11

Working with

Caché Objects

And CSP
[image: image1.png]Post-ReLATIONAL
Daaast

New Diensions
OF TRANSAGTIONAL
PERFORMANCE

InterSystems Corporation

Dec 2000

Version : Pattaya2000 2.0

Contents

31
Introduction

1.1
Typographic Conventions
3
1.2
Requirements
3
1.3
Dreamweaver and Other Editors
4
2
Configure CSP
5
3
Creating a New Application
7
3.1
Web-Server Configuration
7
3.2
Configuring an Application in Cache
8
3.3
Make a Home Page
8
4
The Edit Person Application
9
4.1
Create the Edit Person form
10
4.1.1
With Dreamweaver
10
4.1.2
Without Dreamweaver
11
4.1.3
Pretty It Up
12
4.1.4
Review the HTML
14
4.1.5
Run It
17
4.2
Adding Fields to the Form
19
4.3
How does it work ?
20
4.4
HyperEvents
22
4.4.1
Loading a Selected Person
23
4.4.2
Date of Birth and Age.
26
4.5
Changing Images
30
4.6
Posting a Form
32
4.7
Saving the Image
35
4.8
Debugging Tools – The Inspector and ObjMon
37
4.8.1
The Inspector
37
4.8.2
ObjMon
38
4.9
A Different Search
39
4.10
The Session Object
45
4.10.1
LoadPerson
46
4.10.2
Session To Form
48
4.10.3
Making The Sex Select Dynamic
50
4.10.4
Onblur : LoadPerson in Javascript
52
4.10.5
Returning from a Search
54
4.10.6
Form To Session
56
4.10.7
Saving the Data
58
4.11
Make the Picture Optional
62
4.12
Buttons
64
4.13
Searching for a Wife (or Husband) ?
67
4.14
Dogs
69

Introduction

1.1 Typographic Conventions

· Directives and Exercises are bulleted like this

Actions you need to take, and code you need to type or copy are boxed and bolded like this.

· Notes and Explanations are bulleted like this

1.2 Requirements

This section takes the student step-by-step through the process of creating a Web based interface to mimic the Edit Person exercise undertaken in Working with Caché Objects and Visual Basic.

It assumes that you

· Already have the User.Person, User.EHistory and User.Dog classes defined in the TRAIN namespace from the previous exercise and that these classes have persistent data associated with them.

· Already have Web Services installed and available on your system.

· If you are using NT/WIN98/WIN2000 there should be a \InetPub directory (If Web Services are already installed). This is the root path for the Web Server. Under \InetPub\scripts you should see the CSPmsSys.dll and CSPms.dll, version 26-October-2000. (Ensure your Explorer has View All Files enabled : dll’s are hidden by default)

· If you are using Windows 95 you can install the Personal Webserver included in the Installs directory in Pattaya2000 (Pws10a.exe) This is a free download from Microsoft as an add-on for Windows 95. This will create a \Webshare directory. If you are using Windows 95 under \Webshare\scripts you should see the CSPmsSys.dll and CSPms.dll, version 26-October-2000. (Ensure your Explorer has View All Files enabled : dll’s are hidden by default)

· If you cannot see these dll’s, or they are older versions, copy them from the \CacheSys\Bin directory into the ..\InetPub\scripts or ..\Webshare\scripts directory

· Have disabled the use of a Proxy Server from your browser. The Proxy server will not allow you to connect to your own system.

The application is by no means perfect, it is only intended to demonstrate one way that Caché Server Pages (CSP) can be used to interface to Caché data. In fact there is no locking or multi user aspects implemented at all. The exercise is also not intended to be a lesson in page designing or HTML syntax and usage. We will not cover ALL aspects of CSP either, due to time constraints. However more information can be found in the Docs set installed with Caché.

CSP utilizes “.csp” files as its source ONLY. CSP imports the definition in the .csp files and compiles Caché Object Script (COS) object classes and routines from this definition.

At run time the .csp source files are not used at all. The pages are published from Caché via the CSPms.dll on Windows Web Servers and via CSPns.dll (?) on Netscape Servers. CSP also supports Apache servers on UNIX.

Caché can behave like any other database using Active Server Page technology and connections via ODBC, however CSP offers the developer absolute freedom and control to develop complex database interfaces for transaction processing applications without any restrictions, and with superior performance when compared to ASP.

COS acts as the one of the scripting languages for Web Pages developed in CSP. As a developer you can use Java Script, VBA or any other scripting language supported within HTML. CSP will ignore these scripts during the compilation phase and these scripts will be published without change to the target browser as if they were coming from a “standard” .htm file.

1.3 Dreamweaver and Other Editors

Some parts of this exercise are possible using Macromedia’s Dreamweaver version 3. CSP offers a high degree of integration with DW3, which is recognized as one of the best web authoring tools on the market.

But CSP is in no way dependent on Dreamweaver. You can do all your web-page development using any other tool. During this course we will show you how to use Dreamweaver to save you time typing complex HTML, but we will also provide that HTML for you to copy into your editor.

Often, when developing complex dynamic logic, Dreamweaver is not the best tool to use, and you can switch from it to another editor. You can use something simple like Notepad or any other tool that can output HTML(+) as a sequential .csp file. A better choice is to use the Caché Studio for this, as it has syntax colouring and checking to help you validate your HTML as you type. The course is based on the students using Dreamweaver and/or Caché Studio.

 If you have a copy of Dreamweaver 3 installed on your machine, you can use it during the course. If you do not, we have included a free 30-day trial version of Dreamweaver in \Pattaya2000\Installs\DreamWeaver3. Note that you can only install and activate this 30-day version once on a PC.

Configure CSP

In this exercise you will see the CSP configuration screens and check that CSP is working.

For this project, we do not need to configure CSP, as it comes ready for use (in default modes), but we should check to see if the interface is working correctly.

· Firstly start up your browser and go to the URL - http://127.0.0.1/scripts/cspmssys.dll
You should see a page similar to this….

[image: image2.png]i Cache Server Page - frmPerson (Train) - Microsoft Intemet Explorer

oo
[€1 hte:7127.00 1 rain/EdiPersan.csp

User.Person

If you do not see this form then the dll is not in the right place or your web services are not operating correctly. Note that at this point the browser is not communicating with Caché. It is only communicating with the dll.

If you wish, you can browse around the system management screens, but we will come back to them later. The only thing we need to do now is test the connection to Cache :

· select the Test Server Connection option.

· The server name ‘LOCAL’ will be selected (the only one defined so far).

· select Stateless Connection
· click the Connect button
· If all is correct you should see a Caché Server Pages Test Form and you are now running directly from Caché for this test page.

2 Creating a New Application

Next we need to configure an application. First we need to enable the application within the Web-server, by defining a virtual directory for it that has execute privilege enabled, then we need to tell Cache how to handle the application :

2.1 Web-Server Configuration

On the Web-server, we need to set up an alias /train to point to a directory such as c:\pattaya2000\train, with privileges for read and execute:

For Personal Webserver go to the Properties/Administraion page

 and select WWW Administration .

Choose the directories tab, and then Add . Enter the directory name c:\pattaya2000\train , enter the Directory alias: /train . Make sure the alias has read and execute access privileges.

For IIS : Control Panel , Admin Tools , Internet Services Manager , Default Web Site , you should see CSP . Right-Click on it, Properties , Virtual Directory Local path should be c:\pattaya2000\train and Execute Permissions should say

 Scripts and Executables
This essentially tells the Web-server that it is allowed to execute the file ‘linked’ to the .csp extension (c:\webshare\scripts\cspms.dll or c:\inetpub\scripts\cspms.dll) when it receives a URL of the format http://ipaddress/train/…
It also specifies that any file reference (for example an image) in a page received from Cache in the format \train\…(?) should be resolved to c:\pattaya2000\train ON THE WEB-SERVER.

Although there is a screen for defining non-default application access in the Web Gateway Management screens, we do not need to define our application here. We will simply use the default “/” application for now (which is a hierarchical definition)

2.2 Configuring an Application in Cache

We do need to configure the application within Cache:

· start the Cache Configuration Manager and select the CSP tab button.

· right-click on the Applications icon and select Add
· For Enter URL:, enter /train
· Change the Namespace from USER to TRAIN
· Change the Cache Physical Path to c:\pattaya2000\train or wherever your TRAIN Cache.dat is located. This is where your .csp files will be found.

· Press OK and then Activate your changes.

2.3 Make a Home Page

Just to make your life easier, you might like to set up a home page with some useful links.

· If you do not already have a home page, copy

\Pattaya2000\Solution\CSP\Default.htm

into ..\wwwroot and set your browser to take its home page from there

· If you already have a home page, add the following lines to it :

 EditPerson in TRAIN

The Edit Person Application

In the \Pattaya2000\Solution directory is the source for the application.

Don’t do it the first time, but if you wish to go straight to the finished product you can simply
· Copy *.csp and *.cdl from \Pattaya2000\Solution\CSP to the \Pattaya2000\Train directory.

· Load and Compile the CDLs:

· TRAIN>do $system.OBJ.LoadDir(“.”,”ck”)

· Copy \Pattaya2000\Sounds\Dog.wav into \Pattaya2000\Train

· Recompile the application (?)

· Run the Application by navigating to http://127.0.0.1/train/editperson.csp
· Test this !!

2.4 Create the Edit Person form

The first step in creating the project is to create the outline HTML that we will be using for the main EditPerson form. There are many ways to do this, including

· use the Cache Form Wizard from within Dreamweaver

· use the Cache Form Wizard without Dreamweaver

· use Dreamweaver to build the form step-by-step

· use Cache Studio, NotePad, or any other editor to create the HTML

We will use one of the first 2 methods.

2.4.1 With Dreamweaver

If you have Dreamweaver 3 installed and working, start Dreamweaver .

At the ‘Connect To Cache’ window, select Train and Connect

Select Untitled Document and from the menu select Insert/Cache CSP/Form Wizard

Press Next at the Welcome screen.

At the Class screen, select User.Person

At the Properties screen, click on each of the following in this order:

%Id()
Name
SSN
DOB
Sex
Age
Home.Street
Home.City
Home.State
Home.Zip
Spouse.Name

Spouse.Age

Colours
Picture
TotalBill
Press Next

At the Attributes screen, select Picture and change the size from (5,5) to (150,150)

Press Next and then Finish to generate the form.

Save the form as \Pattaya2000\Train\EditPerson.csp
2.4.2 Without Dreamweaver

Use an operating system Run command to execute \cachesys\bin\CacheWebFormWizard.exe
Press Next at the Welcome screen.

At the ‘Connection’ window, select Train and then Next
At the Class screen, select User.Person

At the Properties screen, click on each of the following in this order:

%Id()
Name
SSN
DOB
Sex
Age
Home.Street
Home.City
Home.State
Home.Zip
Spouse.Name

Spouse.Age

Colours
Picture
TotalBill
Press Next

At the Attributes screen, select Picture and change the size from (5,5) to (150,150)

At the Finish screen, select the file name \Pattaya2000\Train\EditPerson.csp and then Finish to generate and save the form

Pretty It Up
Next we will use the power of Dreamweaver to ‘pretty up’ the HTML, to make our form fit onto even a medium-resolution browser window, and to make it look more like the VB project we have built.

Here, if you do not have a working Dreamweaver, you can try making similar changes using another editor, or you can just sit back and watch, and then take a copy of the resulting HTML file which we have saved for you.

If you have shut-down your Dreamweaver, start it up again, and re-open \Pattaya2000\Train\EditPerson.csp

· Select, drag and drop the Age: caption and input box alongside the Sex field. Delete the blank row (select it and press <delete>

· Change the Home Street input field to 25 characters (right-click, Properties, Char width=25)

· Change the Home City input field to 10 characters, and drag it alongside the Home Street, delete the ‘Home City’ line

· Change the Home State input field to 6 characters, and drag it alongside the Home City, delete the ‘Home State’ line

· Change the Home Zip input field to 6 characters, and drag it alongside the Home State, delete the ‘Home Zip’ line

· Change the caption Home Street to just Home

· Change the Spouse Name input field to 30 characters

· Change the Spouse Age input field to 5 characters, and drag it alongside the Spouse Name, delete the ‘Spouse Age’ line

· Change the caption Spouse Name to just Spouse

· Change the SSN input field to be 20 characters

· Drag and drop the Search button after the SSN field

· Select the second column of the table, then from the menu Modify/Table/Insert Rows or Columns. Change to ‘Insert columns”, “1”, “after current column”.

· Drag and drop the picture into the new third column of the first row

· Delete the ‘Picture’ row where the picture was

· Take the right margin of the table and pull to the right, making the table bigger. Repeat until the Home fields all fit on one row

Save this as the updated version of \Pattaya2000\Train\EditPerson.csp

The project at this point has been saved in

\Pattaya2000\Solution\CSP\Step1

If you do not have a working Dreamweaver, or you wish to get your project cosmetically identical to the instructors, just Copy EditPerson.csp from \Pattaya2000\Solution\CSP\Step1 to \Pattaya2000\Train.

Everyone: Open the file with NotePad (or any other editor) . Find the line that says :

<td></td>

and Change it to read:

 <td rowspan=6></td>

Save the file.

