
SG24-5110-00

International Technical Support Organization

http://www.redbooks.ibm.com

LDAP Implementation Cookbook

Heinz Johner, Michel Melot, Harri Stranden, Permana Widhiasta

LDAP Implementation Cookbook

June 1999

SG24-5110-00

International Technical Support Organization

© Copyright International Business Machines Corporation 1999. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (June 1999)

This edition applies to the IBM SecureWay Directory, available for IBM AIX, IBM OS/400, IBM OS/390,
Microsoft Windows NT, and Sun Solaris.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B, Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix B, “Special Notices” on page 273.

Take Note!

Contents

Figures .ix

Tables .xi

Preface . xiii
The Team That Wrote This Redbook . xiii
Comments Welcome . xiv

Chapter 1. Introduction . 1
1.1 What Is a Directory? . 2

1.1.1 Differences Between Directories and Databases 3
1.1.2 Directory Clients and Servers . 5
1.1.3 Distributed Directories . 6
1.1.4 Directory Security . 8
1.1.5 Users, Platforms, and Networks . 9

1.2 The Directory as Infrastructure . 10
1.2.1 Directory-Enabled Applications. 10
1.2.2 The Benefits of a Common Directory for Applications 11
1.2.3 Directory-Enabled Networks . 12

1.3 LDAP: Protocol or Directory? . 13
1.3.1 X.500: The Directory Service Standard. 13
1.3.2 LDAP Server as a Gateway . 14
1.3.3 LDAP as Standalone Server . 14

1.4 The LDAP Road Map . 15
1.4.1 LDAP Is More than a Programming Model 16

1.5 The Framework for Creating Enterprise-Wide Solutions 17
1.6 IBM Directory Strategy . 20
1.7 IBM Directory Offerings . 21

1.7.1 The IBM SecureWay Directory . 22
1.7.2 The IBM SecureWay Directory Client SDK 24
1.7.3 Lotus Domino R5.0 . 24
1.7.4 Tivoli User Administration: LDAP Connection 26

1.8 LDAP Standards. 28
1.9 Summary . 28

Chapter 2. Schema and Namespace . 31
2.1 LDAP Information Model Overview . 31
2.2 LDAP Names . 33

2.2.1 String Form . 33
2.2.2 URL Form. 34
2.2.3 Additional Syntaxes . 35
© Copyright IBM Corp. 1999 iii

2.3 Directory Information Tree (Namespace) Structure. 36
2.4 Relationship Between Objects . 37

2.4.1 Object and Attribute Reuse. 39
2.4.2 Naming Conventions . 40

2.5 The IBM Schema . 41
2.5.1 Schema Information . 43

2.6 Schema Categories . 44
2.6.1 Directory Server Objects. 45
2.6.2 White Pages Objects . 46
2.6.3 Security Objects . 51
2.6.4 Policy Objects . 54
2.6.5 Profile Objects . 55
2.6.6 System Objects . 58
2.6.7 Software Objects . 60
2.6.8 Service Objects . 62
2.6.9 Other Objects . 63

2.7 The IBM Schema Repository . 63

Chapter 3. A Step-by-Step Approach for Directory Implementation . . 65
3.1 Define the Objective for Using an LDAP Directory Service 65
3.2 Define the Data to Store in the Directory Service 66

3.2.1 The Type and Use of Directory Data. 66
3.2.2 Survey the Directory Data. 67

3.3 Evaluate Data and Its Relationship to Directory Schema 68
3.4 Define and Assign Responsibilities for the Data 68
3.5 Evaluate Data and Its Placement in the Namespace 69
3.6 Evaluate the Existing Security Policy . 70
3.7 Define the Migration Model. 70
3.8 Define the LDAP Programming Model . 72
3.9 Define the Deployment and Performance Criteria 73

