleep (Clock clock, HighResolutionTimetime)
@ / throws InteruptedException
void sleep (HighResolutionTimetime)
throws InteruptedException
boolean waitForNextPeriod ()
throws llegalThreadStateException

L L] %

. The name of the class.

. The name of the package containing the class

. The chain of superclasses. Each class is a subclass of the one above it.

. The names of the interfaces implemented by each class.

. A static method.

. A constructor.

. The return type of a method or the declared type of an instance variable.

. The name of the class member. Ifitis a method, the parameter list and optional

throws clause follows. Members are arranged alphabetically.

ALMANAC

163

CHAPTER 12

Almanac

AbsoluteTime javax.realtime

Object

(] HighResoTutionTime
(] AbsoluteTime

Comparable

I o |

AbsoTuteTime

AbsoluteTime
AbsoluteTime
AbsoluteTime
AbsoluteTime
java.util.Date
void
RelativeTime
RelativeTime
AbsoluteTime
AbsoluteTime
String

absoTute(Clock cTock, AbsoTuteTime destination)
AbsoluteTime()

AbsoluteTime(AbsoTuteTime time)
AbsoluteTime(java.util.Date date)

AbsoluteTime(Tong millis, int nanos)

add(Tong mil1lis, int nanos)

add(Tong mi1lis, int nanos, AbsoluteTime destination)
add(RelativeTime time)

add(RelativeTime time, AbsoluteTime destination)
getDate()

set(java.util.Date date)

subtract(AbsoluteTime time)

subtract(AbsoluteTime time, RelativeTime destination)
subtract(RelativeTime time)

subtract(RelativeTime time, AbsoluteTime destination)
toString()

164

AperiodicParameters javax.realtime

Object
[J ReleaseParameters
[AperiodicParameters
OJ AperiodicParameters(RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

AsyncEvent javax.realtime

Object
[] AsyncEvent

void addHandTer(AsyncEventHandTer handler)
O AsyncEvent()
ReTeaseParameters createReleaseParameters()
void fire()
boolean handledBy(AsyncEventHandler target)
void removeHandler(AsyncEventHandler handler)
void setHandler(AsyncEventHandler handler)

AsyncEventHandler javax.realtime

Object
[] AsyncEventHandler Schedulable
void addToFeasibiTity()
O AsyncEventHandler ()
O AsyncEventHandler (boolean nonheap)
0 AsyncEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory, MemoryArea area,
ProcessingGroupParameters group)

a AsyncEventHandler(SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memory, MemoryArea area,
ProcessingGroupParameters group,
boolean nonheap)

°¢ int getAndClearPendingFireCount()
¢ int getAndDecrementPendingFireCount()
¢ int getAndIncrementPendingFireCount()

MemoryArea getMemoryArea()
MemoryParameters getMemoryParameters()

ALMANAC 165

ProcessingGroupParame- getProcessingGroupParameters()
ters
ReleaseParameters getReleaseParameters()
Scheduler getScheduler()
ScheduTlingParameters getSchedulingParameters()

O void handleAsyncEvent()
void removeFromFeasibility()
° void run()

void setMemoryParameters(MemoryParameters memory)

void setProcessingGroupParameters(ProcessingGroupParameter
S parameters)

void setReleaseParameters(ReleaseParameters parameters)

void setScheduler(Scheduler scheduler)

throws I11egalThreadStateException
void setSchedulingParameters(SchedulingParameters paramete

rs)
AsynchronouslyInterrupt- javax.realtime
edException
Object
[Throwable java.io.Serializable

] Exception
O InterruptedException

O AsynchronousTyInterruptedException
] AsynchronousTyInterruptedException()

boolean disable()
boolean doInterruptible(Interruptible Togic)
boolean enable()
boolean fire()
O AsynchronouslyInter- getGeneric()
ruptedException
booTean happened(boolean propagate)
boolean isEnabled()
void propagate()

166

BoundAsyncEventHandler javax.realtime

Object
L1 AsyncEventHandler Schedulable
L1 BoundAsyncEventHandler
U BoundAsyncEventHandTer()
O BoundAsyncEventHandler(SchedulingParameters schedulin

g, ReleaseParameters release,
MemoryParameters memory, MemoryArea area,
ProcessingGroupParameters group,

boolean nonheap)

Object
U Clock
] CTock()
O Clock getRealtimeClock()
O RelativeTime getResolution()
AbsoluteTime getTime()
O void getTime(AbsoluteTime time)
O void setResolution(RelativeTime resolution)
GarbageCollector javax.realtime
Object
[] GarbageCollector
U GarbageColTector()
0 RelativeTime getPreemptionLatency()
HeapMemory javax.realtime
Object
L] MemoryArea

L] HeapMemory
U HeapMemory 1instance()

ALMANAC 167

HighResolutionTime javax.realtime

Object
(] HighResoTutionTime Comparable
O AbsoTuteTime absoTute(Clock cTock, AbsoTuteTime dest)
int compareTo(HighResolutionTime time)
int compareTo(Object object)
boolean equals(HighResolutionTime time)
boolean equals(Object object)
° Tong getMilliseconds()
° int getNanoseconds ()

int hashCode()

void set(HighResolutionTime time)
void set(Tong millis)

void set(Tong millis, int nanos)

I11egalAssignmentError javax.realtime

Object
L] Throwable java.io.Serializable
L] Error
[1I17egalAssignmentError
[l TTTegaTAssignmentError()
0 I11egalAssignmentError(String description)

ImmortalMemory javax.realtime

Object
L] MemoryArea

[ImmortalMemory
1 ImmortaTMemory instance()

168

ImmortalPhysicalMemory javax.realtime

Object
[MemoryArea
L] ImmortalPhysicalMemory

0 ImmortalPhysicalMemory cpeate(Object type, long size)
throws SecurityException, SizeOutOfBoundsEx-
ception, UnsupportedPhysicalMemoryException

O ImmortalPhysicalMemory create(Object type, Tong base, Tong size)
throws SecurityException, SizeOutOfBoundsEx-

ception, OffsetOutOfBoundsException, Unsupport-
edPhysicalMemoryException

Ce ImmortalPhysicalMemory(ImmortalPhysicalMemory memory,
long base, long size)
Cle ImmortalPhysicalMemory(Tong base, long size)
O void setFactory(PhysicalMemoryFactory factory)
ImportanceParameters javax.realtime
Object

[] SchedulingParameters
O PriorityParameters

(] ImportanceParameters
int getImportance()