When you navigate to http://127.0.0.1/train/EditPerson.csp (or select the link on your home page), you should see something like this :

[image: image3.png]i Cache Server Page - frmPerson (Train) - Microsoft Intemet Explorer

User.Person

 [image: image4.png]‘2 About CSP Web Gateway
File Edit

icrosoft Interet Explorer

View Favortes Tooks Help
= Q@ [& lQ &H 3]
Back Sop_efesh oo | Seach Favoes Hoioy | Ml Fmt
‘Adress [€] hig:/127.00.1 Jscrts/espmssys =] @6
|

Management
System Status
Close Connections
Test Server Connection
View Event Log
Corfiguration
Default Parameters
Server Access
Application Access
About CSP Gateway

Caché Server Pages

eb

About CSP Web Gateway

version: 4.0.770.0
Gateway Build: 657,496
Web Server Name: 127.0.0.1
Web Server Type: Microsoft (or ISAPI-compliant) Web Server: Microsoft-PWS-95/2.0 Cache-Server-
Pages/4.0,770,0-657.496

Copyright © 1997 - 2000 InterSystems Corporation

(e
[CACHE 5]

10
g Start| (3 Exploring - D:\Cached0\P.

R Wi Wad Wk][& oost CoF web Goter|

./

® Inteet

¥a 5 al@ 134

[image: image5.png]i Cache Server Page - frmPerson (Train) - Microsoft Intemet Explorer

oo
[€1 hte:7127.00 1 rain/EdiPersan.csp

User.Person

2.4.3 Review the HTML
Take a look at the generated HTML that the Form Wizard wrote for you. We will do this by

 starting the Cache Studio selecting File/Open in the TRAIN namespace, then Files of Type: *.CSP

There will be just one, train\EditPerson.csp, so Select it and you will see the HTML.

We will examine the interesting parts, one by one.

<html>

<head>

<title>Cache Server Page - frmPerson (Train)</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

</head>

A standard header with a default <title>

<body bgcolor="#FFFFFF">

<table width=100% border=0>

 <tr>

 <td colspan=2 bgcolor=#D0D0FF>

 <center>

 User.Person

 </center>

 </td>

 </tr>

</table>

A table to format the page header, which defaults to the full name of the class we have used, User.Person

<!-- use CSP:OBJECT tag to create a reference to an instance of the class -->

<csp:object name="objPerson" classname="User.Person" objid=#(%request.Get("OBJID"))#>

The <csp:object> tag declares that we want to work (primarily) with objects of the User.Person class.

If the URL that calls the page supplies a value for the OBJID parameter, then this will be used as the Id for the class, else a new instance will be created.

The syntax #(xxx)# tells CSP that the expression xxx is a Cache server-side expression, not an HTML client-side one.

When using CSP, a number of environment objects are automatically set up and maintained in the Cache server process. One of them is an instance of the %CSP.Request class, with an oref of %request.

The %CSP.Request class has many properties and methods (see the documentation), but the most important one is the Get() method, which retrieves values from the calling URL. If the calling URL contains something like …OBJID=23… then the expression %request.Get(“OBJID”) will return 23. If the URL does not contain the parameter OBJID, the expression will return “”

<!-- use CSP:SEARCH tag to create a javascript function to invoke a search page -->

<csp:search name="frmPerson_search" classname="User.Person" where="Name,SSN,DOB">

The <csp:search> tag declares that we want to use a search on the page. The search will be a dynamic SQL search of the class User.Person, allowing the user to enter values for Name, SSN, and DOB.

Note that these three properties were defaulted because they are the only indexed properties in the class (it has nothing to do with the existence of any queries in the class)

<form name="frmPerson" cspbind="objPerson" onSubmit='return frmPerson_validate();'>

Next comes the form itself. Note the cspbind keyword, which states that the form should be bound to the object declared in the <csp:object> tag named ‘objPerson’. This causes (behind the scenes) a lot of code to be generated for handing the object to the form, validating and saving the result.

The onSubmit action here will only be used if the form is processed in ‘method=post’ mode, which we will do later, but in the Form Wizard output the form is hyperevent driven, and this code would not be used.

<input type=text name=sys_Id cspbind=%Id() size=10 readonly>

The first field we come across is not actually a property, it is a method, the %Id() method. By specifying cspbind=%Id() we are actually invoking the instance method objPerson.%Id()

By default, a method field is readonly

The Picture (a Cache BinaryStream) is also bound to the form. That’s all we have to do to get the picture to appear !!!

<input type=text name=Name cspbind=Name size=50>

The majority of fields are just data properties, using cspbind to ‘connect’ them to the properties of the objPerson object

<input type=button name=btnSearch value=Search onClick='frmPerson_search();'>

The (person-) search button is of type button (not submit !), so the only thing that will happen when it is pressed is that the javaascript function frmPerson_search() will be run.

This javascript function is fully code-generated as a result of using the <csp:search> tag

<select name=Sex cspbind=Sex>

 <option value=""></option>

 <option value="Male">Male</option>

 <option value="Female">Female</option>

</select>

The Sex field, because it has a VALUELIST defined, is code-generated as a drop-down with the DISPLAYLIST values from the object class.

Note that there are THREE values, including “”, because we did not say that the property was ‘required’

<input type=text name=Age cspbind=Age size=10 readonly>

The Age field, because it is a calculated field in the object, is made into a readonly field on the form

<input type=text name=HomeStreet cspbind=Home.Street size=25>

Embedded objects, such as the Home Address object, are treated with ease

<input type=text name=SpouseName cspbind=Spouse.Name size=30 readonly>

We can also reference attributes of references objects, and these become readonly by default as well.

Note that we would have got very different functionality if we had chosen the Spouse reference itself (rather than some properties of the referenced objects). You can view this functionality by making another form using the wizard, as HOMEWORK !

<textarea name=Colours cspbind=Colours cols=50 rows=3></textarea>

A ListOfDataTypes, such as the Colours property is automatically bound to a <textarea> control, with one item in each line of the control

<input type=button name=btnNew value=New onClick='frmPerson_new();'>

<input type=button name=btnSave value=Save onClick='frmPerson_save();'>

The New and Save buttons are also buttons (and not type=submit), so they will simply execute the code-generated frmPerson_new() and frmPerson_save() methods. More about these later.

That’s it

2.4.4 Run It

But that is not the whole story. Run this page by navigating to http://127.0.0.1/train/EditPerson.csp or select the link on your home page.

On your browser, select View/Source and examine the code that the browser is executing. It looks different. Some of it is similar to the above, but some has been omitted and a whole lot of javascript has appeared. How did this happen ?

Well, it is a long and complex story, so take a deep breath and read on :

1. The browser sends your request (for example “http://127.0.0.1/train/EditPerson.csp?OBJID=14”) to the web-server

2. The web-server sees the .csp extension and knows that it must run cspms.dll, so it looks up the virtual directory /train and sees that it has execute privilege

3. The web-server invokes CSPms.dll

4. CSPms.dll looks at the message and sees the URL /train/EditPerson.csp, so it looks for the application /train. We did not set this up, so it (hierarchically) looks for the application /, which does exist

5. Application / is set up to use the LOCAL connection, which is defined to use the Cache server at 127.0.0.1 on port 1972. The web-server makes (or uses) a connection and sends the message to Cache

6. The Cache server, listening on port 1972, sees that the message is a CSP request for application /train

7. It looks that up and sees that it needs to switch to namespace TRAIN

8. It takes the URL and constructs the class name for the requested page. /train/EditPerson.csp is ‘mapped’ automatically to class csp.train.editperson

9. Because the application has ‘Auto-compile = yes’, Cache checks the date of the class compile against the date of the file EditPerson.csp in the c:\pattaya2000\train directory (specified as ‘Cache Physical Path’ in the application definition)

10. If the file is newer than the class (it has been changed), Cache invokes the CSP compiler to reparse the file, and generate and compile the class csp.train.editperson. It is in the compiler that most of the work of CSP is done, converting the CSP tags and extensions into pure HTML and Javascript

11. Cache invokes the csp.train.editperson.Page() method

12. The Page() method invokes the csp.train.editperson.OnPage() method

13. The OnPage() method writes out pure browser-compatible HTML and JavaScript, which is forwarded to the web-server. This step is often referred to as ‘publishing the page’

14. The web-server passes on the HTML and JavaScript to the browser, which renders the page

Lets see the page in action. Navigate to http://127.0.0.1.train/EditPerson.csp.

Press the Search button. The generated Cache Search page is displayed, with the option to specify all or part of the Name, SSN and/or DOB.

Press the Search button on this page, and you will see all the Persons in your database.

Select one from the second half of the list (these will probably be married), and the system returns to the main page displaying your selected Person data

Change the SSN and Press the Save button . The database has been updated.

Change the Home City to Pattaya and press the Save . Note the error window that appears, as a result of the validation that we have previously built into the Address class.

Change the Home City to Denver and press the Save . The database update will succeed.

Pretty good, the wizard has done a lot of work for us. But the project is not finished, and for the rest we will have to do some work !

Adding Fields to the Form

We have created the form, and we show it to our customer, who says ‘That looks nice, but I forgot to include the telephone number. Please add it’.

The first step is to add it to the class, recompile and repopulate the database. But we did that already, there is a ‘Phone’ property in the Person class.

To add it to the form, we can use Dreamweaver if you wish, but for such a small change Cache Studio is just as good, and we should start using it:

Start Cache Studio and Load train\EditPerson.csp.

We will put the phone number after the Age field, so move down until you see the line

<input type=text name=Age cspbind=Age size=10 readonly>

and immediately after it Add

 Phone:<input type=text name=Phone cspbind=Phone size=20>

Save the file.

Go back to your browser session and just press Refresh or F5 .

It will take a second or two, while Cache recompiles your page.

If you have not got a person selected, use the search to select one.

 Change the Phone Number and press Save to update the database.

If only everything were that simple !!

How does it work ?

Remember earlier we said that when you run a CSP page, you end up running the OnPage() event of a Cache class, in this case csp.train.editperson.OnPage()

Let us look at that method:

Open the Object Architect , Select the Train connection
OR, if it is already open, select File/Connect and the Select the Train connection.

This will refresh the contents of the architect and is needed any time a CSP page has been compiled (if you wish to see the generated methods)

You will now see two packages (more if your options are switched on), ‘User’ and ‘csp’

Ensure your Options are all disabled, except ‘Show all classes in type comboboxes’

Expand the ‘csp’ package and you will see the class csp.train.editperson.

Select this class and view the methods .

Open the OnPageBODY method (which does most of the work) and see the code.

The method uses Write statements to send HTML to the browser.

It starts with all the ‘vanilla’ HTML that we included in our page.

When it gets to the <csp:object> tag, it opens the instance of the specified class (%OpenId if there was an OBJID parameter in the URL, else %New)

A little later, in the <form> section, we start seeing our fields. For example:

Set %value = ..EscapeHTML($ZSTRIP(

$S(objPerson="":"",1:(objPerson.NameLogicalToDisplay(objPerson.Name))),">W"))

Write "<input"

Write " VALUE="""_(%value)_""""

Write " type=text"

Write " name=Name"

Write " size=50"

Write ">"

This code takes the property (Name in this case) and sends it through the LogicalToDisplay method. All properties are by default displayed in their DISPLAY formats by CSP.

The COS function $ZSTRIP(…,”>W”) is then called to strip off any trailing whitespace from the value.

The method ..EscapeHTML() is needed just in case the value of the name contains some HTML-sensitive characters, like ‘>’. This method (supplied by CSP) escapes any such characters, making sure the browser does not get ‘confused’.

You should always use such techniques (including the ..QuoteJS() method discussed later) in your pages to protect them from unexpected characters.

The method then outputs the plain HTML, which just contains the value of the name.

What this whole method is doing is writing out a whole page of plain HTML and JavaScript to the browser, including the data from the database as constant strings.

HyperEvents

When you pressed the Save button, did you notice that the form was NOT repainted ?

If you go back and change the DOB field, and press Save, you will notice that the data fields ARE refreshed (the Age is updated).

Many traditional web pages would require a complete page repaint in order to refresh the data, especially if the data is to be saved in a database, or if the new data is coming from the server (the new Age was calculated by Cache, not by the browser). This is usually done by using a ‘method=post’ argument on the form, and having one or more ‘type=submit’ buttons. When the user presses one of these buttons, the whole contents of the form are collected up and shipped to the web-server, which processes them and sends back a whole new page.

This mode of working is available within CSP, and is needed for some functionality, such as updating images, so we will use it later.

But the form that the wizard generates does not use this mechanism. Instead, each button is ‘type=button’ and has an associated ‘onClick’ event. The code for the onClick event is some JavaScript which sends a message to Cache to perform some processing and return some JavaScript to be executed in the browser, typically to refresh the values of selected fields. This process is called a HyperEvent, and is one of the strongest features of CSP, enabling complex dynamic in-page processing to occur on the (Cache) server.

You can mix HyperEvents with ‘method=post’ processing, as we will do later, but here we show you how to use HyperEvents by adding some new ones:

2.4.5 Loading a Selected Person

The Search button gives us a way to select a Person object. If you call the search, and select a person (for example #14), you will come back to your main page which will be refreshed, using the URL http://127.0.0.1/train/EditPerson.csp?OBJID=14

But if our project has decided to make the Person Id into a usable field, and let the user type this number into the system , then we need to change the Id field on the form.