3.9.1 Availability of the Directory Service. 73
3.9.2 Performance Considerations . 74

3.10 Step-by-Step Summary . 74

Chapter 4. Managing an LDAP Directory . 77
4.1 Overview: Administration Tools, Utilities, and APIs. 77
4.2 Centralized versus Distributed Administration 79

4.2.1 Who Administers The Data? . 79
4.2.2 Attribute Grouping . 80
4.2.3 Multiple Applications. 82

4.3 UTF-8 Support . 83
4.4 Tivoli TME Considerations . 85
4.5 Distributed Directories - Split Namespaces. 87
iv LDAP Implementation Cookbook

4.5.1 Partitioning a Directory . 88
4.5.2 Administering a Split Namespace . 90

4.6 Migration from the Previous Release . 91
4.7 Migration from Non-LDAP Sources . 92

4.7.1 The LDIF File Format . 93
4.7.2 LDIF Data Encoding . 95
4.7.3 Creating Directory Entries Using LDIF . 95
4.7.4 LDIF File Example . 97
4.7.5 Importing LDIF Data . 97

4.8 Summary and Conclusions . 101

Chapter 5. Directory Security . 103
5.1 Security of the Directory . 103
5.2 Security Support of the IBM SecureWay Directory 104

5.2.1 Overview of Simple Authentication and Security Layer (SASL) . 105
5.2.2 Overview of Secure Sockets Layer (SSL) 106

5.3 SSL Utilities . 108
5.3.1 GSKit Installation . 109
5.3.2 The ikmgui Utility . 110

5.4 Configuring SSL Security . 111
5.4.1 Creating a Certificate Signed by a Trusted Certificate Authority 112
5.4.2 Creating a Self-Signed Certificate. 114
5.4.3 Configuring an LDAP Server to Use SSL 116
5.4.4 Configuring an LDAP Client to Use SSL 117

5.5 Delegation Model . 117
5.6 Access Control . 120

5.6.1 ACL Permissions . 121
5.6.2 Attribute Classes . 122
5.6.3 Propagation . 123
5.6.4 LDAP ACL Attributes . 123
5.6.5 Pseudo DNs . 125
5.6.6 Granting Access . 126

5.7 Storing Security Related Information in the Directory 126
5.7.1 Passwords . 126
5.7.2 Certificates . 129
5.7.3 Displaying Sensitive Data . 129
5.7.4 Attacks . 129

Chapter 6. Installation and Configuration . 131
6.1 Windows NT . 131

6.1.1 System and Software Requirements . 131
6.1.2 Installing the Server . 132
6.1.3 Configuration . 133
v

6.1.4 Unconfiguring and Uninstalling the Server 136
6.2 AIX . 137

6.2.1 System and Software Requirements . 138
6.2.2 Installing the Server . 138
6.2.3 Configuration . 139
6.2.4 Unconfiguring and Uninstalling the Server 139

6.3 OS/390. 140
6.3.1 System and Software Requirements . 141
6.3.2 Installing the Server . 141
6.3.3 Configuration . 142
6.3.4 Unconfiguring and Uninstalling the Server 150

6.4 OS/400. 150
6.4.1 System and Software Requirements . 151
6.4.2 Installing the Server . 151
6.4.3 Configuration . 152
6.4.4 Uninstalling the Server . 158

Chapter 7. LDAP Data and System Administration 159
7.1 The Directory Management Tool . 159

7.1.1 Startup and Configuration. 160
7.1.2 Example: Expanding the Schema . 161

7.2 The Administrator Graphical User Interface 166
7.2.1 Launching the Administrator GUI . 167
7.2.2 Window Layout . 167

7.3 Database Configuration . 169
7.3.1 Default Database . 170
7.3.2 Custom Database . 171

7.4 Defining a Suffix . 171
7.5 Database Population . 172

7.5.1 Adding Data Entries . 173
7.5.2 Verifying Data Entries. 175
7.5.3 Updating Data Entries . 176
7.5.4 Back up the Database . 177