0 ImportanceParameters(int priority, int importance)
void setImportance(int importance)
String toString()

Interruptible javax.realtime

Interruptible

vo1d interruptAction(AsynchronousTyInterruptedException ex
ception)

void pun(AsynchronousTyInterruptedException exception)
throws AsynchronouslyInterruptedException

ALMANAC 169

LTMemory javax.realtime

Object
L] MemoryArea
] ScopedMermory

L] LTMemory
L [TMemory(Tong initialSizeInBytes,
long maxSizeInBytes)

MemoryAccessError javax.realtime
Object
[Throwable java.io.Serializable
O Error

] MemoryAccessError
U MemoryAccessError()

O MemoryAccessError(String description)

MemoryArea javax.realtime

Object
] MemoryArea

void enter(RunnabTe Togic)
0 MemoryArea getMemoryArea(Object object)
e MemoryArea(long sizeInBytes)
Tong memoryConsumed ()
Tong memoryRemaining()
Object newArray(Class type, int number)
throws InstantiationException, I11egalAccess-
Exception
Object newInstance(Class type)
throws InstantiationException, I11egalAccess-

Exception
long size()

MemoryParameters javax.realtime

Object
] MemoryParameters
Tong getATTocationRate()

Tong getMaxImmortal()
Tong getMaxMemoryArea()

170

] MemoryParameters(Tong maxMemoryArea,
long maxImmortal)
throws I11egalArgumentException
O MemoryParameters(long maxMemoryArea,
Tong maxImmortal, long allocationRate)
throws I11egalArgumentException
(Om Tong NO_MAX
void setAllocationRate(long rate)
boolean setMaxImmortal(long maximum)
boolean setMaxMemoryArea(long maximum)

MemoryScopeException javax.realtime

Object
[Throwable java.io.Serializable
L] Exception
[MemoryScopeException
L MemoryScopeException()
0 MemoryScopeException(String description)

MonitorControl javax.realtime

Object
[MonitorControl
U MonitorControT()
0 void setMonitorControl(MonitorControl policy)
O void setMonitorControl (Object monitor,

MonitorControl policy)

ALMANAC 171

NoHeapReal timeThread javax.realtime

Object
[Thread Runnable
[] RealtimeThread Schedulable
[NoHeapRealtimeThread
1 NoHeapRealtimeThread(ScheduTingParameters scheduling,

MemoryArea area)
throws I11egalArgumentException

0 NoHeapReal timeThread(SchedulingParameters scheduling,
ReleaseParameters release, MemoryArea area)
throws I11egalArgumentException

0 NoHeapRealtimeThread(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory, MemoryArea area,

ProcessingGroupParameters group, Runnable Togic)
throws I11egalArgumentException

Om int NORM_PRIORITY
OffsetOutOfBoundsExcep- javax.realtime
tion

Object
L] Throwable java.io.Serializable

L] Exception

] 0ffsetOutOfBoundsException
0ffsetOut0fBoundsException()

0ffsetOutOfBoundsException(String description)

OneShotTimer javax.realtime

U
U

Object
[J AsyncEvent
U Timer
] OneShotTimer
U OneShotTimer(HighResoTutionTime time,
AsyncEventHandler handler)
O OneShotTimer (HighResolutionTime start, Clock clock,

AsyncEventHandler handler)

172

PeriodicParameters javax.realtime

Object
[J ReleaseParameters
[PeriodicParameters
ReTativeTime getPeriod()
HighResolutionTime getStart()
O PeriodicParameters(HighResolutionTime start,
RelativeTime period, RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)
void setPeriod(RelativeTime period)
void setStart(HighResolutionTime start)

PeriodicTimer javax.realtime

Object
[] AsyncEvent
U Timer
U PeriodicTimer
ReTeaseParameters createReleaseParameters()
void fire()
AbsoluteTime getFireTime()
RelativeTime getInterval()
O PeriodicTimer(HighResolutionTime start,
RelativeTime interval,
AsyncEventHandler handler)
O PeriodicTimer(HighResolutionTime start,
RelativeTime interval, Clock clock,
AsyncEventHandler handler)
void setInterval(RelativeTime interval)

PhysicalMemoryFactory javax.realtime

Object
[1 PhysicalMemoryFactory
Om String ALIGNED
Om String BYTESWAP
+ Object create(Object memoryType, Class physMemType,
long base, long size)
(Om String DMA
+ long getTypedMemoryBase(Object memoryType, Tong size)

(Om String SHARED

ALMANAC

POSIXSignalHandler javax.realtime

Object
(] POSIXSignalHandler

]

0

0
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om
Om

void addHandTer(int signal, AsyncEventHandTer handTer)

void removeHandler(int signal, AsyncEventHandler handler)

void setHandler(int signal, AsyncEventHandler handler)
int SIGABRT
int SIGALRM
int SIGBUS
int SIGCANCEL
int SIGCHLD
int SIGCLD
int SIGCONT
int SIGEMT
int SIGFPE
int SIGFREEZE
int SIGHUP
int SIGILL
int SIGINT
int SIGIO
int SIGIOT
int SIGKILL
int SIGLOST
int SIGLWP
int SIGPIPE
int SIGPOLL
int SIGPROF
int SIGPWR
int SIGQUIT
int SIGSEGV
int SIGSTOP
int SIGSYS
int SIGTERM
int SIGTHAW
int SIGTRAP
int SIGTSTP
int SIGTTIN
int SIGTTOU
int SIGURG
int SIGUSR1
int SIGUSR2
int SIGVTALRM

173

174

Om nt SIGWALTING
Om int SIGWINCH
Om int SIGXCPU
Om int SIGKFSZ
PriorityCeilingEmulation javax.realtime
Object

[MonitorControl

L1 PriorityCeilingEmulation
int getDefaultCeiling()

0 PriorityCeilingEmulation(int ceiling)
PriorityInheritance javax.realtime
Object

[MonitorControl
1 PriorityInheritance

] PriorityInheritance instance()
a PriorityInheritance()
PriorityParameters javax.realtime
Object

[1 SchedulingParameters

L1 PriorityParameters
int getPriority()

0 PriorityParameters(int priority)
void setPriority(int priority)
throws I11egalArgumentException
String toString()

PriorityScheduler javax.realtime

Object
[J Scheduler
] PriorityScheduler
3 void addToFeasibiTity(ScheduTabTe s)
boolean changeIfFeasible(Schedulable schedulable,
ReleaseParameters release,
MemoryParameters memory)
void fireSchedulable(Schedulable schedulable)
int getMaxPriority()
O int getMaxPriority(Thread thread)