First we need to make it not readonly, and we need to add a HyperEvent that will go to Cache and return all the data for the selected person into the form fields. We will call this HyperEvent on the ‘onBlur’ event of the Id field, which is similar to VB’s LostFocus event.

Switch back to the Studio, find the lines that read

 <td>

 <div align=right>ID:</div>

 </td>

 <td>

 <input type=text name=sys_Id cspbind=%Id() size=10 readonly>

 </td>

and change them to

 <td>

 <div align=right>ID:</div>

 </td>

 <td>

 <input type=text name=sys_Id cspbind=%Id() size=10

 onblur="#server(..frmPersonObjToForm(self.document.frmPerson.sys_Id.value))#;">

 </td>

We took out the ‘readonly’ (and the color that signifies read-only on the form), and we added the onBlur event :

onblur=”#server(..frmPersonObjToForm(self.document.frmPerson.sys_Id.value))#;”>

Browser-side events are coded in JavaScript. The #server(…)# syntax causes CSP to generate a JavaScript call for a HyperEvent to Cache. The arguments for #server(…)# are :

 <methodcall>([javaparam],[javaparam],…)

where

methodcall is a reference to a class method, which can be either

..methodname
in the class of the page (here csp.train.editperson), or

 ##class(class)methodname

javaparam is a javascript expression that provides the value of the parameter for the method

The method ..frmPersonObjToForm is a method that CSP generates for us when we cspbind the form frmPerson to an object, as we did in the <form name="frmPerson" cspbind="objPerson”> tag.

This method has one required parameter, the value of the Id that is to be loaded.

It will return a long string of javascript which is executed on the browser, and loads the new values into all the form fields.

The expression ‘self.document.frmPerson.sys_Id.value’ is the full Document Object Model (DOM) reference for the value of the sys_Id control on the frmPerson form in the current document, which contains the Id that is to be loaded.

Typing ‘self.document.frmPerson’ each time is a bit annoying, so let us define a browser variable ‘me’ for this.

Just after the <form> tag, Add the lines
<script language=javascript>

var me = self.document.frmPerson;

</script>

and we can then shorten the onBlur (and any future code within the form) to

onblur="#server(..frmPersonObjToForm(me.sys_Id.value))#;">
Now we are ready to compile and test the new version. If we are working with the Studio, we can press the Compile button, and the .csp page will be saved and compiled, so when we switch to the browser it will already be ‘up-to-date’

If we were working with another editor, we would just save the file, then press ‘Refresh’ in the browser, and the system would recompile the file for us

We can now test the page. Switch back to your browser and press Refresh.

Move to the Id field and Enter a Person Id, such as 19 and <tab>. The data will appear.

Try other Id’s

[in beta6 there is a bug that prevents pictures from appearing properly sometimes. This is fixed in beta7]

Let us take a look at how that worked.

First, in the browser, select View/Source . At the Id field, you will see some code like :

<input VALUE="19" type=text name=sys_Id size=10 onblur=”cspRunServerMethod

 ('vqZ8SVfYAi8Pm2ScAQg60bG/H1%2Bdr9rpM/9nJkHuZ2ZAr2fkczKaXO8tJ8oD5OD8',

 me.sys_Id.value);”>

This is a call to a Javascript function cspRunServerMethod, which is provided by CSP. It takes the class and method names (encrypted for security reasons) and sends them to Cache to execute. In this case, the hidden method name is ..frmPersonObjToForm

Go back to the Object Architect for class csp.train.editperson .

Open the frmPersonObjToForm method and see the code.

The method starts by Opening (or Newing) the class (if not already opened).

Then it takes each property (that was listed with a cspbind parameter) and includes code like :

Write "if (form.Name != null) { form.Name.value = ",

 ..QuoteJS($S(obj="":"",1:(obj.NameLogicalToDisplay(obj.Name)))),";}",$C(13,10)

The main part of this line is

 ..QuoteJS(obj.NameLogicalToDisplay(obj.Name))

which takes the property (Name in this case) and sends it through the LogicalToDisplay method. All properties are by default displayed in their DISPLAY formats by CSP.

The method ..QuoteJS() is needed just in case the value of the name contains some JavaScript-sensitive characters, like the single-quote. The method QuoteJS (supplied by CSP) escapes any such characters, making sure JavaScript does not get ‘confused’.

What this whole method is doing is to return a (long) JavaScript command string that will be executed on the browser. In this case, the string will put new values into the form fields.

Note that this code is similar to, but not the same as, the code in csp.train.editperson.OnPageBODY().

The code here outputs JavaScript, whereas that method was outputting HTML. You will often find the need to write your code in each of these two modes.

The project to this point is saved in

\pattaya2000\solution\csp\step2

Date of Birth and Age.

Date Formats
You may have noticed that the DOB field appears in US format. Why is this? When we defined the DOB property in the User.Person class, we used the datatype %Library.Date. The default format for the Display value of this datatype is the US format, FORMAT=3, which is mm/dd/yyyy.

This was not a problem in the VB project because the ActiveX interface automatically formats dates according to the client PC settings, but a browser does not do this, and CSP displays and accepts dates in their Display format.

In a real application, you may want to have the date displayed (and accepted) in the users preferred format, and given that Internet applications may be world-wide, this can vary greatly.

To simplify the problem here, we will assume that our application is an Intranet application, to be used only in countries which use the format dd/mm/yyyy, which we will call UKDate.

We could simply edit the User.Person class and override the FORMAT parameter of the DOB property with the value 4 (which is dd/mm/yyyy), but we would have to remember to do this with every date in the application. So we choose to define a new datatype, UKDate, which is derived from %Library.Date but has FORMAT=4 as its default. We can then use this datatype everywhere instead of %Library.Date.

Start the Object Architect and define a new class :

Package: User

Name: UKDate

Derived from : %Library.Date

Parameters: FORMAT 4

Compile the User.UKDate class

Change the DOB property in the User.Person class to type User.UKDate
Wait, we will have a problem later. Now that the DOB field is no longer type=%Library.Date, Populate will not know how to populate it, so we have to tell it to continue using the Date() method of PopulateUtils by adding ‘,DOB:Date()’ to the end of the POPSPEC parameter, which now becomes :

Home:.Home.PopulateSerial(),Colours:ValueList(",Red,Blue,Green,White,Black,Orange"):2,TotalBill:Float(10,1000,2),DOB:Date()

Compile the User.Person class

Change the FromDate and ToDate properties in the User.EHistory class to type User.UKDate
Compile the User.EHistory class

Rerun the application and the dates should appear in dd/mm/yyyy format.

Age Calculation

So far, if we change the DOB field, the Age field will only be updated when we do a ‘Save’, which then re-fetches the values from the database, including the new Age.

It would be nice if we could have the Age recalculated as soon as the DOB is changed. We could do this on the browser, but that would require duplicating (in JavaScript) the code we already have in Cache, and would need to be done for each page. For a small calculation like Age, this is not so bad, but consider more complex cases like recalculating the tax due on an invoice!

Instead, we can use a HyperEvent to call a Cache method to do the calculation for us.

First we will add code to make the page update the Age field when the date of birth is changed :

Open the page using the Cache Studio.

Find the line that reads :

<input type=text name=DOB cspbind=DOB size=10>

and Change it to :

 <input type=text name=DOB cspbind=DOB size=10 onBlur=UpdateAge()>

We are going to code a JavaScript function UpdateAge() that does the work.

We cannot directly use the Age property or the AgeGet() method of the User.Person class because these are instance elements, and we do not have a person object open while the page is displayed (only, briefly, while the page is published). Also, the HyperEvent logic #server(…)# only works with class methods.

So we need a new class method that does our work (and calls these):

Add a new method to the User.Person class :

Method Name: cspAgeGet
Return Type: %Library.String
Method Arguments: DOB:%Library.Date
Characteristics: Class Method, Code
Copy/Paste in the following method code:

if $get(DOB)="" quit ""

new person,age

set person=##class(Person).%New()

set person.DOB = person.DOBDisplayToLogical(DOB)

if person.DOB="" quit -1

set age=person.Age

do person.%Close()

quit age

This code

· Takes the DOB value and checks for NULL, returning Age=””

· Opens a temporary new Person object, so that we can use the DOB validation and Age calculation

· Uses the DisplayToLogical method of the DOB property to validate DOB and convert it to Logical (internal, $h) format.

· If the result is ”” then the DOB was invalid, and the method returns -1

· Otherwise, we can use the instance to calculate the age

· Closes the object

· Returns the Age

· Re-compile the User.Person class

Now we can Add the following code to the <script language=javascript> section of the form:

function UpdateAge()

{

 var newage=#server(User.Person.cspAgeGet(me.DOB.value))#;

 if (newage < 0) {

alert('Invalid date, please use the format dd/mm/yyyy');

me.DOB.focus();

 }

 else

 me.Age.value=newage;

}

This code will call the new cspAgeGet() method as a HyperEvent and return the calculated Age (or “” or –1) into the variable newage.

If we get a –1, the DOB is invalid, so we give an alert, and force the user back to the DOB field.

Otherwise, we put the Age into the age field

Compile the page.

Run the application, select a Person and modify their DOB. Watch the Age field !!!

Try it again, but enter an invalid DOB value. You should get an alert box.

The project to this point is saved in

\pattaya2000\solution\csp\step3

Changing Images

We have seen that it was extremely simple to fetch an image from the Cache database and display it on the form, by just binding an image field to the Cache object binarystream property.

But what about selecting images, either for a new person, or to change the image of an existing person.

The application probably expects the image to be located on the browser disks, and wishes to select it and upload into the Cache database.

Browser technology gives us a convenient way to select files from the local disk, using an HTML <input> tag with parameter type=file. This gives us a browse button and a box where the selected filename is displayed.

We want this to be in the third column, under the current picture, and in the seventh row, beside the spouse information

Open the page using the Cache Studio.

Find the lines that read :

<input type=text name=SpouseAge cspbind=Spouse.Age size=5 readonly>

 </td>

 <td> </td>

and Change the <td> </td> to :

 <td>

 <input type=file name=ChangePicture>

 </td>

Compile the page, and in the browser Refresh

Press the Browse button, and navigate to \Pattaya2000\images where you will find some pictures.

Select one, and the file name will appear in the box (but the image does not appear).

We found that different browsers were inconsistent in dealing with events of the type=file tag, but one way to display the image that works on most (?) of them is to use the onFocus() event, which is triggered when you come back from the file select dialogue.

Change the above code to :

 <td>

 <input type=file name=ChangePicture onFocus=ShowPicture()>

 </td>

and then add the ShowPicture() JavaScript function:

function ShowPicture()

{

 if (me.ChangePicture.value !== "") {

me.Picture.src=me.ChangePicture.value;

}

}

Compile the page, and in the browser Refresh

Press the Browse button, select an image, and the file name will appear in the box and the image should also change.

But that does not save the picture back into Cache.

The cspbind mechanism does not yet support this ability, partly because it can only be done using a ‘method=post’ mode form, and multi-part encoding.

This is a fairly radical set of changes to the form, so we have saved the project at this point in

\pattaya2000\solution\csp\step4

Posting a Form

If you wish to save an image, you must use the ‘method=post’ option of the form, and the ‘enctype=multipart/form-data’ options.

In this mode, the system works quite differently from HyperEvent mode.

When a ‘type=submit’ button is pressed, any onClick handler defined for the button is executed, then the whole form contents are packaged up and submitted to whatever page the developer has specified as a ‘recipient’ for the data in the ‘action’ parameter of the button or form.

Often this page is a page designed specially for validating, filing and confirming a transaction. Sometimes it is more convenient (from a developers point of view) to have the SAME page handle the updating. CSP makes this very easy, and we will illustrate this approach here.

The first step is to Change the <form> tag to :

<form name=frmPerson enctype="multipart/form-data" method="post" action="EditPerson.csp"

 cspbind="objPerson" onSubmit="return frmPerson_validate();">
And Change the Save button to :

 <input type=submit name=Action value=Save>

The key fact to remember when working with pages of this type is that every time the page is requested it is ‘published’ from the top down, and must therefore contain logic at the top of the page to handle all possible circumstances.

Now, with these changes, there two ways the page can be called :

a) Initially, when the user navigates to http://127.0.0.1/train/EditPerson.csp
b) When the user presses the Save button, then the URL will contain an OBJID parameter like ?OBJID=13 but also &Action=’Save’ and all the form data, such as &Name=’Pybus,Phil’& DOB=’28/11/1950’&…

and in fact we can add a third case :

c) If the user directly calls up a person, using a URL like http://127.0.0.1/train/EditPerson.csp?OBJID=17

Since the whole page publishing is done on the Cache server, we can easily insert COS at the top of the page to handle these cases, by Adding the following to our page (directly AFTER the <csp:object> tag) :

<script language=cache runat=server>

 if %request.Get("Action")="Save" {

set ok=..frmPersonSubmit(.ErrorMessage)

 }

</script>
How does this handle all three cases ?

a) %request.Get(“Action”) returns “”, so nothing happens here

b) %request.Get(“Action”) returns “Save”, so the method csp.train.editperson.frmPersonSubmit() is called, as described below

c) %request.Get(“Action”) returns “”, so nothing happens here

Method ..frmPersonSubmit() is a method that is generated for us by CSP, in response to binding a <form>.

It takes each bound field from the URL and puts it into an array and then calls ..frmPersonSave().