7.6 Replication . 178
7.6.1 Configuration . 178
7.6.2 Promote a Replica as Master . 182

7.7 Referrals . 184
7.8 Command Line Utilities . 187

7.8.1 The LDIF Utility . 188
7.8.2 The LDIF2DB Utility . 189
7.8.3 The BULKLOAD Utility . 189
7.8.4 The DB2LDIF Utility . 192
7.8.5 The LDAPSEARCH Utility. 192
vi LDAP Implementation Cookbook

7.8.6 The LDAPMODIFY and LDAPADD Utilities. 197
7.8.7 The LDAPDELETE Utility . 200
7.8.8 The LDAPMODRDN Utility . 202

7.9 Security Setup . 204
7.9.1 Creating and Working with Access Groups 204
7.9.2 Creating and Working with Access Roles 206
7.9.3 Ownership and Access Control . 206

7.10 Schema Data Management . 213
7.10.1 The rootDSE. 214
7.10.2 Schema Files . 216
7.10.3 Back up and Restore Schema Information 217

7.11 Locating LDAP Servers Using DNS . 218
7.11.1 TXT Records . 218
7.11.2 SRV Records . 219
7.11.3 CNAME Records . 220
7.11.4 APIs Provided for DNS Support . 220

Chapter 8. Developing Directory-Enabled Applications 223
8.1 Java Naming and Directory Interface (JNDI). 223

8.1.1 Introduction . 224
8.1.2 Directory Context and Schema Context 226
8.1.3 Java Object Serialization . 229
8.1.4 JNDI and Security. 230
8.1.5 JNDI Example Program . 233

8.2 C LDAP Application Programming Interface (API) 235
8.2.1 Introduction . 235
8.2.2 Synchronous and Asynchronous Use of the API 240
8.2.3 A Synchronous Search Example . 241
8.2.4 More about Search Filters . 245
8.2.5 Parsing Search Results . 245
8.2.6 An Asynchronous Search Example . 249
8.2.7 Error Handling . 253
8.2.8 Authentication Methods . 257
8.2.9 Multithreaded Applications . 261

8.3 Special Programming Topics . 264
8.3.1 Data Considerations, Discrete Attributes versus Blobs 264
8.3.2 Caching Considerations . 265

Appendix A. Standards . 269

Appendix B. Special Notices . 273

Appendix C. Other References and Related Publications 277
C.1 International Technical Support Organization Publications 277
vii

C.2 Redbooks on CD-ROMs . 277
C.3 Other Publications . 277
C.4 The Internet Engineering Task Force (IETF) . 278
C.5 The University of Michigan (UMICH) . 279
C.6 IBM Internet Wet Site for the IBM SecureWay Directory 279
C.7 IBM Intranet Web Site. 279
C.8 Lotus Notes Discussion Database . 280
C.9 Software Development Kits . 280
C.10 Other Sources. 281

C.10.1 LDAP, General . 281
C.10.2 Request for Comments (RFCs) and other References 281