ALMANAC

int getMinPriority()

O int getMinPriority(Thread thread)
int getNormPriority()
O int getNormPriority(Thread thread)
String getPolicyName()
O PriorityScheduler instance()
boolean isFeasible()
O PriorityScheduler()
3 void removeFromFeasibility(Schedulable s)

ProcessingGroupParame- javax.realtime

ters

Object
L] ProcessingGroupParameters
ReTativeTime getCost()
AsyncEventHandler getCostOverrunHandler()
RelativeTime getDeadline()
AsyncEventHandler getDeadlineMissHandler()
RelativeTime getPeriod()
HighResolutionTime getStart()
O ProcessingGroupParameters(HighResolutionTime start,
RelativeTime period, RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)
void setCost(RelativeTime cost)
void setCostOverrunHandler(AsyncEventHandler handler)
void setDeadline(RelativeTime deadline)
void setDeadlineMissHandler(AsyncEventHandler handler)
void setPeriod(RelativeTime period)
void setStart(HighResolutionTime start)

RationalTime javax.realtime

Object
] HighResoTutionTime Comparable
(] RelativeTime

[RationalTime
AbsoTuteTime absoTute(Clock cTock, AbsoTuteTime destination)

void addInterarrivalTo(AbsoluteTime destination)
int getFrequency()
RelativeTime getInterarrivalTime(RelativeTime dest)
O RationalTime(int frequency)

175

176

] RationalTime(int frequency, Tong millis, int nanos)
throws I11egalArgumentException
0 RationalTime(int frequency, RelativeTime interval)

void set(long millis, int nanos)
throws I11egalArgumentException
void setFrequency(int frequency)

RawMemoryAccess javax.realtime

Object
[] RawMemoryAccess
] RawMemoryAccess create(Object type, Tong size)
throws SecurityException, 0ffsetOutOfBoundsEx-

ception, SizeOutOfBoundsException, Unsupported-
PhysicalMemoryException

O RawMemoryAccess create(Object type, long base, Tong size)
throws SecurityException, 0ffsetOutOfBoundsEx-

ception, SizeOutOfBoundsException, Unsupported-
PhysicalMemoryException

byte getByte(long offset)
throws 0ffset0Out0fBoundsException, SizeOut0f-
BoundsException

void getBytes(Tong offset, byte[] bytes, int Tow,
int number) throws 0ffsetOutOfBoundsException,
SizeOutOfBoundsException

int getInt(long offset)
throws 0ffsetOut0fBoundsException, SizeOutOf-
BoundsException

void getInts(long offset, int[] ints, int Tow, int number)
throws 0ffsetOut0fBoundsException, SizeOut0f-
BoundsException

Tong getLong(Tong offset)
throws 0ffsetOut0fBoundsException, SizeOutOf-

BoundsException
void getLongs(Tong offset, Tong[] Tlongs, int Tow,
int number) throws 0ffsetOutOfBoundsException,

SizeOutOfBoundsException
long getMappedAddress()

short getShort(long offset)

throws 0ffsetOut0fBoundsException, SizeOut0f-
BoundsException

ALMANAC

177

Le
Le

void getShorts(Tong offset, short[] shorts, int Tow,
int number) throws 0ffsetOut0OfBoundsException,
SizeOutOfBoundsException
Tong map()
Tong map(Tong base)
long map(Tong base, long size)
RawMemoryAccess(long base, long size)
RawMemoryAccess (RawMemoryAccess memory, Tong base,
long size)
void setByte(long offset, byte value)
throws o0ffsetOut0fBoundsException, SizeOutOf-
BoundsException
void setBytes(Tong offset, byte[] bytes, int Tow,

int number) throws OffsetOutOfBoundsException,
SizeQutOfBoundsException

void setInt(long offset, int value)
throws 0ffsetOut0fBoundsException, SizeQutOf-
BoundsException

void setInts(long offset, int[] ints, int Tow, int number)
throws o0ffsetOut0fBoundsException, SizeOutOf-
BoundsException

void setLong(Tong offset, Tong value)
throws o0ffsetOut0fBoundsException, SizeOutOf-
BoundsException

void setLongs(long offset, Tong[] Tongs, int Tow, int n)
throws o0ffsetOut0fBoundsException, SizeQutOf-
BoundsException

void setShort(long offset, short value)
throws o0ffsetOut0fBoundsException, SizeOutOf-

BoundsException
void setShorts(long offset, short[] shorts, int Tow,

int number) throws 0ffsetOutOfBoundsException,

SizeQutOfBoundsException
void unmap()

178

RawMemoryFloatAccess javax.realtime

Object
[RawMemoryAccess
] RawMemoryFloatAccess
0 RawMemoryFToatAccess createFloatAccess(Object type, long size)
throws SecurityException, 0ffsetOutOfBoundsEx-
ception, SizeOutOfBoundsException, Unsupported-
PhysicalMemoryException
O RavMemoryFloatAccess createFloatAccess(Object type, long base, long size)
throws SecurityException, 0ffsetOutOfBoundsEx-
ception, SizeOutOfBoundsException, Unsupported-
PhysicalMemoryException
byte getDouble(long offset)
throws 0ffsetOut0fBoundsException, SizeOutOf-
BoundsException
void getDoubles(long offset, double[] doubless, int Tow,
int number) throws 0ffsetQutOfBoundsException,
SizeOutOfBoundsException
byte getFloat(long offset)
throws 0ffsetOut0fBoundsException, SizeOutOf-
BoundsException
void getFloats(long offset, float[] floats, int Tow,
int number) throws 0ffset0utOfBoundsException,
SizeOutOfBoundsException
Ce RawMemoryFloatAccess(long base, long size)
Cle RawMemoryFloatAccess (RawMemoryAccess memory,
long base, long size)
void setDouble(Tong offset, double value)
thI‘OWSOffsetOUtOfBoundsException, SizeQutOf-
BoundsException
void setDoubles(long offset, double[] doubles, int Tow,
int number) throws 0ffsetOut0fBoundsException,
SizeOQutOfBoundsException
void setFloat(Tong offset, float value)
throws offsetOut0fBoundsException, SizeOutOf-
BoundsException
void setFloats(long offset, float[] floats, int Tow,
int number) throws offsetOut0fBoundsException,
SizeOutOfBoundsException