This method is also code-generated, and will open (or new) a Person object, as appropriate, and then attempt to set each value into the object properties.

If any fail their validation, it will abort the attempted Save and return an error message (in the variable ErrorMessage) and a return code of 0.

If all fields pass validation, the %Save() is attempted, and this may succeed or fail.

Then, in all three cases, the form is published, with the values from the object in memory. If the page attempted a Save which failed, these values will be the ones the user entered (if they are valid for their datatypes).

One last issue, we want to detect and display any error messages returned by the save.

The code above will set two variables during the publishing of the form, ok and ErrorMessage.

We can add some code at the end of the publishing to detect these and act accordingly.

Add the following code to the bottom of the page (after the </form> and before the </body>):

<!-- Output error alert if the save failed -->

<csp:if condition='(%request.Get("Action")="Save")&&($get(ok)=0)'>

 <script language=Javascript>

 alert('The form was not saved because of the following error(s).' +

 '\nPlease correct them and try again.' +

 '\n___' +

 '\n\n#(ErrorMessage)#')

 </script>

</csp:if>

This code has some new syntax :

The <csp:if> tag can be used to conditionally include some lines of HTML or JavaScript in the published page. The keyword ‘condition’ is set to any valid COS conditional expression.

What follows, down to the matching <csp:else>, <csp:elseif> or </csp:if> is only included in the page if the condition is true

One word of warning: the condition must follow the HTML quote- and double-quoting- rules.

So you must enclose the condition in quotes (or double-quotes) if it contains any special characters (like space).

You can only use the quote (Cache NOT operator) in the condition if the condition is enclosed in double-quotes.

You can only use the double-quote in the condition if the condition is enclosed in quotes.

You can always use " instead of double-quotes and ' instead of the NOT sign

Compile the page, Refresh it in the browser, and Test the following cases :

· restart the application and make sure you get a blank form

· use the search button to select a person

· change something like the SSN to another valid value and press Save

· change the Address to ‘My Street” and City to ‘Pattaya’ and press Save (make sure the new data is retained)

· change the URL in the browser to htpp://127.0.0.1/train/EditPerson.csp?OBJID=14

· change the picture associated with a person and press Save – the new picture is NOT saved, because the generated Save methods do not yet handle this automatically!

Saving the Image

So, for now, we have to manually intervene to get the picture to be saved.

We can still use the generated Save code, but we have to add some code of our own. There are two ways to do this, one by adding some code to the %OnValidate() method of the Person object that can check for the existence of a new picture and set it into the object, another is to wrap the generated save code in a method that does the extra save beforehand.

We will choose the second approach, because it is local to the page and therefore less ‘invasive’ in the Person class.

If the picture is included in the URL, then it will be saved as MIME data. We can check this, and save it, by changing the logic at the top of the page to

<script language=cache runat=server>

 if %request.Get("Action")="Save" {

new pico

if %request.IsDefinedMimeData("ChangePicture") {

 set pico=%request.GetMimeData("ChangePicture")

 if pico.Size do objPerson.Picture.CopyFrom(pico)

}

;set ok=..frmPersonSubmit(.ErrorMessage) ; does not work for Add !

set ok=##class(User.Person).frmPersonSubmit(objPerson,.ErrorMessage) ; temporary ?

 }

</script>
First, we check if there is any Mime data in the URL, using the IsDefinedMimeData() method of the %request object. “ChangePicture” is the name of the control that may have generated some Mime data.

If there is some, we get it into the object pico, using GetMimeData(), and we check that it is not zero-length

If not, we use the CopyFrom() method of the Picture %Stream.

Then we can call the ..frmPersonSubmit() method, as before. Well, not quite. There is problem in beta6 with this method (and the frmPersonSave() which it calls). These work fine for Update as the objPerson object instance is updated both for the Picture and the rest of the data and then saved. But for Add this does not work, the Picture is loaded into object objPerson, then frmPersonSave makes a NEW instance and saves THAT, losing the picture.

So, until this problem is fixed, we must write our own save logic.

In the Object Architect, copy and paste the frmPersonSubmit() method and frmPersonSave() method from the csp.train.editperson class into the User.Person class.

Add a new first parameter ‘obj’ (%Library.Integer) to frmPersonSubmit, and as the new first parameter in the call to frmPersonSave.

Add a new first parameter ‘obj’ (%Library.Integer) to frmPersonSave.

Remove ‘obj’ from the list of variables to be newed.

Delete the code :

If (objid="") {

 Set obj = ##class(User.Person).%New()

}

Else {

 Set obj = ##class(User.Person).%OpenId(objid)

}

If (obj=$$$NULLOREF) {

 If (respond) {

 Write "alert('Unable to open object for saving');",$C(13,10)

 QUIT 0

 }

 Else {

 Set errmsg = "Unable to open object for saving"

 QUIT 0

 }

}

Change the line with ..frmPersonObjToForm to read :

 Do:(ok) ##class(csp.train.editperson).frmPersonObjToForm("",obj)

Delete the line

 Do obj.%Close()

Copy and paste the EscapeHTML(), QuoteJS() and EscapeURL() methods from csp.train.editperson into User.Person (you may have to change your options to ‘Show inherited members’ and ‘Show members inherited from system library’ in order to see these methods – switch it off again afterwards).

Compile the User.Person class.

Compile the page, Refresh it in the browser, and Test that the picture is now saved for a new person, and for an update.

2.5 Debugging Tools – The Inspector and ObjMon

When trying to debug why something is not working as hoped, it is often useful to be able to ‘inspect’ what is going on within the process on the Cache server.

There are several ways to do this, but two of the most convenient are

· the ‘Inspector’, a CSP page that lets you see the status of %request, %session, %response and other CSP objects

· ‘ObjMon’ which allows you to inspect which application objects are open at any time. This is often needed for debugging the faulty opening and closing of these objects

We will incorporate these two tools into the project at this point. You would, of course, remove them before deploying your application at a live site !

2.5.1 The Inspector

There are two ways to include the inspector in your page :

· set %response.TraceDump=1

· add a button to call up the Inspector.csp page

We will do the second, as it is slightly more flexible (you can call it whenever you wish)

Choose somewhere on the form, and add a button. We will include it in the third column of the row with the other buttons, so

Replace the <td> </td> almost at the end of the HTML with :

<td>

 <input type=button name=Inspector value='CSP Inspector'

 onclick="self.document.location='/csp/samples/Inspector.csp'">

</td>

2.5.2 ObjMon

Similarly, we will add another button to call up the ObjMon page :

<td>

 <input type=button name=Inspector value='CSP Inspector'

 onclick="self.document.location='/csp/samples/Inspector.csp'">

 <input type="button" name="btnObjMon" value="ObjMon"

 onclick="#server(ObjMon.ObjMon.cspSessionPreserve())#;location='ObjMon.csp'">

</td>

Note that, by default, all application objects are deleted by the CSP system when the user moves to another page, unless the Preserve parameter is set, so we first call a method to set this flag and make the project ‘state-aware’

ObjMon needs some extra classes to support it, so copy the class definitions ObjMon.ObjMon.cdl and ObjMon.ObjMonObject.cdl from \pattaya2000\solution\csp to \pattaya2000\train and import and compile these classes.

Copy the ObjMon.csp page from \pattaya2000\solution\csp to \pattaya2000\train.

Run the EditPerson application again and Refresh the page.

Test the Inspector button. Note that you can see the values stored in the %request and %session objects.

Test the ObjMon button. You will see only the CSP objects open, because our project does not have any bugs (so far!) leaving objects open.

The project at this point is saved in

\pattaya2000\solution\csp\step5

2.6 A Different Search

The search page we are using so far is a totally-dynamic class provided by CSP and is invoked by default by the Form Wizard. Those of you familiar enough with COS code can inspect the class by looking at the OnPageHEAD() method of the csp.train.editperson class. There you will see a call to %CSP.PageLookup.cls.

A .cls is a CSP page that does not have any HTML source, it is a purely programmer-written page. If you check the ‘Show other system classes’ option in the architect, you can inspect the %CSP.PageLookup class. The key method is OnPAGE.

If we wish to write our own searches, we can do this, of course. To provide a search very similar to the one we used in VB, we must do that.

Like in VB, we want to make a generic search page that can be used for any class, any query in any application.

We could use Dreamweaver to create a page that contains not much more than a table and 2 buttons, and then add the necessary logic. Since this is mostly just typing CSP commands into an editor, we will short-cut this process and provide you with the finished page.

Copy the file \pattaya2000\solution\csp\SearchList.csp into \pattaya2000\train.

Examine the page, using the Cache Studio:

This page expects a URL looking like this :

SearchList.csp

?ObjId=13

&Title=PersonSearch

&Class=Person

&Query=NameSSNDOB

&Return=EditPerson.csp

&Type=Person

&P1=Sc

&P2=123-

ObjId
is the currently selected object Id (if any) and is returned to the calling page in the URL

Title
is the title to be used for the search page

Class
is the class containing the query to be used

Query
is the name of the query to be used

Return
is the page name to be used in the return URL, usually the calling page

Type
is the type of search. This string can be used by the calling page to identify which type of search has just been run, and is also used as the variable name where the selected Id will be returned

P1
is the value of the first parameter for the search, if any

P2
is the value of the second parameter for the search, if any

The page starts with some COS code to handle the query.

Ignoring the ‘More’ logic for now, we have :

<script language=cache runat=server>

 set maxrows=1000 if %session.Preserve set maxrows=12

 set Query=##class(%Library.ResultSet).%New(%request.Get("Class")_":"_%request.Get("Query"))

 set %Runtime="ODBC" ; query will use ODBC formats ('Display' does not work yet)

 set exec="do Query.Execute(",args=""

 for i=1:1:Query.GetParamCount() {

set args=args_""""_%request.Get("P"_i)_""","

 }

 set exec=exec_$extract(args,1,$length(args)-1)_")"

 xecute exec

</script>

Like the VB project, this search page will react differently if run in state-aware mode (%session.Preserve=1) than in state-less mode (0). In state-less mode we will just get all the matches displayed (well - up to 1000 of them). In state-aware mode we will get them 12 at a time, with a More button.

We open the Query, using the %Library.ResultSet.%New() method with the class and query taken from the URL, using the %request.Get() method.

We set the %RunTime mode of the ResultSet to ODBC, so that dates appear as yyyy-mm-dd

Now we want to execute the query. The problem is it may have any number of parameters, and the Execute() method requires exactly the correct number.

To solve this problem, we use Cache’s very powerful ‘Xecute’ command, which allows us to execute any valid string of COS at run-time, rather than have it compiled.

So we build the ‘exec’ variable with a command line like

 Do Query.Execute(“Sc”,”123-“)

Reacting to the number of parameters (Query.GetParamCount()) and their values (%request.Get(P1), etc)

Now look at the display of the data in a table :

<table border=1 bgcolor="" align=center>

 <tr>

 <csp:while counter=queryCol condition='(queryCol<Query.GetColumnCount())'>

 <th align=left>#(Query.GetColumnName(queryCol))#</th>

 </csp:while>

 </tr>

The column headings come from the query, using a <csp:while> tag

<csp:while counter=queryRow condition='queryRow<maxrows&&Query.Next()'>

 <tr>

 <csp:while counter=queryCol condition="(queryCol<Query.GetColumnCount())">

 <td>

 <csp:if condition=queryCol=Query.ContainsId()>

 <a href='#(%request.Get("Return"))#?OBJID=#(%request.Get("ObjId"))#

 &Type=#(%request.Get("Type"))#&#(%request.Get("Type"))#=#(Query.GetData(queryCol))#'

 onclick=#server(..closeQuery())#>#(Query.GetData(queryCol))#

 <csp:else>

 #(Query.GetData(queryCol))#

 </csp:if>

 </td>

 </csp:while>

 </tr>

 </csp:while>

</table>

The data comes from a nested loop of two <csp:while> tags, one for each row, and one for each column.

The rows will stop when the query runs out of data or the maxrows is reached.

If the column is the ID column (Query.ContainsId() returns the column number of the ID, if any), then the ID is displayed as a hyperlink back to the ‘Return’ page, setting OBJID, Type and the variable <Type>. For example, if the user selects #15, then the system returns:

 ?OBJID=12&Type=Person&Person=15

Note that we also include an OnClick event handler to close the resultset if the user selects a person, using a ‘local’ method that we have written :

<script language=cache method=closeQuery arguments=''>

 if $get(Query) do Query.%Close() set Query=""

</script>

Now we are at the bottom of the page:

<csp:if condition='queryRow=maxrows'>

 <input type=submit name=cmdMore value="More...">

<csp:else>

 <script language=cache runat=server>

 do ..closeQuery()

 </script>

</csp:if>

If queryRow = maxrows, then we know we have reached the max number of rows (which should only happen in state-aware mode), and we display a More button (type=submit).

Otherwise, we are finished with this page, so we close the resultset.

We always want a ‘Cancel’ button, so we add this unconditionally:

<input type=button name=Cancel value=Cancel

 onclick="#server(..closeQuery())#;

self.document.location=#url(

#(%request.Get("Return"))#

?OBJID=#(%request.Get("ObjId"))#

&Type=#(%request.Get("Type"))#

)#';">

with logic to close the resultset and return something like

 EditPeson.csp?OBJID=13&Type=Person

(but no Person= parameter)

The ‘More’ button handling is included at the top of the page, which is just to check for ‘cmdMore’=”More” and skip the re-execute of the query in this case.