How to Get ITSO Redbooks . 283
IBM Redbook Fax Order Form . 284

List of Abbreviations . 285

Index . 287

ITSO Redbook Evaluation . 293
viii LDAP Implementation Cookbook

Figures

1. Directory client/server interaction. 5
2. LDAP server acting as a gateway to an X.500 server 14
3. Stand-alone LDAP server . 15
4. Application framework for e-business . 18
5. The Domino 5.0 directory architecture. 26
6. Tivoli database versus the real configuration. 27
7. Namespace organization . 37
8. The big picture of the IBM schema . 42
9. Class hierarchy for person object classes . 48
10. Class hierarchy for group object classes . 50
11. Class hierarchy for miscellaneous object classes 50
12. Person - User relationship . 52
13. Person - Account and their application system relationships. 54
14. Property set and property object relationships. 56
15. Preferences - Example 1 . 57
16. Preferences - Example 2 . 58
17. System-level object relationships. 60
18. Software object class relationships . 61
19. Service object class relationships . 63
20. Data passes in UTF-8 character set . 84
21. Referrals example . 89
22. The schema migration tool. 92
23. IBM key management (ikmgui) utility main window 111
24. Delegation . 118
25. IBM SecureWay directory configuration (using ldapxcfg) 134
26. Sample DSNAOINI file . 143
27. Sample ldapspfi.spufi file . 145
28. A sample SLAPD file . 147
29. Operations navigator LDAP administration . 152
30. LDAP administration pop-up menu . 153
31. LDAP configuration wizard - Welcome screen. 154
32. LDAP configuration wizard - Specify database library 155
33. LDAP configuration wizard - Administrator name 155
34. LDAP configuration wizard - Choose directory suffixes 156
35. LDAP configuration wizard - Start server option 157
36. LDAP configuration wizard - Configuration summary 157
37. IBM SecureWay directory management tool . 159
38. Adding an attribute. 161
39. Define a new object class - Name and superior class 162
40. Define a new object class - Optional attributes . 163
© Copyright IBM Corp. 1999 ix

41. Add a new person using the new object class . 164
42. Select the object classes for the new entry . 165
43. Enter the attribute values for the new entry . 165
44. New person entry in the directory tree . 166
45. Initial administration interface . 168
46. Configure database . 170
47. Importing an LDIF file (with errors) . 174
48. Import error message. 174
49. List of replicas . 180
50. Promote a replica server as master server . 183
51. Referrals . 185
52. Create ownership. 208
53. ACL control list entry . 209
54. ACL with additional group . 210
55. Additional ACL owner . 210
56. JNDI API and SPI interfaces . 225
57. DirContext for different directory services . 226
58. Schema context . 228
59. Java object serialization. 229
60. SASL plugins . 231
61. External SASL . 232
62. Synchronous versus asynchronous calls. 240
63. Different search scopes . 244
64. Result of a search request . 246
65. Multiple parallel threads . 262
x LDAP Implementation Cookbook

Tables

1. Example ACL for an employee’s directory entry . 8
2. The ASCII encoding of an RDN surname (example) 34
3. Tivoli LDAP connection attribute mapping . 86
4. LDIF fields . 94
5. Administration matrix . 101
6. Permissions required for basic LDAP operations 122
7. Search filter operators . 195
8. Boolean operators . 196
9. JNDI directory context environment properties . 228
© Copyright IBM Corp. 1999 xi

xii LDAP Implementation Cookbook

Preface

The implementation and exploitation of centralized, corporate-wide
directories are among the top priority projects in most organizations in the
years 1999 and 2000. The need for a centralized directory emerges as
organizations realize the overhead and cost involved in managing the many
distributed micro and macro directories introduced in the past decade with
decentralized client/server applications and network operating systems.

Directories are key for a successful IT operation in medium and large
environments. IBM understands this requirement and supports it by providing
directory implementations based on industry standards at no additional cost
on all its major platforms and even important non-IBM platforms. The IBM
SecureWay Directory, formerly known as the IBM eNetwork LDAP Directory,
implements the Lightweight Directory Access Protocol (LDAP) standard that
has emerged quickly in the past years as a result of the demand for such a
standard.

This redbook will help you understand, install, and configure the IBM
SecureWay Directory. It is targeted at system specialists who need to know
the concepts and the detailed instructions for a successful LDAP
implementation.

The Team That Wrote This Redbook

This redbook is an evolution of an IBM working paper, IBM eNetwork LDAP
Exploitation Guide, that was written by Mike Schlosser and Ellen Stokes at
IBM Austin. The redbook was produced by a team of specialists from around
the world working at the International Technical Support Organization, Austin
Center.