ALMANAC 179

Real timeSecurity javax.realtime

Object
[] RealtimeSecurity

voTd checkAccessPhysical() throws SecurityException

void checkAccessPhysicalRange(Tong base, Tong size)
throws SecurityException

void checkSetFactory() throws SecurityException

void checkSetScheduler() throws SecurityException

O RealtimeSecurity()
RealtimeSystem javax.realtime
Object
[] RealtimeSystem
Um byte BIG_ENDIAN
Om byte BYTE_ORDER
O GarbageCollector currentGC()

int getConcurrentLocksUsed()
int getMaximumConcurrentLocks()
RealtimeSecurity getSecurityManager()
Om byte LITTLE_ENDIAN
void setMaximumConcurrentLocks(int number)
void setMaximumConcurrentLocks(int number, boolean hard)

O

O void setSecurityManager (RealtimeSecurity manager)
throws SecurityException

Real timeThread javax.realtime

Object
[Thread Runnable
[RealtimeThread Schedulable
void addToFeasibility()
O RealtimeThread currentRealtimeThread()

void deschedulePeriodic()
MemoryArea getMemoryArea()
MemoryParameters getMemoryParameters()
ProcessingGroupParame- getProcessingGroupParameters()
ters
ReleaseParameters getReleaseParameters()
Scheduler getScheduler()
ScheduTlingParameters getSchedulingParameters()

180

O OoOOd

void interrupt()
RealtimeThread()
RealtimeThread(SchedulingParameters scheduling)
RealtimeThread(SchedulingParameters scheduling,
ReleaseParameters release)
RealtimeThread(SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memory, MemoryArea area,
ProcessingGroupParameters group, Runnable Togic)
void removeFromFeasibility()
void schedulePeriodic()
void setMemoryParameters(MemoryParameters parameters)
void setProcessingGroupParameters(ProcessingGroupParameter
S parameters)
void setReleaseParameters(ReleaseParameters parameters)
void setScheduler(Scheduler scheduler)

throws I11egalThreadStateException
void setSchedulingParameters(SchedulingParameters scheduli
ng)
void sleep(Clock clock, HighResolutionTime time)
throws InterruptedException
void sleep(HighResolutionTime time)
throws InterruptedException

boolean waitForNextPeriod()

throws I11egalThreadStateException

RelativeTime javax.realtime

Object

L] HighResolutionTime
] RelativeTime

Comparable

OooOooO

AbsoTuteTime absoTute(Clock cTock, AbsoTuteTime destination)
RelativeTime add(Tong millis, int nanos)

RelativeTime add(Tong millis, int nanos, RelativeTime destination)
RelativeTime add(RelativeTime time)

RelativeTime add(RelativeTime time, RelativeTime destination)

void addInterarrivalTo(AbsoluteTime destination)

RelativeTime getInterarrivalTime(RelativeTime destination)

RelativeTime()
RelativeTime(long miTlis, int nanos)
RelativeTime(RelativeTime time)

ALMANAC 181

° ReTativeTime subtract(ReTativeTime time)
RelativeTime subtract(RelativeTime time, RelativeTime destination)
String toString()

ReleaseParameters javax.realtime

Object
[J ReleaseParameters
ReTativeTime getCost()
AsyncEventHandler getCostOverrunHandler()
RelativeTime getDeadline()
AsyncEventHandler getDeadlineMissHandler()
Oe ReleaseParameters(RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)
void setCost(RelativeTime cost)
void setCostOverrunHandler(AsyncEventHandler handler)
void setDeadline(RelativeTime deadline)
void setDeadlineMissHandler(AsyncEventHandler handler)

ResourceLimitError javax.realtime

Object
[Throwable java.io.Serializable
O Error
] ResourceLimitError
O ResourcelLimitError()
O ResourceLimitError(String description)

Schedulable javax.realtime
Schedulable Runnable

void addToFeasibility()

MemoryParameters getMemoryParameters()

ReleaseParameters getReleaseParameters()

Scheduler getScheduler()
SchedulingParameters getSchedulingParameters()
void removeFromFeasibility()
void setMemoryParameters(MemoryParameters memory)
void setReleaseParameters(ReleaseParameters release)
void setScheduler(Scheduler scheduler)
void setSchedulingParameters(SchedulingParameters scheduli
ng)

182

Scheduler javax.realtime

Object
U Scheduler
e void addToFeasibiTity(ScheduTabTe scheduTabTe)
boolean changeIfFeasible(Schedulable schedulable,
ReleaseParameters release,
MemoryParameters memory)
ScheduTler getDefaultScheduler()
String getPolicyName()
boolean isFeasible()
void removeFromFeasibility(Schedulable schedulable)
Scheduler()
void setDefaultScheduler(Scheduler scheduler)

SchedulingParameters javax.realtime

O
Ry I |

Object
[] SchedulingParameters
UJ ScheduTingParameters()
ScopedMemory javax.realtime
Object

[] MemoryArea
L] ScopedMemory
void enter(Runnable Togic)
int getMaximumSize()
MemoryArea getOuterScope()
Object getPortal()
O ScopedMemory(Tong size)
void setPortal(Object object)

ALMANAC 183

ScopedPhys-icalMemory javax.realtime

Object
L] MemoryArea
L] ScopedMemory
] ScopedPhysicalMemory
0 ScopedPhysicalMemory create(Object type, long base, long size)

throws SecurityException, SizeOutOfBoundsEx-
ception, OffsetOutOfBoundsException, Unsupport-
edPhysicalMemoryException

Lle ScopedPhysicalMemory(long base, Tong size)
Lle ScopedPhysicalMemory (ScopedPhysicalMemory memory,
long base, long size)
0 void setFactory(PhysicalMemoryFactory factory)
SizeOutOfBoundsException javax.realtime
Object
L] Throwable java.io.Serializable

L] Exception

[] SizeOutOfBoundsException
S1zeOut0fBoundsException()

SizeOutOfBoundsException(String description)

SporadicParameters javax.realtime

Object
L] ReleaseParameters
L] AperiodicParameters
[] SporadicParameters
ReTativeTime getMinimumInterarrival()
void setMinimumInterarrival(RelativeTime minimum)
O SporadicParameters(RelativeTime minInterarrival,

RelativeTime cost, RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

U
O

184

ThrowBoundaryError javax.realtime

Object
] Throwable java.io.Serializable
U Error
[ThrowBoundaryError
U ThrowBoundaryError()
0 ThrowBoundaryError(String description)

Timed javax.realtime

Object
[Throwable java.io.Serializable
L] Exception
[InterruptedException
[1 AsynchronousyInterruptedException