Now we need to build the new search into our EditPerson.csp page.

Switch to EditPerson.csp in the Studio, and find the line that reads :

<input type=button name=btnSearch value=Search onClick='frmPerson_search();'>

Change it to:

<input type=button name=btnSearch value=Search

onClick="self.document.location='SearchList.csp' +

'?ObjId=' + me.sys_Id.value +

'&Title=Person Search' +

'&Class=Person' +

'&Query=NameSSNDOB' +

'&Return=EditPerson.csp' +

'&Type=Person' +

'&P1=' + me.Name.value +

'&P2=' + me.SSN.value +

'&P3=' + me.DOB.value">

When we have finished the search, we come back to the main page. If the user has selected a person we need to switch to that one. We do this by Adding the following code to the runat=server logic at the top of the page :

}elseif %request.Get("Type")="Person" {

 if %request.Get("Person") {

 do objPerson.%Close()

 set objPerson=##class(Person).%OpenId(%request.Get("Person"))

 }

So this becomes, in total:

<script language=cache runat=server>

 if %request.Get("Action")="Save" {

new pico

if %request.IsDefinedMimeData("ChangePicture") {

 set pico=%request.GetMimeData("ChangePicture")

 if pico.Size do objPerson.Picture.CopyFrom(pico)

}

;set ok=..frmPersonSubmit(.ErrorMessage) ; does not work for Add !

set ok=##class(User.Person).frmPersonSubmit(objPerson,.ErrorMessage) ; temporary ?

 }elseif %request.Get("Type")="Person" {

 if %request.Get("Person") {

 do objPerson.%Close()

 set objPerson=##class(Person).%OpenId(%request.Get("Person"))

 }

 }

</script>

Save, Compile and Test the page
When the project starts, with a blank page, the Search button should bring up all the 20+ persons in your database (because you are running state-less).

Select one, and you should see all the details on the main page.

Remove the Name, SSN and DOB and search again. This time note the first few letters of some names. When back on the main page, change the Name field to just these few letters, delete the SSN and DOB and press Search again. You should see only those person objects that match the name you have entered

Note that the search page is displaying ALL the persons in your database that match the criteria, because we are running state-less.

To change to state-aware, we just need to set the %session.Preserve flag to 2 [from beta 6, will be 1] .

Add the following code as the first line of the runat=server logic of your main page:

 set %session.Preserve=2 ; state-aware for SearchList

Compile and Test again. Now the search page should be state-aware, and the more button should be activated.

The project at this point is saved in

\pattaya2000\solution\csp\step6

2.7 The Session Object

If you change some data (such as the Home Street Address) and then do the Search and cancel it, you will lose your changes.

Similarly, if you select a new picture and then go ‘off-page’ (such as selecting the Search button but then cancelling the search), you will see that your newly selected picture is ‘lost’. The data is re-fetched from the database when the page is refreshed, but the new picture is not stored there yet.

This is only a problem with multi-page applications which use other pages to select or update data other than the main object (Person in our case). If links to other pages are via ‘submit’ buttons, then all the data is sent in the URL, and we can save and return it, though this is clumsy.

Also, for smaller projects we can design our page to avoid these problems by using on-page pop-up windows, and hyperevents so that we never go ‘off-page’.

But as the project gets more complex, there will be more times when we want to go to another page and then return.

When we do this, we need some place to store the new values from the form so that we can reconstruct the page when we return

In a State-less application, no variables are left lying around between one page and the next, nor can any objects be left open. When processing a state-less session like this, CSP tries to use the same process on the same Cache machine to publish each page in the session, for performance reasons, but there is no guarantee that this will happen, and variables, locks, transactions, open application objects and open devices are not retained from one page to the next. Remember that, in extremis, if you have a very large web site running multiple Cache servers, page 2 might even be published by a different Cache server than page 1!

In a State-less application like this, there are only four places where the system could get the data to put on the form:

a) the Database

b) the URL

c) the browser (cookies)

d) the Session object

Our project is currently using (a). Each time the page is published, the data is taken from the database.

When the Save button is pressed, we are using (b).

We do not really want to update the database until the user presses Save, and we do not want to put invalid records in there either. We could, perhaps set up a temporary persistent class where we can ‘stash’ our data between pages, but that is messy and is difficult to ‘clean up’ if the user just goes away without logging out cleanly

We could use cookies, but these are limited in size and number, and some users disable them.

What about the URL. Currently, when we do the save, all the values from the form are contained in the URL, and we put them back on the form. CSP does this for you if you put your call to frmPersonSave between the <csp:object> and <form> sections of the page.

But this does not work for the tests above because the Search screen is not called by a ‘method=post’ submit, but by a HyperEvent. We could change the way it is called to make it a submit, or we could include all the form fields in the call and then pass them back (on a Cancel).

The best (and often the only practical) solution is to use the %session object. All CSP pages have a %session object available to them, even if they are running ‘state-less’ (Preserve=0). The %session object will persist automatically until the session is closed, either by a time-out or explicit shut-down.

The main part of the %session object is a set of multi-dimensional data where the user can save and retrieve any data that needs to be retained across pages

There are a set of methods that can be used to manipulate the %session object, see the Documatic documentation of the %CSP.Session class

So at this point we will take a step sideways and re-engineer the project to use the %session object as its main data store. This means we will no longer need to use cspbind and the <csp:object> tag. Instead, we will write a set of methods to move data to- and from- the %session object

The basic approach will be to :

· load data from the object on disk into the session object when needed

· display data on the form from the %session object

· load data from the form into the session object, whenever the user is going ‘off-page’

· save the data from the session object to disk, when the user presses Save

2.7.1 LoadPerson

We will first write a method, cspLoadPerson in the User.Person class whose job is to Open (or New) a person object and then load the data into the %session object, and close the person object.

It will accept two parameters, the Id of the object to load (if any) and an ErrorMessage that can be returned if the method fails

We need to invoke this method each time a page is published with a new OBJID. We can do this just by adding 3 lines to the end of the code at the top of the page :

}elseif %request.Get("Type")="Person" {

 if %request.Get("Person") {

 do objPerson.%Close()

 set objPerson=##class(Person).%OpenId(%request.Get("Person"))

 }

}else
{

 set objid=%request.Get("OBJID")

 set ok=##class(Person).cspLoadPerson(objid,.ErrorMessage)

}

Add a new method to the User.Person class :

Method Name: cspLoadPerson
Return Type: %Library.Boolean
Method Arguments: ObjId:%Library.String, ErrorMessage:%Library.String by reference
Characteristics: Class Method, Code
Copy/Paste in the following method code:

 new person

 set ErrorMessage=""

 if ObjId="" set person=..%New()

 else set person=..%OpenId(ObjId)

 if person=$$$NULLOREF {

 set ErrorMessage="Unable to open Person #"_ObjId

 quit 0

 }

 do %session.Set("OBJID",ObjId)

 do %session.Set("Name",##class(User.Person).NameLogicalToDisplay(person.Name))

 do %session.Set("SSN",##class(User.Person).SSNLogicalToDisplay(person.SSN))

 do %session.Set("DOB",##class(User.Person).DOBLogicalToDisplay(person.DOB))

 do %session.Set("Sex",##class(User.Person).SexLogicalToDisplay(person.Sex))

 do %session.Set("Age",##class(User.Person).AgeLogicalToDisplay(person.Age))

 do %session.Set("Phone",##class(User.Person).PhoneLogicalToDisplay(person.Phone))

 do %session.Set("HomeStreet",##class(User.Address).StreetLogicalToDisplay(person.Home.Street))

 do %session.Set("HomeCity",##class(User.Address).CityLogicalToDisplay(person.Home.City))

 do %session.Set("HomeState",##class(User.Address).StateLogicalToDisplay(person.Home.State))

 do %session.Set("HomeZip",##class(User.Address).ZipLogicalToDisplay(person.Home.Zip))

 if person.Spouse {

 do %session.Set("SpouseId",person.Spouse.%Id())

 do %session.Set("SpouseName",##class(User.Person).NameLogicalToDisplay(person.Spouse.Name))

 do %session.Set("SpouseAge",##class(User.Person).AgeLogicalToDisplay(person.Spouse.Age))

 }else {

 do %session.Kill("SpouseId"),%session.Kill("SpouseName"),%session.Kill("SpouseAge")

 }

 do %session.Kill("ChangePicture")

 if person.Picture.Size do %session.Set("Picture",person.Picture.GetStreamId())

 else do %session.Kill("Picture")

 if person.Colours.Count() {

 do %session.Set("Colours",##class(%Library.ListOfDataTypes).LogicalToDisplay(person.ColoursGetObjectId()))

 }else {

 do %session.Kill("Colours")

 }

 do %session.Set("TotalBill",##class(User.Person).TotalBillLogicalToDisplay(person.TotalBill))

 do person.%Close()

 quit 1

This code

· %Opens or %News a Person object

· Uses the %session.Set() method to put values from the object into the %session. Note that we store Display values in %session

· For Spouse we also store the Spouse Id in %session, as we are going to need that later

· We delete the ChangePicture entry and (if there is one) store the StreamId of the Person Picture in %session

· Closes the person object

2.7.2 Session To Form

We can remove the 2 lines for <csp:object> and its comment, as we are no longer using those

We can also remove the cspbind argument from the form, as it will no longer be bound

Next we change the HTML of the form to take its data from %session.

For example, the line :

<input type=text name=Name cspbind=Name size=50>

becomes

 <input type=text name=Name value='#(..EscapeHTML(%session.Get("Name")))#' size=50>

Note that you must use the EscapeHTML() method in case the data contains any HTML-sensitive characters.

Here are all the form fields changed similarly. Edit (or copy and paste) these new lines into the form

<input type=text name=sys_Id value='#(..EscapeHTML(%session.Get("OBJID")))#' size=10

onblur="#server(..frmPersonObjToForm(me.sys_Id.value))#;">

Note that this onblur will no longer work, see below

<img name=Picture height=150 width=150

src='%25CSP.StreamServer.cls?STREAMOID=#(..EscapeURL(..Encrypt(%session.Get("Picture"))))#'>

This is how we display an un-bound picture. %session.Get(“Picture”) returns a streamoid (if any) for the picture, which the %CSP.StreamServer.cls class can handle.

<input type=text name=Name value='#(..EscapeHTML(%session.Get("Name")))#' size=50>

<input type=text name=SSN value='#(..EscapeHTML(%session.Get("SSN")))#' size=20>

<input type=text name=DOB value='#(..EscapeHTML(%session.Get("DOB")))#' size=10

onblur=UpdateAge()>

<input type=text name=Age value='#(..EscapeHTML(%session.Get("Age")))#' size=10 readonly>

<input type=text name=Phone value='#(..EscapeHTML(%session.Get("Phone")))#' size=20>

<input type=text name=HomeStreet value='#(..EscapeHTML(%session.Get("HomeStreet")))#' size=25>

<input type=text name=HomeCity value='#(..EscapeHTML(%session.Get("HomeCity")))#' size=10>

<input type=text name=HomeState value='#(..EscapeHTML(%session.Get("HomeState")))#' size=6>

<input type=text name=HomeZip value='#(..EscapeHTML(%session.Get("HomeZip")))#' size=6>

<input type=text name=SpouseName value='#(..EscapeHTML(%session.Get("SpouseName")))#' size=30 readonly>

<input type=text name=SpouseAge value='#(..EscapeHTML(%session.Get("SpouseAge")))#' size=5 readonly>

<input type=file name=ChangePicture value='#(..EscapeHTML(%session.Get("ChangePicture")))#'

onfocus='ShowPicture()'>

<textarea name=Colours cols=50 rows=3>#(..EscapeHTML(%session.Get("Colours")))#</textarea>

<input type=text name=TotalBill value='#(..EscapeHTML(%session.Get("TotalBill")))#' size=10>

2.7.3 Making The Sex Select Dynamic

The form wizard looked up the possible values of Sex in the object dictionary and generated HTML <option> tags for them.

We need to make the <select> choose the appropriate <option> for the sex of the person. cspbind did that for us before, but we can no longer use that (because cspbind is bound to the object and not to the session).

There is also a problem with this approach, that if the developer changes the list of valid values for the Sex field (perhaps adding the value U=Unknown), this will not appear in the <select>.

We can solve both these problems by writing a method that outputs the option list from the dictionary at publish-time, and selects the appropriate entry.

Change the <select> to read :

<select name=Sex>

 <script language=cache runat=server>

 do ##class(Person).cspSexList(%session.Get("Sex"))

 </script>

</select>

and in the User.Person class, add:

Method Name: cspSexList
Return Type: <none>
Method Arguments: Sex:%Library.String
Characteristics: Class Method, Code
Copy/Paste in the following method code:

 ; Output code like

 ; <option selected value='Male'>Male</option>

 new sexlist,i,delim,value,value2

 set sexlist=..SexDISPLAYLIST(),delim=$e(sexlist)

 for i=2:1:$length(sexlist,delim) {

 set value=$piece(sexlist,delim,i),value2=..EscapeHTML(value)

 if value=Sex {

&html< <option selected value='<%=value2%>'><%=value2%></option>>

 }else {

&html< <option value='<%=value2%>'><%=value2%></option>>

 }

 }

 quit
This code calls our exisiting SexDISPLAYLIST() method and then builds <option> strings.