[Timed
booTean doInterruptible(Interruptible Togic)
void resetTime(HighResolutionTime time)

O Timed(HighResoTutionTime time)
throws I11egalArgumentException

Timer javax.realtime

Object
[AsyncEvent

O Timer
ReTeaseParameters createReleaseParameters()

void disable()

void enable()

Clock getClock()

AbsoluteTime getFireTime()
void reschedule(HighResolutionTime time)
void start()
e Timer(HighResolutionTime t, Clock c,
AsyncEventHandler handler)

ALMANAC 185

UnsupportedPhysicalMemo- javax.realtime
ryException

Object
L] Throwable java.io.Serializable
L] Exception
] UnsupportedPhysicalMemoryException
L UnsupportedPhysicalMemoryException()
0 UnsupportedPhysicalMemoryException(String description

)
VTMemory javax.realtime

Object
] MemoryArea
(] ScopedVemory

LI VTMemory
[l VIMemory(int initial, int maximum)

WaitFreeDequeue javax.realtime

Object
L] WaitFreeDequeue
Object blockingRead()

booTean plockingWrite(Object object)
throws MemoryScopeException
boolean force(Object object)
Object nonBlockingRead()
boolean nonBlockingWrite(Object object)
throws MemoryScopeException
O WaitFreeDequeue(Thread writer, Thread reader,
int maximum, MemoryArea area)
throws I11egalArgumentException, I1legalAcces-

sException, ClassNotFoundException, Instantia-
tionException

186

WaitFreeReadQueue javax.realtime

Object
[J WaitFreeReadQueue

void clear()
boolean isEmpty()
boolean isFull()
Object read()
int size()
void waitForData()
O WaitFreeReadQueue(Thread writer, Thread reader,
int maximum, MemoryArea memory)

throws I11egalArgumentException, Instantia-
tionException, ClassNotFoundException, I11ega-
1AccessException

O WaitFreeReadQueue(Thread writer, Thread reader,

int maximum, MemoryArea memory, boolean notify)
throws I11egalArgumentException, Instantia-
tionException, ClassNotFoundException, I11ega-
1AccessException

booTean write(Object object) throwSMemoryScopeException

WaitFreeWriteQueue javax.realtime

Object
[WaitFreeWriteQueue
void hind(Thread writer, Thread reader, MemoryArea memory)

throws I11egalArgumentException, I1legalAcces-
sException, InstantiationException
void clear()
boolean force(Object object)
boolean isEmpty()
boolean isFull()
Object read()
int size()
O WaitFreeWriteQueue(Thread writer, Thread reader,
int maximum, MemoryArea memory)

throws I11egalArgumentException, I11egalAcces-
sException, ClassNotFoundException, Instantia-
tionException

booTean write(Object object) throwWSMemoryScopeException

Bibliography

10.

11.

12.

13.

. J.H. Anderson, S. Ramamurthy, and K. JefRgal-Time Computing with Lock-

Free Shared Object$EEE Real-Time Systems Symposium 1995, pp. 28-37.

. J. Anderson, R. Jain, S. Ramamuriigjt-Free Object-Sharing Schemes for

Real-Time Uniprocessors and MultiprocessoEEE Real-Time Systems
Symposium 1997, pp. 111-122.

. H. Attiya and N.A. LynchTime Bounds for Real-Time Process Control in the

Presence of Timing UncertainhfeEE Real-Time Systems Symposium 1989, pp.
268-284.

. T.P. Baker and A. Shawhe Cyclic Executive Model and AJBEE Real-Time

Systems Symposium 1988, pp. 120-129.

. T.P. BakerA Stack-Based Resource Allocation Policy for Realtime Progesses

IEEE Real-Time Systems Symposium 1990, pp. 191-200.

. T. Baker and 0. PaziReal-Time Features for Ada 9¥EE Real-Time Systems

Symposium 1991, pp. 172-180.

. S.K. Baruah, A.K. Mok, and L.E. Rosi®&reemptively Scheduling Hard-Real-

Time Sporadic Tasks on One Proces6EE Real-Time Systems Symposium
1990, pp. 182-190.

. L. Carnahan and M. Ruark (edRequirements for Real-Time Extensions for the

Java Platform National Institute of Standards and Technology, September 1999,
Available at http://www.nist.gov/rt-java.

. Patrick Chan, Rosanna Lee, and Douglas Krahter Java Class Libraries

Second Edition, Volume 1, Supplement for the Java 2 Platform Standard Edition,
v1.2, Addison-Wesley, 1999.

M.-Z. Chen and K.J. LirA Priority Ceiling Protocol for Multiple-Instance
ResourceslEEE Real-Time Systems Symposium 1991, pp. 140-149.

S. Cheng, J.A,Stankovic, and K. RamamrithBymamic Scheduling of Groups

of Tasks with Precedence Constraints in Distributed Hard Real-Time Systems
IEEE Real-Time Systems Symposium 1986, pp. 166-174.

R.I. Davis, K. W. Tindell, and A. BurnScheduling Slack Time in Fixed Priority
Preemptive SystemiEEE Real-Time Systems Symposium 1993, pp. 222-231.
B.O. Gallmeister and C. Lanié&tarly Experience with POSIX 1003.4 and POSIX

187

188

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27

I003.43 IEEE Real-Time Systems Symposium 1991, pp. 190-198.

J. Gosling, B. Joy, and G. Stedlbe Java Language Specificatigxddison-
Wesley, 1996.

M.L. Green, E.Y.S. Lee, S. Majumdar, D.C. ShanAobjstributed Real Time
Operating SystemMEEE Real-Time Systems Symposium 1980, pp. 175-184.

M.G. Harbour, M.H. Klein, and J.P. Lehoczkixed Priority Scheduling of
Periodic Tasks with Varying Execution PrioritEEE Real-Time Systems
Symposium 1991, pp. 116-128.

F. Jahanian and A.K. Mok, Graph-Theoretic Approach for Timing Analysis in
Real Time LogiclEEE Real-Time Systems Symposium 1986, pp. 98-108.

K. JeffayAnalysis of a Synchronization and Scheduling Discipline for Real-Time
Tasks with Preemption ConstraintEEE Real-Time Systems Symposium 1989,
pp. 295-207.

K. Jeffay, D.F. Stanat, and C.U. Mart€ln Non-Preemptive Scheduling of
Periodic and Sporadic TaskiEEE Real-Time Systems Symposium 1991, pp.
129-139.

K. JeffayScheduling Sporadic Tasks with Shared Resources in Hard-Real-Time
SystemslEEE Real-Time Systems Symposium 1992, pp. 89-99.

K. Jeffay and D.L. Stonéccounting for Interrupt Handling Costs in Dynamic
Priority Task System$EEE Real-Time Systems Symposium 1993, pp. 212-221.

K. Jeffay and D. Bennet, Rate-Based Execution Abstraction for Multimedia
Computing Proceedings of the 5th International Workshop on Network and
Operating System Support for Digital Audio and Video (Apr. 1995).

E.D. Jensen, C.D. Locke, and H. Tokudld@ime-Driven Scheduling Model for
Real-Time Operating SysteniEEE Real-Time Systems Symposium 1985, pp.
112-133.

Mark S. Johnston&lon-Compacting Memory Allocation and Real-Time Garbage
Collection Ph.D. dissertation, The University of Texas at Austin, December
1997.

M.B. JonesAdaptive Real-Time Resource Management Supporting Modular
Composition of Digital Multimedia Servige®roceedings of the 4th Interna-
tional Workshop on Network and Operating System Support for Digital Audio
and Video (Nov. 1993).

M.B. Jones, P.J. Leach, R.P. Draves, and J.S. BeBtgyport for User-centric
Modular Real-Time Resource Management in the Rialto Operating System
Proceedings of the 5th International Workshop on Network and Operating System
Support for Digital Audio and Video (Apr. 1995).

. I. Lee and S.B. DavidsoRyotocols for Timed Synchronous Process

BIBLIOGRAPHY 189

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42

CommunicationslEEE Real-Time Systems Symposium 1986, pp. 120-137.
J.P. Lehoczky, L, Sha, and J.K. StrosniBehanced Aperiodic Responsiveness
in Hard Real-Time EnvironmentdEEE Real-Time Systems Symposium 1987,
pp. 261-270.

J. Lehoczky, L. Sha, and Y. Dinffe Rate Monotonic Scheduling Algorithm:
Exact Characterization and Average Case BehaVitEE Real-Time Systems
Symposium 1989, pp. 166-171.

J.P. Lehoczky and T.P. BakEixed Priority Scheduling of Periodic Task Sets
with Arbitrary Deadlines|EEE Real-Time Systems Symposium 1990, pp. 201-
213.

J.P. Lehoczky and S. Ramos-Thueal,Optimal Algorithm for Scheduling Soft-
Aperiodic Tasks in Fixed-Priority Preemptive SystBEE Real-Time Systems
Symposium 1992, pp. 110-124.

K.-J. Lin, S. Natarajan, and J.W.-S, Uimprecise Results: Utilizing Partial
Computations in Real-Time Systetfi<EE Real-Time Systems Symposium 1987,
pp. 210-218.

T. Lindholm and F. YellinThe Java Virtual Machine Specificatiohddison-
Wesley, second edition, 1999.

C.L. Liu and J.W. Laylanc&cheduling Algorithms for Multiprogramming in a
Hard Real-Time EnvironmenlACM 20, 1 (Jan. 1973), pp. 46-61.

J.W.-S. Liu, K.-J. Lin, and S. Nataraj&theduling Real-Time, Periodic Jobs
Using Imprecise ResulttEEE Real-Time Systems Symposium 1987, pp. 252-
260.

C. Lizzi,Enabling Deadline Scheduling for Java Real-Time CompuliigE
Real-Time Systems Symposium 1999.

C.D. Locke, D.R. Vogel. and T.J. MeslBuilding a Predictable Avionics
Platform in Ada: A Case StudfEEE Real-Time Systems Symposium 1991, pp.
180-189.

N. Lynch and N. Shavitiming-Based Mutual ExclusiptEEE Real-Time
Systems Symposium 1992, pp. 2-11.

C.W. Mercer and H. TokudBreemptibility in Real-Time Operating Systems
IEEE Real-Time Systems Symposium 1992, pp. 78-88.

C.W.Mercer,S. Savage, and H. Tokudiacessor Capacity Reserves for
Multimedia Operating SystemBroceedings of the IEEE Inter- national
Conference on Multimedia Computing and Systems (May 1994).

A. Miyoshi, T. Kitayama, H. Tokudémplementation and Evaluation of Real-
Time Java ThreaddEEE Real-Time Systems Symposium 1997, pp. 166-175.
. J.S. Ostroff and W.M, Wonhamodelling, Specifying and Verifying Real-Time

190

43.

44,

45,

46.

47.

48.

49,

50.

51.

52.

53.

54.

55.

Embedded Computer SystentsEE Real-Time Systems Symposium 1987, pp.
124-132.

Portable Operating System Interface (POSIX®) Part 1: System Application
Program Interfacelnternational Standard ISO/IEC 9945-1: 1996 (E) IEEE Std
1003.1, 1996 Edition, The Institute of Electrical and Electronics Engineers, Inc.
1996.

R. Rajkumar, L. Sha, and J.P, Lehoctky,Countering the Effects of Cycle-
Stealing in a Hard Real-Time EnvironmgliEE Real-Time Systems
Symposium 1987, pp. 2-11.

R. Rajkumar, L. Sha, and J.P. Lehoc#Rgal-Time Synchronization Protocols for
MultiprocessorslEEE Real-Time Systems Symposium 1988, pp. 259-271.

S. Ramos-Thuel and J.P. LehocZBy;Line Scheduling of Hard Deadline
Aperiodic Tasks in Fixed-Priority SystepilEEE Real-Time Systems Symposium
1993, pp. 160-171.

L. Sha, J.P, Lehoczky,and R, Rajkung&ul|utions for Some Practical Problems in
Prioritized Preemptive SchedulinEEE Real-Time Systems Symposium 1986,
pp. 181-193.

L. Sha, R. Rajkumar, and J. Lehoc#Rsiprity Inheritance Protocols: An
Approach to Real-Time SynchronizatidBEE Transactions on Computers, Sept.,
1990.

L. Sha, R. Rajkumar, and J. LehocZRgal-Time Computing using Futurebys+
IEEE Micro, June, 1991.

A.C. ShawSoftware Clocks, Concurrent Programming, and Slice-Based
SchedulinglEEE Real-Time Systems Symposium 1986, pp. 14-19.

F. SiebertReal-Time Garbage Collection in Multi-Threaded Systems on a Single
Processor|IEEE Real-Time Systems Symposium 1999.

B. Sprunt, J. Lehoczky, and L. SExploiting Unused Periodic Time for
Aperiodic Service Using the Extended Priority Exchange AlgoritBEE Real-
Time Systems Symposium 1988, pp. 251-258.