Note that it is called during the publishing of the page, so it simply Writes out the HTML, using the COS &html<…> syntax.

Within this syntax, the expression <%=xxx%> will substitute the value of xxx.

Instead of

&html< <option value='<%=value2%>'><%=value2%></option>>
we could have written

write !,” <option value=’”,value2,”’>”,value2,”></option>”

We can also Delete the frmPersonSubmit() and frmPersonSave() methods from the User.Person class, as we will no longer use these.

It should be working again now, so Compile both the Class and the Page and Test it

You should be able to start the project, get a blank page (with the Sex select loaded).

If you call the URL with a valid ?OBJID= argument, you should get your page of data.

The search will work, but on return will crash, and the onblur of the Id field will not work.

We have not fixed the Save yet either.

The project at this point is saved in

\pattaya2000\solution\csp\step7

Onblur : LoadPerson in Javascript

When we build projects like this we will often find the need to code a particular action twice, once in HTML (to be used at publish time) and once in JavaScript (to be used during a HyperEvent).

Here, for the Onblur event of the Id field, we need a version of code we just inserted into the form, that writes out Javascript to load all the fields on the form.

Because these is a little work to do at the browser end also, we will have the Onblur event call a javascript function which in turn will call Cache to send back the full javascript commands.

Add the following code to your form, at the end of the existing <script language=javascript> section :

function LoadPerson()

{

 var ErrorMessage = #server(User.Person.cspLoadPersonJS(me.sys_Id.value))#;

 if (ErrorMessage == "") {

 }else {

alert('The requested Person could not be loaded.' +

 '\nPlease try again.' +

 '\n___' +

 '\n\n' + ErrorMessage);

 }

}

This code will call the cspLoadPersonJS() method that we are about to write, passing the value of the sys_Id field to it.

If an error is returned, it will display it

Now we can change the onblur event of the Id field to read :

<input type=text name=sys_Id value='#(..EscapeHTML(%session.Get("OBJID")))#' size=10

onblur=LoadPerson();>

All we need now is the User.Person.cspLoadPersonJS() method, whose job is to call cspLoadPerson() to bring the selected person into memory and into the session object, then write out javascript to place the values on the form :

Method Name: cspLoadPersonJS
Return Type: %Library.String
Method Arguments: ObjId:%Library.String
Characteristics: Class Method, Code
Copy/Paste in the following method code:

 new ok,ErrorMessage,picturestream

 set ErrorMessage=""

 set ObjId=$get(ObjId)

 set ok=..cspLoadPerson(ObjId,.ErrorMessage)

 if ‘ok quit ErrorMessage

 write " me.sys_Id.value = ",..QuoteJS(%session.Get("OBJID")),";",!

 write " me.Name.value = ",..QuoteJS(%session.Get("Name")),";",!

 write " me.SSN.value = ",..QuoteJS(%session.Get("SSN")),";",!

 write " me.DOB.value = ",..QuoteJS(%session.Get("DOB")),";",!

 write " me.Sex.value = ",..QuoteJS(%session.Get("Sex")),";",!

 write " me.Age.value = ",..QuoteJS(%session.Get("Age")),";",!

 write " me.Phone.value = ",..QuoteJS(%session.Get("Phone")),";",!

 write " me.HomeStreet.value = ",..QuoteJS(%session.Get("HomeStreet")),";",!

 write " me.HomeCity.value = ",..QuoteJS(%session.Get("HomeCity")),";",!

 write " me.HomeState.value = ",..QuoteJS(%session.Get("HomeState")),";",!

 write " me.HomeZip.value = ",..QuoteJS(%session.Get("HomeZip")),";",!

 write " me.SpouseName.value = ",..QuoteJS(%session.Get("SpouseName")),";",!

 write " me.SpouseAge.value = ",..QuoteJS(%session.Get("SpouseAge")),";",!

 write " me.ChangePicture.value = ",..QuoteJS(%session.Get("ChangePicture")),";",!

 set picturestream=%session.Get("Picture")

 write " self.document.images['Picture'].src = '%25CSP.StreamServer.cls?STREAMOID=' + "

 write ..QuoteJS(..EscapeURL(##class(%CSP.Page).Encrypt(picturestream))),";",!

 write " me.Colours.value = ",..QuoteJS(%session.Get("Colours")),";",!

 write " me.TotalBill.value = ",..QuoteJS(%session.Get("TotalBill")),";",!

 quit ErrorMessage
After calling cspLoadPerson(), if we did not get an error, then we have all the data in our %session object, and we can write out Javascript lines like

 Me.Name.value = ‘Pybus, Phil’;

Note how the picture is refreshed, using the %CSP.StreamServer class, and note that you must ..QuoteJS(), ..EscapeURL() and Encrypt the streamoid.

Compile both the Class and the Page and Test it.

Now, the onblur should work, so if you enter a person Id and <tab> away, the data should appear

2.7.4 Returning from a Search

When we have called the search for a Person, if the user selected one we will get back a URL like

?OBJID=12,Type=Person,Person=15

If they did not select one, we will get

?OBJID=12,Type=Person

In the first case we want to switch to Person #15, in the second we want to stay with #12.

When the user called the search, they probably cleared the Name, SSN and DOB fields, or entered ‘search values’. In the second case, if we had a person selected before, we must refresh these values on the form.

We can do all this at the start of the page, in the runat=server logic, by changing the Type=”Person” logic to :

 }elseif %request.Get("Type")'="" {

if %request.Get("Type")="Person" {

set objid=%request.Get("Person")

; if they cancelled the search, restore Name,SSN and DOB which may have been lost

; (but keep other data that may have been changed !)

if objid="",%session.Get("OBJID") {

set obj=##class(Person).%OpenId(%session.Get("OBJID"))

do %session.Set("Name",obj.NameLogicalToDisplay(obj.Name))

do %session.Set("SSN",obj.SSNLogicalToDisplay(obj.SSN))

do %session.Set("DOB",obj.DOBLogicalToDisplay(obj.DOB))

do obj.%Close()

}

; otherwise get the new person details

else {

 set ok=##class(Person).cspLoadPerson(objid,.ErrorMessage)

}

}

So we now have :

<script language=cache runat=server>

 set %session.Preserve=2 ; state-aware for SearchList

 if %request.Get("Action")="Save" {

new pico

if %request.IsDefinedMimeData("ChangePicture") {

 set pico=%request.GetMimeData("ChangePicture")

 if pico.Size do objPerson.Picture.CopyFrom(pico)

}

;set ok=..frmPersonSubmit(.ErrorMessage) ; does not work for Add !

set ok=##class(User.Person).frmPersonSubmit(objPerson,.ErrorMessage) ; temporary ?

 }elseif %request.Get("Type")'="" {

if %request.Get("Type")="Person" {

set objid=%request.Get("Person")

; if they cancelled the search, restore Name,SSN and DOB which may have been lost

; (but keep other data that may have been changed !)

if objid="",%session.Get("OBJID") {

set obj=##class(Person).%OpenId(%session.Get("OBJID"))

do %session.Set("Name",obj.NameLogicalToDisplay(obj.Name))

do %session.Set("SSN",obj.SSNLogicalToDisplay(obj.SSN))

do %session.Set("DOB",obj.DOBLogicalToDisplay(obj.DOB))

do obj.%Close()

}

; otherwise get the new person details

else {

 set ok=##class(Person).cspLoadPerson(objid,.ErrorMessage)

}

}

 }else
{

 set objid=%request.Get("OBJID")

set ok=##class(Person).cspLoadPerson(objid,.ErrorMessage)

 }

</script>
Compile and Test again, and now our Search should be working again

But we still have the bug that if you change something, call the search, and cancel it, then your changes are lost. But now we can do something about it :

2.7.5 Form To Session

What we need to do is to save the current values from the form into the %session object every time the user does something that will take them ‘off-page’.

For this we write a javascript function FormToSession() which collects up all the values from the form and sends them to a Cache method cspFormToSession() which puts them into %session.

Here is the code for the javascript function. Add it to the end of the section with javascript functions

function FormToSession()

{

 var ObjId=(me.sys_Id == null) ? null : cspTrim(me.sys_Id.value);

 var Name=(me.Name == null) ? null : cspTrim(me.Name.value);

 var SSN=(me.SSN == null) ? null : cspTrim(me.SSN.value);

 var DOB=(me.DOB == null) ? null : cspTrim(me.DOB.value);

 var Age=(me.Age == null) ? null : cspTrim(me.Age.value);

 var Sex=cspGetSelectValue(me.Sex);

 var Phone=(me.Phone == null) ? null : cspTrim(me.Phone.value);

 var HomeStreet=(me.HomeStreet == null) ? null : cspTrim(me.HomeStreet.value)

 var HomeCity=(me.HomeCity == null) ? null : cspTrim(me.HomeCity.value)

 var HomeState=(me.HomeState == null) ? null : cspTrim(me.HomeState.value)

 var HomeZip=(me.HomeZip == null) ? null : cspTrim(me.HomeZip.value)

 var ChangePicture=(me.ChangePicture == null) ? null : cspTrim(me.ChangePicture.value)

 var Colours=(me.Colours == null) ? null : cspTrim(me.Colours.value)

 var TotalBill=(me.TotalBill == null) ? null : cspTrim(me.TotalBill.value)

 var ok = #server(User.Person.cspFormToSession(ObjId,Name,SSN,DOB,Age,Sex,Phone,HomeStreet,HomeCity,HomeState,HomeZip,ChangePicture,Colours,TotalBill))#;

}

Note that we do not need to need to store any Spouse information, because we are holding the Spouse Id permanently in the %session object already.

We need the cspFormToSession() method in the User.Person class :

Method Name: cspFormToSession
Return Type: <none>
Method Arguments: one for each field, see above, all %Library.String
Characteristics: Class Method, Code
Copy/Paste in the following method code:

 do %session.Set("OBJID",ObjId)

 do %session.Set("Name",Name)

 do %session.Set("SSN",SSN)

 do %session.Set("DOB",DOB)

 do %session.Set("Age",Age)

 do %session.Set("Sex",Sex)

 do %session.Set("Phone",Phone)

 do %session.Set("HomeStreet",HomeStreet)

 do %session.Set("HomeCity",HomeCity)

 do %session.Set("HomeState",HomeState)

 do %session.Set("HomeZip",HomeZip)

 do %session.Set("ChangePicture",ChangePicture)

 do %session.Set("Colours",Colours)

 do %session.Set("TotalBill",TotalBill)

 quit

Finally, we need to call this when the user selects the Search button, so we add an entry to the onClick for the search button which becomes :

<input type=button name=btnSearch value=Search

onClick="FormToSession();

self.document.location='SearchList.csp' +

'?ObjId=' + me.sys_Id.value +

'&Title=Person Search' +

'&Class=Person' +

'&Query=NameSSNDOB' +

'&Return=EditPerson.csp' +

'&Type=Person' +

'&P1=' + me.Name.value +

'&P2=' + me.SSN.value +

'&P3=' + me.DOB.value">

Compile both the Class and the Page and Test it.

Change a field (such as Home Street). Press the Search button and then Cancel the search. Your changed Address should still be there

The project at this point is saved in

\pattaya2000\solution\csp\step8

2.7.6 Saving the Data

Our Save code is broken. We need to take a different approach now.

When the user presses the Save button, we want to run FormToSession, to put the latest values into the %session object.

Change the Save button to read :

<input type=submit name=Action value=Save onClick='FormToSession();'>

Take off the onSubmit action from the form, as this is useful only for cspbind forms, so this becomes just

<form name=frmPerson enctype="multipart/form-data" method="post" action="EditPerson.csp">:

When the form is submitted, the form ‘action’ is to call EditPerson.csp again, so we need to change the Save logic at the top of the page to :

if %request.Get("Action")="Save" {

set ok=##class(Person).cspSavePerson(.ErrorMessage)

if ok do ##class(Person).cspLoadPerson(%session.Get("OBJID"))

 }elseif %request.Get("Type")="Person" {

so that the whole section is now:

<script language=cache runat=server>

 set %session.Preserve=2 ; state-aware for SearchList

 if %request.Get("Action")="Save" {

set ok=##class(Person).cspSavePerson(.ErrorMessage)

if ok do ##class(Person).cspLoadPerson(%session.Get("OBJID"))

 }elseif %request.Get("Type")'="" {

if %request.Get("Type")="Person" {

set objid=%request.Get("Person")

; if they cancelled the search, restore Name,SSN and DOB which may have been lost

; (but keep other data that may have been changed !)

if objid="",%session.Get("OBJID") {

set obj=##class(Person).%OpenId(%session.Get("OBJID"))

do %session.Set("Name",obj.NameLogicalToDisplay(obj.Name))

do %session.Set("SSN",obj.SSNLogicalToDisplay(obj.SSN))

do %session.Set("DOB",obj.DOBLogicalToDisplay(obj.DOB))

do obj.%Close()

}

; otherwise get the new person details

else {

 set ok=##class(Person).cspLoadPerson(objid,.ErrorMessage)

}

}

 }else
{

 set objid=%request.Get("OBJID")

set ok=##class(Person).cspLoadPerson(objid,.ErrorMessage)

 }

</script>
The new method cspSavePerson() is going to do the whole job of saving the person data from the %session object.