Sun Microsystems, IncThe Java Community Process Manua¢cember 1998,
Available at http://java.sun.com/aboutJava/communityprocess/
java_community_process.html.

S.R. Thuel and J.P. Lehoczitgorithms for Scheduling Hard Aperiodic Tasks in
Fixed-Priority Systems Using Slack StealiligEE Real-Time Systems
Symposium 1994, pp. 22-35.

H. Tokuda, J.W. Wendorf, and H.-Y. Wahgplementation of a Time-Driven
Scheduler for Real-Time Operating Syst#eiEE Real-Time Systems
Symposium 1987, pp. 271-280.

BIBLIOGRAPHY 191

56. D.M. Washabaugh and D. Kafutagcremental Garbage Collection of Concurrent
Objects for Real-Time ApplicationkEEE Real-Time Systems Symposium 1990,

pp. 21-31.

57. Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boyesmic
Storage Allocation: A Survey and Critical Revjémwinternational Workshop on
Memory Management, Kinross, Scotland, UK, September 1995.

58. W. Zhao and K. Ramamritham \Virtual Time CSMA Protocol for Hard Real
Time CommunicatignEEE Real-Time Systems Symposium 1986, pp. 120-127.

59. W. Zhao and J.A. StankoviBerformance Analysis of FCFS and Improved FCFS
Scheduling Algorithms for Dynamic Real-Time Computer SystEiEE Real-
Time Systems Symposium 1989, pp. 156-165.

192

Colophon

This specification document was generated from a set of Java and HTML source files.
They were compiled using javadoc and the doclet-from-hell: mifdoclet. The recent
development of mifdoclet was driven largely by the Real Time Java Expert Group. We
wanted to be able to produce a specification document that had been checked, as much
as possible, by whatever compilation tools we could find. The specification source
compiles as a Java program, and even contains a scaffold implementation which was
used to compile and run the examples.

The mifdoclet generates its output in MIF format, which was processed through
Adobe FrameMaker, http://www.adobe.com/products/framemaker, a truely wonderful
publishing package without which this book would have been much more difficult.

The source files used to produce this specification will eventually be available at
http://www.rtj.org.

193

194

Index

A

absolute 97100, 103 106
AbsoluteTime 99100

add 100101, 103 104
addHandler 12,7150
addInterarrivalTo 104106
addToFeasibility 2435, 37, 38, 131
ALIGNED 69
AperiodicParameters 448
AsyncEvent 127
AsyncEventHandler 12930

AsynchronouslyInterruptedException

136, 137

B

BIG_ENDIAN 152

bind 93

bindTo 128

blockingRead 89
blockingWrite 89
BoundAsyncEventHandler 134
BYTE_ORDER 152
BYTESWAP 69

C

changelfFeasible 338
checkAccessPhysical 151
checkAccessPhysicalRange 151
checkSetFactory 152
checkSetScheduler 152

clear 91 93

Clock 11Q 111

compareTo 9798

create 6970, 72, 73

createFloatAccess 778

createReleaseParameters 1115,
128

currentGC 152

currentRealtimeThread 24

D

deschedulePeriodic 24
disable 113137

DMA 69
dolinterruptible 137139

E

enable 113137
enter 60 64
equals 98

F

fire 115, 128 138
fireSchedulable 38
force 89 93

G

GarbageCollector 82

getAllocationRate 81

getAndClearPendingFireCount 131

getAndDecrementPendingFireCount
131

getAndincrementPendingFireCount
131

getByte 74

195

196

getBytes 74

getClock 113
getConcurrentLocksUsed 152
getCost 4451
getCostOverrunHandler 481
getDate 101

getDeadline 4451
getDeadlineMissHandler 451
getDefaultCeiling 88
getDefaultScheduler 37
getDouble 78

getDoubles 78

getFireTime 113115

getFloat 78

getFloats 78

getFrequency 107
getGeneric 138
getimportance 42

getint 74

getinterarrivalTime 104107
getinterval 116

getints 74

getLong 74

getLongs 74
getMappedAddress 75
getMaximmortal 81
getMaximumConcurrentLocks 153
getMaximumReclamationRate 83
getMaximumsSize 64
getMaxMemoryArea 81
getMaxPriority 39
getMemoryArea 2460, 132
getMemoryParameters 235, 132
getMilliseconds 98
getMinimumlinterarrival 50
getMinPriority 39
getNanoseconds 98
getNormPriority 39
getOuterScope 64

getPeriod 4751
getPolicyName 3,739

INDEX

getPortal 64

getPreemptionLatency 883, 84

getPriority 41

getProcessingGroupParameters 24
132

getReadBarrierOverhead 83

getRealtimeClock 111

getReleaseParameters 35, 132

getResolution 111

getScheduler 2435, 132

getSchedulingParameters, 2%, 132

getSecurityManager 153

getShort 75

getShorts 75

getStart 4751

getTime 111

getTypedMemoryBase 69

getWriteBarrierOverhead 83

H

handleAsyncEvent 132
handledBy 128
happened 138
hashCode 98
HeapMemory 61
HighResolutionTime 97

lllegalAssignmentError 156
ImmortalMemory 62
ImmortalPhysicalMemory 70
ImportanceParameters 42
IncrementalCollectorExample 83
instance 4062, 88

interrupt 24

interruptAction 135
Interruptible 135

iIsEmpty 91 93

isEnabled 138

isFeasible 3740

isFull 91, 93

L

LITTLE_ENDIAN 152
LTMemory 65 66

M

map 75
MarkAndSweepCollectorExample 84
MemoryAccessError 15657
MemoryArea 60

memoryConsumed 60
MemoryParameters 780
memoryRemaining 60
MemoryScopeException 157
MonitorControl 86 87

N

newArray 61

newlinstance 61

NO_MAX 80
NoHeapRealtimeThread 287, 28
nonBlockingRead 89
nonBlockingWrite 90

O

OffsetOutOfBoundsException 158
OneShotTimer 113114

P

PeriodicParameters 486
PeriodicTimer 114115
PhysicalMemoryFactory 68
POSIXSignalHandler 148
PriorityCeilingEmulation 87
Prioritylnheritance 88
PriorityParameters 41
PriorityScheduler 38