If the save succeeds we call cspLoadPerson() again to get the new values from disk (there may be some new calculated values and so on).

We need to add the method cspSavePerson to the User.Person class :

Method Name: cspSavePerson
Return Type: %Library.Boolean
Method Arguments: ErrorMessage: %Library.String by reference
Characteristics: Class Method, Code
Copy/Paste in the following method code:

 new objid,person,var,value,error,i,dogid,ok,err

 set objid=%session.Get("OBJID"),person=$$$NULLOREF

 if objid set person=##class(Person).%OpenId(objid)

 else set person=##class(Person).%New()

 if person=$$$NULLOREF {

 set ErrorMessage="Unable to open Person #"_objid

 quit 0

 }

 set error=""

 ; Name

 set var=%session.Get("Name")

 set value=$S(var="":"",1:##class(User.Person).NameDisplayToLogical(var))

 if (var'=""),(value="") Set error=error_"Name has an invalid value.\n"

 else set person.Name=value

 ; SSN

 set var=%session.Get("SSN")

 set value=$S(var="":"",1:##class(User.Person).SSNDisplayToLogical(var))

 if (var'=""),(value="") Set error=error_"SSN has an invalid value.\n"

 else set person.SSN=value

 ; DOB

 set var=%session.Get("DOB")

 set value=$S(var="":"",1:##class(User.Person).DOBDisplayToLogical(var))

 if (var'=""),(value="") Set error=error_"DOB has an invalid value.\n"

 else set person.DOB=value

 ; Sex

 set var=%session.Get("Sex")

 set value=$S(var="":"",1:##class(User.Person).SexDisplayToLogical(var))

 if (var'=""),(value="") Set error=error_"Sex has an invalid value.\n"

 else set person.Sex=value

 ; Phone

 set var=%session.Get("Phone")

 set value=$S(var="":"",1:##class(User.Person).PhoneDisplayToLogical(var))

 if (var'=""),(value="") Set error=error_"Phone has an invalid value.\n"

 else set person.Phone=value

 ; Street

 set var=%session.Get("HomeStreet")

 set value=$S(var="":"",1:##class(User.Address).StreetDisplayToLogical(var))

 if (var'=""),(value="") Set error=error_"HomeStreet has an invalid value.\n"

 else set person.Home.Street=value

 ; City

 set var=%session.Get("HomeCity")

 set value=$S(var="":"",1:##class(User.Address).CityDisplayToLogical(var))

 if (var'=""),(value="") Set error=error_"HomeCity has an invalid value.\n"

 else set person.Home.City=value

 ; State

 set var=%session.Get("HomeState")

 set value=$S(var="":"",1:##class(User.Address).StateDisplayToLogical(var))

 if (var'=""),(value="") Set error=error_"HomeState has an invalid value.\n"

 else set person.Home.State=value

 ; Zip

 set var=%session.Get("HomeZip")

 set value=$S(var="":"",1:##class(User.Address).ZipDisplayToLogical(var))

 if (var'=""),(value="") Set error=error_"HomeZip has an invalid value.\n"

 else set person.Home.Zip=value

 ; Spouse

 set var=%session.Get("SpouseId")

 if var {

 if '##class(Person).%ExistsId(var) {

 set error=error_"Spouse has an invalid value.\n"

 }else {

 do person.SpouseSetObjectId(var)

 do %session.Set("SpouseName",person.Spouse.Name)

 }

 }

 ; Colours

 set var=%session.Get("Colours")

 set value=$S(var="":"",1:##class(User.Person).ColoursDisplayToLogical(var))

 if (var'=""),(value="") Set error=error_"Colours has an invalid value.\n"

 else set person.Colours=value

 ; TotalBill

 set var=%session.Get("TotalBill")

 set value=$S(var="":"",1:##class(User.Person).TotalBillDisplayToLogical(var))

 if (var'=""),(value="") Set error=error_"TotalBill has an invalid value.\n"

 else set person.TotalBill=value

 ; Picture

 if %request.IsDefinedMimeData("ChangePicture") {

 set picobj=%request.GetMimeData("ChangePicture")

 if picobj.Size {

 do person.Picture.CopyFrom(picobj)

 }

 }

 ; Save

 if $length(error) {

 set ErrorMessage=error

 do person.%Close()

 quit 0

 }else {

 set ok=person.%Save()

 set ErrorMessage=""

 if $$$ISERR(ok) {

 do DecomposeStatus^%apiOBJ(ok,.err,"")

 for i=1:1:err {

 set ErrorMessage=ErrorMessage_" + "_..QuoteJS(err(i))_" + '\n'"

 }

 }

 do %session.Set("OBJID",person.%Id())

 do person.%Close()

 }

 quit +ok
This method is quite long, but quite simple.

It takes the Id from %session(“OBJID”) and either %Opens or %News a person object

Then it takes each field from the %session object, and validates it by passing it through the DisplayToLogical method. If it succeeds, the logical value is set into the object.

Notice that it refreshes the SpouseName and SpouseAge fields in the session object at this point, and that we have moved the logic to save the picture into this method.

If all fields were valid, it then performs the %Save()

It resets the value in %session(“OBJID”), for the case of a new person being added.

Compile both the Class and the Page and Test it.

Try making a change to a Person and saving that. Verify that the new value is stored.

Try changing the picture on the Person and saving the record, verify that the new picture is shown.

Try adding a new Person, with a picture. Make sure you give them a Name, DOB and SSN or they won’t appear in the search

(Note that the New button is not working yet, but you can ‘clear’ the form by deleting the Id and then pressing <tab>)

The project at this point is saved in

\pattaya2000\solution\csp\step9

Now we are back on track, with everything working as before, we can start adding new functionality:

2.8 Make the Picture Optional

All the person objects in our database have pictures, but that will not always be the case. If we add a new person, we are not forced to select a picture.

If the person has no picture, then an ugly box is left on the form.

This box is also shown when you first start the project as no person has been selected.

We can make the box invisible using the style property of the picture control. Setting it to ‘visibility:hidden’ will (in some browsers ?) make it invisible, while ‘visibility=’visible’’ will make it appear again.

First we change the HTML for the image control to be:

<td rowspan=6>

 <csp:if condition='%session.Get("ChangePicture")'=""'>

 <csp:elseif condition='%session.Get("Picture")=""'>

 <csp:else>

 <img name=Picture height=150 width=150

src='%25CSP.StreamServer.cls?STREAMOID=#(..EscapeURL(..Encrypt(%session.Get("Picture"))))#'>

 </csp:if>

</td>

This will display the ‘ChangePicture’ picture if there is one, else if there is no picture it will create the control ‘invisble’, else it will use the %CSP.StreamServer to display the picture.

This has only one problem, if they use javascript to change to a person that has a picture, it will not display because the control is invisible, so we need to add a line to the ShowPicture() function, which now becomes :

function ShowPicture()

{

 if (me.ChangePicture.value !== "") {

self.document.images['Picture'].style.visibility='visible';

me.Picture.src=me.ChangePicture.value;

}

}

and two lines to the cspLoadPersonJS method() to hide/display the picture control:

 set picturestream=%session.Get("Picture")

 if picturestream="" write " self.document.images['Picture'].style.visibility='hidden';"

 else write " self.document.images['Picture'].style.visibility='visible';"

 write " self.document.images['Picture'].src = '%25CSP.StreamServer.cls?STREAMOID=' + "

 write ..QuoteJS(..EscapeURL(##class(%CSP.Page).Encrypt(picturestream))),";",!

Compile the Class and the Page and Test that it works:

When you (re-)start the project, a blank screen should appear with no picture.

Enter an ID and <tab> to select a person. Their picture should appear.

Delete the ID and <tab> and the picture should disappear.

Make a new person, with Name, SSN and DOB, but no picture. Note the Id.

Use the search to select another person, who has a picture.

Use the search to select your new person, with no picture.

2.9 Buttons

Next we can enhance the buttons along the bottom of the form so that they match the VB project.

First we want the ‘Save’ button to say ‘Add’ or ‘Update’.

Next we want the ‘New’ button to say ‘Clear’.

We want a Delete button which will be disabled when no person is selected.

And we want to add an ‘Exit’ button, which should shut-down the session and return to the ‘default.htm’ home page.

First we must change the HTML to give us this layout. Replace the 4 lines for the New and Save buttons with:

<td>

 <csp:if condition='%session.Get("OBJID")'>

 <input type=submit name=Action value=Update onClick='FormToSession();'>

 <input type=submit name=Action value=Delete>

 <csp:else>

 <input type=submit name=Action value=Add onClick='FormToSession();'>

 <input type=submit name=Action value=Delete disabled>

 </csp:if>

 <input type=submit name=Action value=Clear>

 <input type=button name=btnExit value=Exit

 onClick="#server(..Exit())#;self.document.location='/default.htm'">

</td>

Next we need to change the error handler, which is looking for btnSave. Change it to read:

<!-- Output error alert if the save failed -->

<csp:if condition='("Add,Update"[%request.Get("Action"))&&($get(ok)=0)'>

 <script language=Javascript>

 alert('The form was not saved because of the following error(s).' +

 '\nPlease correct them and try again.' +

 '\n___' +

 '\n\n'#(ErrorMessage)#)

 </script>

</csp:if>

We also want the text on the buttons to be corrected when the Id.onblur event occurs, so we add some code to the LoadPerson() javascript function, which becomes:

function LoadPerson()

{

 var ErrorMessage = #server(Person.cspLoadPersonJS(me.sys_Id.value))#;

 if (ErrorMessage == "") {

if (me.sys_Id.value != "") {

me.Action[0].value="Update";

me.Action[1].disabled=false;

}else {

me.Action[0].value="Add";

me.Action[1].disabled=true;

}

 }else {

alert('The requested Person could not be loaded.' +

 '\nPlease try again.' +

 '\n___' +

 '\n\n' + ErrorMessage);

 }

}

Note that all the buttons (except Exit) are submit buttons, so we have to include the logic to handle them.

We have to change the test from =’Save’ to =’Add’ or =’Update’:

 if (%request.Get("Action")="Add")!(%request.Get("Action")="Update") {

And add code for the Delete button

 }elseif %request.Get("Action")="Delete" {

set ok=##class(User.Person).%DeleteId(%session.Get("OBJID"))

if ok set ok=##class(Person).cspLoadPerson("",.ErrorMessage)

Here we simply call the %Delete method of the User.Person class for the selected ObjId. If this succeeds, we clear the form by loading person “” (which creates a New empty object).

And add code for the Clear button

 }elseif %request.Get("Action")="Clear" {

set ok=##class(User.Person).cspLoadPerson("",.ErrorMessage)

Which, again, just calls the cspLoadPerson() method with a null ObjId to cause it to create a New object with only initial values.

The whole runat=server script is now :

<script language=cache runat=server>

 set %session.Preserve=2 ; state-aware for SearchList

 if (%request.Get("Action")="Add")!(%request.Get("Action")="Update") {

set ok=##class(Person).cspSavePerson(.ErrorMessage)

if ok do ##class(Person).cspLoadPerson(%session.Get("OBJID"))

 }elseif %request.Get("Action")="Delete" {

set ok=##class(User.Person).%DeleteId(%session.Get("OBJID"))

if ok set ok=##class(Person).cspLoadPerson("",.ErrorMessage)

 }elseif %request.Get("Action")="Clear" {

set ok=##class(User.Person).cspLoadPerson("",.ErrorMessage)

 }elseif %request.Get("Type")'="" {

if %request.Get("Type")="Person" {

set objid=%request.Get("Person")

; if they cancelled the search, restore Name,SSN and DOB which may have been lost

; (but keep other data that may have been changed !)

if objid="",%session.Get("OBJID") {

set obj=##class(Person).%OpenId(%session.Get("OBJID"))

do %session.Set("Name",obj.NameLogicalToDisplay(obj.Name))

do %session.Set("SSN",obj.SSNLogicalToDisplay(obj.SSN))

do %session.Set("DOB",obj.DOBLogicalToDisplay(obj.DOB))

do obj.%Close()

}

; otherwise get the new person details

else {

 set ok=##class(Person).cspLoadPerson(objid,.ErrorMessage)

}

}

 }else
{

 set objid=%request.Get("OBJID")

set ok=##class(Person).cspLoadPerson(objid,.ErrorMessage)

 }

</script>
The Exit button has its own code :

onClick="#server(..Exit())#;self.document.location='/default.htm'">

This first calls a ‘local’ method Exit() which is going to be defined in the current page, then sets the location to the home page (or whatever you like).

We need to define the Exit() method, which we can place at the end of the page, after the form:

<script language=cache method=Exit arguments=''>

 set %session.EndSession=1

</script>

Compile the Page and Test that it works

The project at this point is saved in

\pattaya2000\solution\csp\step10

2.10 Searching for a Wife (or Husband) ?

Next we will implement the spouse search. This is quite easy because we have a lot of the infrastructure in place.

First we need to Add a button to the form, just after the Spouse Age field :

 <input type=button name=btnSpouseSearch value=Search

onClick="FormToSession();

self.document.location='SearchList.csp' +

'?ObjId=' + me.sys_Id.value +

'&Title=Spouse Search' +

'&Class=Person' +

'&Query=ByName' +

'&Return=EditPerson.csp' +

'&Type=Spouse' +

'&P1=' + me.SpouseName.value">

This is very similar to the Person search, but with a different title, a different Query, a different Type value, and fewer parameters.

Since we want to be able to enter a (partial) name for the Spouse search, we need to make the SpouseName not readonly. We should remove the colouring by deleting the and from the caption, so this section of code is now :

<td>

 <div align=right>Spouse:</div>

 </td>

 <td>

 <input type=text name=SpouseName

 value='#(..EscapeHTML(%session.Get("SpouseName")))#' size=30>

 <input type=text name=SpouseAge value='#(..EscapeHTML(%session.Get("SpouseAge")))#'

size=5 readonly>

 <input type=button name=btnSpouseSearch value=Search

Finally, we need the code at the top of the page to handle the return from the Spouse Search.

Add the following code inside the Type’=”” section of the runat=server script :

}elseif %request.Get("Type")="Spouse" {

 set spouseid=%request.Get("Spouse")

 if spouseid {

 set spouse=##class(User.Person).%OpenId(spouseid)

 do %session.Set("SpouseId",spouseid)

 do %session.Set("SpouseName",spouse.Name)

 do %session.Set("SpouseAge",spouse.Age)

 do spouse.%Close()

 }

so that the whole script is now :

<script language=cache runat=server>

 set %session.Preserve=2 ; state-aware for SearchList

 if (%request.Get("Action")="Add")!(%request.Get("Action")="Update") {

set ok=##class(Person).cspSavePerson(.ErrorMessage)

if ok do ##class(Person).cspLoadPerson(%session.Get("OBJID"))

 }elseif %request.Get("Action")="Delete" {

set ok=##class(User.Person).%DeleteId(%session.Get("OBJID"))

if ok set ok=##class(Person).cspLoadPerson("",.ErrorMessage)

 }elseif %request.Get("Action")="Clear" {

set ok=##class(User.Person).cspLoadPerson("",.ErrorMessage)

 }elseif %request.Get("Type")'="" {

if %request.Get("Type")="Person" {

set objid=%request.Get("Person")

; if they cancelled the search, restore Name,SSN and DOB which may have been lost

; (but keep other data that may have been changed !)

if objid="",%session.Get("OBJID") {

set obj=##class(Person).%OpenId(%session.Get("OBJID"))

do %session.Set("Name",obj.NameLogicalToDisplay(obj.Name))

do %session.Set("SSN",obj.SSNLogicalToDisplay(obj.SSN))

do %session.Set("DOB",obj.DOBLogicalToDisplay(obj.DOB))

do obj.%Close()

}

; otherwise get the new person details

else {

 set ok=##class(Person).cspLoadPerson(objid,.ErrorMessage)

}

}elseif %request.Get("Type")="Spouse" {

 set spouseid=%request.Get("Spouse")

 if spouseid {

 set spouse=##class(User.Person).%OpenId(spouseid)

 do %session.Set("SpouseId",spouseid)

 do %session.Set("SpouseName",spouse.Name)

 do %session.Set("SpouseAge",spouse.Age)

 do spouse.%Close()

 }

}

 }else
{

 set objid=%request.Get("OBJID")

set ok=##class(Person).cspLoadPerson(objid,.ErrorMessage)

 }

</script>

Compile the Page and Test the Spouse search, including the Cancel button.

The project at this point is saved in

\pattaya2000\solution\csp\step11

Dogs

As in the VB project, we will implement a list of Dogs for each Person. The user can add a dog to the list for the person using a search, or remove one. When they select a Dog its picture (if any) will be displayed. If they click on the dog image, they will hear it bark

First the basic HTML for this. We Add a new row just after the Colours row :

<tr>

 <td>

 <div align="right">Dogs:</div>

 </td>

 <td>

 <select name="Dogs" size="3"

onClick="#server(User.Person.cspSelectDog(me.Dogs.selectedIndex))#">

 <script language=cache runat=server>

 new dogs,i,dogname

 set dogs=%session.Get("Dogs")

 for i=1:1:$listlength(dogs) {

 set dogname=..EscapeHTML($list(dogs,i))

 if i=(%session.Get("SelectedDog")+1) {

 &html< <option selected value='<%=dogname%>'><%=dogname%></option>>

 }else {

 &html< <option value='<%=dogname%>'><%=dogname%></option>>

 }

 }

 </script>

 </select>

 <input type="button" name="btnDogSearch" value="Search"

 onClick="FormToSession();

self.document.location='SearchList.csp' +

'?ObjId=' + me.sys_Id.value +

'&Title=Dog Search' +

'&Class=User.Dog' +

'&Query=Dogs' +

'&Return=EditPerson.csp' +

'&Type=Dog'">

 <input type="button" name="btnDogDelete" value="Delete"

 onclick="#server(..DeleteDog(me.Dogs.selectedIndex))#">

 </td>

 <td> </td>

</tr>

The COS code (here and later) assumes we have set up a set of %session variables for the dogs:

· “DogIds” : a $list of the dog ID’s

· “Dogs” : a $list of the dog names

· “DogStreams” : a $list of the streamoids for the dogs

· “SelectedDog” : the index (zero-based) of the dog in the list if one has been selected, or –1 if none are selected.

First we need to add some logic to User.Person.cspLoadPerson() to get the dog information from the Person object and set up the %session variables.

Add the following code to cspLoadPerson(), just before the set of TotalBill :

 new dogids,dogs,dogstreams,j,obj

 set (dogids,dogs,dogstreams)=""

 set j="" for set obj=person.Dogs.GetNext(.j) quit:j="" do

 . set dogs=dogs_$lb(obj.DogName)

 . set dogstreams=dogstreams_$lb(obj.DogPicture.GetStreamId())

 . set dogids=dogids_$lb(obj.%Id())

 do %session.Set("Dogs",dogs)

 do %session.Set("DogStreams",dogstreams)

 do %session.Set("DogIds",dogids)

 do %session.Set("SelectedDog",$select($length(dogids):0,1:-1))

The <select> for the dogs is loaded using COS, as we did for the Sex, but here we show you how to do it in-line, in the page, rather than as a method of a class.

The dog search button has the same FormToSession() and a similar search to the Person and Spouse searches, but using the Dogs query in the User.Dog class.

On return from the search, we need some logic to update the %session object. Add the following to the runat=server within the Type’=”” condition script :

}elseif %request.Get("Type")="Dog" {

 set dogid=%request.Get("Dog")

 if dogid {

 set dog=##class(User.Dog).%OpenId(dogid)

 do %session.Set("DogIds",%session.Get("DogIds")_$listbuild(dogid))

 do %session.Set("Dogs",%session.Get("Dogs")_$listbuild(dog.DogName))

 do %session.Set("DogStreams",%session.Get("DogStreams")_

 $listbuild(dog.DogPicture.GetStreamId()))

 do dog.%Close()

 do ##class(User.Person).SelectDog($listlength(%session.Get("Dogs"))-1)

 }

so that the whole script is now:

<script language=cache runat=server>

 set %session.Preserve=2 ; state-aware for SearchList

 if (%request.Get("Action")="Add")!(%request.Get("Action")="Update") {

set ok=##class(Person).cspSavePerson(.ErrorMessage)

if ok do ##class(Person).cspLoadPerson(%session.Get("OBJID"))

 }elseif %request.Get("Action")="Delete" {

set ok=##class(User.Person).%DeleteId(%session.Get("OBJID"))

if ok set ok=##class(Person).cspLoadPerson("",.ErrorMessage)

 }elseif %request.Get("Action")="Clear" {

set ok=##class(User.Person).cspLoadPerson("",.ErrorMessage)

 }elseif %request.Get("Type")'="" {

if %request.Get("Type")="Person" {

set objid=%request.Get("Person")

; if they cancelled the search, restore Name,SSN and DOB which may have been lost

; (but keep other data that may have been changed !)

if objid="",%session.Get("OBJID") {

set obj=##class(Person).%OpenId(%session.Get("OBJID"))

do %session.Set("Name",obj.NameLogicalToDisplay(obj.Name))

do %session.Set("SSN",obj.SSNLogicalToDisplay(obj.SSN))

do %session.Set("DOB",obj.DOBLogicalToDisplay(obj.DOB))

do obj.%Close()

}

; otherwise get the new person details

else {

 set ok=##class(Person).cspLoadPerson(objid,.ErrorMessage)

}

}elseif %request.Get("Type")="Spouse" {

 set spouseid=%request.Get("Spouse")

 if spouseid {

 set spouse=##class(User.Person).%OpenId(spouseid)

 do %session.Set("SpouseId",spouseid)

 do %session.Set("SpouseName",spouse.Name)

 do %session.Set("SpouseAge",spouse.Age)

 do spouse.%Close()

 }

}elseif %request.Get("Type")="Dog" {

 set dogid=%request.Get("Dog")

 if dogid {

 set dog=##class(User.Dog).%OpenId(dogid)

 do %session.Set("DogIds",%session.Get("DogIds")_$listbuild(dogid))

 do %session.Set("Dogs",%session.Get("Dogs")_$listbuild(dog.DogName))

 do %session.Set("DogStreams",%session.Get("DogStreams")_

 $listbuild(dog.DogPicture.GetStreamId()))

 do dog.%Close()

 do %session.Set("SelectedDog",$listlength(%session.Get("Dogs"))-1)

 }

}

 }else
{

 set objid=%request.Get("OBJID")

set ok=##class(Person).cspLoadPerson(objid,.ErrorMessage)

 }

</script>

Here again, we need similar code for the case where a person is loaded using javascript, as in the Id.OnBlur event.

We need to Add code to the cspLoadPersonJS() method to do this, again just before the code for TotalBill :

do ..cspLoadDogsJS()

and Add the method cspLoadDogsJS :

Method Name: cspLoadDogsJs
Return Type: <none>
Method Arguments: <none>
Characteristics: Class Method, Code
Copy/Paste in the following method code:

 new dogs,i,dog

 write " me.Dogs.length=0;",!

 set dogs=%session.Get("Dogs")

 for i=1:1:$listlength(dogs) {

 set dog=$list(dogs,i)

 if i=(%session.Get("SelectedDog")+1) {

 write " me.Dogs.options[me.Dogs.length]=new Option('"_dog_"','"_dog_"',true,true);",!

 }else {

 write " me.Dogs.options[me.Dogs.length]=new Option('"_dog_"','"_dog_"');",!

 }

 }

 do ..cspSelectDog(%session.Get("SelectedDog"))

and this requires a method cspSelectDog() in the User.Person class :

Method Name: cspSelectDog
Return Type: <none>
Method Arguments: Index: %Library.Integer (zero-based!)
Characteristics: Class Method, Code
Copy/Paste in the following method code:

 new dogstream

 do %session.Set("SelectedDog",Index)

 set dogstream=$listget(%session.Get("DogStreams"),%session.Get("SelectedDog")+1)

 if dogstream="" write " self.document.images['DogPicture'].style.visibility='hidden';"

 else write " self.document.images['DogPicture'].style.visibility='visible';"

 write " self.document.images['DogPicture'].src = '%25CSP.StreamServer.cls?STREAMOID=' + "

 write ..QuoteJS(..EscapeURL(##class(%CSP.Page).Encrypt(dogstream))),";",!

We Add the DogPicture on the previous row, in the third column, with a rowspan of 2,

replacing the <td> </td> with

<td rowspan=2>

 <csp:if condition='%session.Get("SelectedDog")=-1'>

 <csp:else>

 </csp:if>

</td>

This code is using the same technique with style=’visibility’ to hide the dog picture if there is none.

It also assumes that there is a file Dog.wav in our default directory (on the webwerver !), so Copy this file from \pattaya2000\sounds into \pattaya2000\train

There is an OnClick event which just has to call our cspSelectDog() method, passing in the selected index.

This will set the SelectedDog %session variable, and then display the picture of the selected dog (if any), setting the DogPicture image control to visible or invisible as needed.

The delete button calls a local method which updates the %session variables when a dog is removed from the list, then calls the cspLoadDogsJS() mthod to issue the javascript to refresh the list and select and display the first (if any) dog. Add this code to the bottom of the page body :

<script language=cache method=DeleteDog arguments=Index>

 new dogindex,i,list,newlist,j

 if $data(Index)=0 quit

 if $get(Index)<0 quit

 set dogindex=Index+1

 for i="DogIds","Dogs","DogStreams" {

 set list=%session.Get(i)

 set newlist="" for j=1:1:$listlength(list) if j'=dogindex set newlist=newlist_$listbuild($list(list,j))

 do %session.Set(i,newlist)

 }

 do %session.Set("SelectedDog",$select(newlist="":-1,1:0))

 do ##class(User.Person).cspLoadDogsJS()

 quit

</script>

After all that work, we should also saved the (changed) list of dogs in the Person object.

Add the following lines of code to the User.Person.cspSavePerson() method, just after the Colours field is saved :

 ; Dogs

 set var=%session.Get("DogIds")

 do person.Dogs.Clear()

 if $length(var) {

 for i=1:1:$listlength(var) {

 set dogid=$list(var,i)

 do person.Dogs.InsertObject($listbuild(dogid))

 }

 }

Compile the Class and the Page and Test the dog logic.

The project at this point is saved in

\pattaya2000\solution\csp\step12

PAGE
64