197

ProcessingGroupParameters 50
propagate 138

R

RationalTime 105106
RawMemoryAccess 7273
RawMemoryFloatAccess 77
read 9194
RealtimeSecurity 151
RealtimeSystem 152
RealtimeThread 223
RelativeTime 102103
ReleaseParameters 43
removeFromFeasibility 255, 37, 40,
132
removeHandler 128151
reschedule 113
resetTime 139
ResourceLimitError 158
run 132 135

S

Schedulable 35
schedulePeriodic 25
Scheduler 36
SchedulingParameters 40
ScopedMemory 6263
ScopedPhysicalMemory 71
set 98 99, 101, 107
setAllocationRate 81
setByte 76

setBytes 76

setCost 4452
setCostOverrunHandler 482
setDeadline 4552
setDeadlineMissHandler 452
setDefaultScheduler 37
setDouble 79

setDoubles 79

setFactory 7,172

198

setFloat 79

setFloats 79

setFrequency 107

setHandler 128151

setimportance 42

setint 76

setinterval 116

setints 76

setLong 76

setLongs 76

setMaxImmortal 81

setMaximumConcurrentLocks 153

setMaxMemoryArea 81

setMemoryParameters 255, 133

setMinimumlInterarrival 50

setMonitorControl 87

setPeriod 4,752

setPortal 64

setPriority 41

setProcessingGroupParameters 25
133

setReclamationRate 83

setReleaseParameters 36, 133

setResolution 112

setScheduler 2586, 133

setSchedulingParameters, 26, 133

setSecurityManager 153

setShort 76

setShorts 76

setStart 4752

SHARED 69

SIGABRT 148

SIGALRM 148

SIGBUS 148

SIGCANCEL 148

SIGCHLD 148

SIGCLD 148

SIGCONT 148

SIGEMT 148

SIGFPE 148

SIGFREEZE 149

INDEX

SIGHUP 149
SIGILL 149
SIGINT 149
SIGIO 149
SIGIOT 149
SIGKILL 149
SIGLOST 149
SIGLWP 149
SIGPIPE 149
SIGPOLL 149
SIGPROF 149
SIGPWR 149
SIGQUIT 149
SIGSEGV 149
SIGSTOP 149
SIGSYS 149
SIGTERM 149
SIGTHAW 150
SIGTRAP 150
SIGTSTP 150
SIGTTIN 150
SIGTTOU 150
SIGURG 150
SIGUSR1 150
SIGUSR2 150
SIGVTALRM 150
SIGWAITING 150
SIGWINCH 150
SIGXCPU 150
SIGXFSZ 150
size 61 92, 94
SizeOutOfBoundsException 159
sleep 25
SporadicParameters 489
start 113

subtract 101102 104

T

ThrowBoundaryError 159
Timed 138 139

199

Timer 112
toString 41 42, 102, 105

U

unmap 77
UnsupportedPhysicalMemoryExcepti
on 160

V

VTMemory 65

W

waitForData 92
waitForNextPeriod 26
WaitFreeDequeue 889
WaitFreeReadQueue 991
WaitFreeWriteQueue 92
write 92, 94

200 INDEX

	Contents
	Caveat
	Authors
	Preface
	Dreams
	Realization
	Acknowledgments
	A Note on Format

	Foreword
	Introduction
	Guiding Principles
	Overview of the Seven Enhanced Areas

	Design
	Scheduling
	Memory Management
	Synchronization
	Asynchronous Event Handling
	Asynchronous Transfer of Control
	Asynchronous Thread Termination
	Physical Memory Access
	Exceptions
	Minimum Implementations of the RTSJ
	Optionally Required Components
	Documentation Requirements
	Parameter Objects
	Java Platform Dependencies

	Threads
	Semantics and Requirements
	Rationale
	3.1 RealtimeThread
	3.2 NoHeapRealtimeThread
	Realtime�Thread Example

	Scheduling
	Semantics and Requirements
	Rationale
	4.1 Schedulable
	4.2 Scheduler
	4.3 PriorityScheduler
	4.4 SchedulingParameters
	4.5 PriorityParameters
	4.6 ImportanceParameters
	4.7 ReleaseParameters
	4.8 PeriodicParameters
	4.9 AperiodicParameters
	4.10 SporadicParameters
	4.11 ProcessingGroupParameters
	Scheduler Example
	Processing�Group Example

	Memory Management
	Semantics and Requirements
	Rationale
	5.1 MemoryArea
	5.2 HeapMemory
	5.3 ImmortalMemory
	5.4 ScopedMemory
	5.5 VTMemory
	5.6 LTMemory
	Scoped�Memory Example
	Scoped�Memory Example 2
	5.7 PhysicalMemoryFactory
	5.8 ImmortalPhysicalMemory
	5.9 ScopedPhysicalMemory
	5.10 RawMemoryAccess
	5.11 RawMemoryFloatAccess
	5.12 MemoryParameters
	5.13 GarbageCollector
	5.14 IncrementalCollectorExample
	5.15 MarkAndSweepCollectorExample

	Synchronization
	Semantics and Requirements
	Rationale
	6.1 MonitorControl
	6.2 PriorityCeilingEmulation
	6.3 PriorityInheritance
	6.4 WaitFreeDequeue
	6.5 WaitFreeReadQueue
	6.6 WaitFreeWriteQueue

	Time
	Semantics and Requirements
	Rationale
	7.1 HighResolutionTime
	7.2 AbsoluteTime
	7.3 RelativeTime
	7.4 RationalTime
	High�Resolution�Time Example

	Timers
	Semantics and Requirements
	Rationale
	8.1 Clock
	8.2 Timer
	8.3 OneShotTimer
	8.4 PeriodicTimer
	Timer Example

	Asynchrony
	Semantics and Requirements
	Rationale
	9.1 AsyncEvent
	9.2 AsyncEventHandler
	9.3 BoundAsyncEventHandler
	9.4 Interruptible
	9.5 AsynchronouslyInterruptedException
	9.6 Timed
	Async�Event Example
	AIE Example
	AIE Example 2
	AIE Example 3
	AIE Example 4

	System and Options
	Semantics and Requirements
	Rationale
	10.1 POSIXSignalHandler
	10.2 RealtimeSecurity
	10.3 RealtimeSystem

	Exceptions
	Semantics and Requirements
	Rationale
	11.1 IllegalAssignmentError
	11.2 MemoryAccessError
	11.3 MemoryScopeException
	11.4 OffsetOutOfBoundsException
	11.5 ResourceLimitError
	11.6 SizeOutOfBoundsException
	11.7 ThrowBoundaryError
	11.8 UnsupportedPhysicalMemoryException

	Almanac
	Bibliography
	Colophon
	Index