Heinz Johner is an Advisory I/T Specialist at the International Technical
Support Organization, Austin Center. He writes extensively on the Distributed
Computing Environment (DCE), security-related areas, and eNetwork
deployment. Before joining the ITSO, he worked in the Professional Services
organization of IBM Switzerland and was responsible for DCE and Systems
Management in medium and large customer projects.

Michel Melot is an I/T Specialist from the IBM Service Delivery in La Gaude,
France. He has many years of experience in the computer industry and
specializes in DCE/DFS implementation and administration for the European
environment.
© Copyright IBM Corp. 1999 xiii

Harri Stranden is an I/T Architect for e-business Solutions at IBM Finland.
He has over 20 years of experience in the IT field on networking and Systems
Management. He has worked with IBM for 12 years. His areas of expertise
include building solutions exploiting Internet technologies.

Permana Widhiasta is an I/TAP System Services Representatives from IBM
Global Services in Indonesia. He has worked with IBM for several years. He
holds a degree in Materials Engineering from the University of Indonesia. His
area of expertise includes AS/400 Systems Management.

Thanks to the following people for their invaluable contributions to this book:

Matt Barber, IBM Austin
Debora Byrne, IBM Austin
Patrick Fleming, IBM Rochester
Mike Garrison, IBM Austin
Karen Gdaniec, IBM Endicott
Timothy Hahn, IBM Endicott
Kyle L. Henderson, IBM Rochester
Paul Immanuel, IBM Raleigh
James Manon, IBM Austin
Mark McConaughy, IBM Austin
Ellen Stokes, IBM Austin
Diane H. Pearce, IBM Canada

Paul de Graaff, ITSO Poughkeepsie
Fant Steele, ITSO Rochester

Special thanks go to the editors for their invaluable help in finalizing the book:

John Owczarzak
Milos Radosavlijevic

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO Redbook Evaluation” on page 293
to the fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com

• Send your comments in an Internet note to redbook@us.ibm.com
xiv LDAP Implementation Cookbook

Chapter 1. Introduction

People and businesses are increasingly relying on networked computer
systems to support distributed applications. These distributed applications
might interact with computers on the same local area network (LAN), within a
corporate intranet, within extranets linking up partners and suppliers, or
anywhere on the worldwide Internet. To improve functionality and
ease-of-use, and to enable cost-effective administration of distributed
applications, information about the services, resources, users, and other
objects accessible from the applications needs to be organized in a clear and
consistent manner. Much of this information can be shared among many
applications, but, it must also be protected in order to prevent unauthorized
modification or the disclosure of private information.

Information describing the various users, applications, files, printers, and
other resources accessible from a network is often collected into a special
database that is sometimes called a directory. As the number of different
networks and applications has grown, the number of specialized directories
of information has also grown resulting in islands of information that are
difficult to share and manage. If all of this information could be maintained
and accessed in a consistent and controlled manner, it would provide a focal
point for integrating a distributed environment into a consistent and seamless
system.

The Lightweight Directory Access Protocol (LDAP) is an open industry
standard that has evolved to meet these needs. LDAP defines a standard
method for accessing and updating information in a directory. LDAP is gaining
wide acceptance as the directory access method of the Internet and is
therefore also becoming strategic within corporate intranets. It is being
supported by a growing number of software vendors and is being
incorporated into a growing number of applications. For example, the two
most popular Web browsers, Netscape Navigator/Communicator and
Microsoft Internet Explorer, support LDAP functionality as a base feature.

This LDAP Implementation Cookbook explains the steps to get started with
LDAP directory implementation projects and is intended to give the reader a
detailed understanding of the architecture, use, and benefits of LDAP. It also
contains product-specific installation, configuration, and administration
information.

Chapter 1 provides background information about what a directory service is
and the benefits it can provide and what IBM offerings are. The schema and
namespace are discussed in detail in Chapter 2. Chapter 3 proposes a
© Copyright IBM Corp. 1999 1

step-by-step approach for directory implementation projects. The
management and administration of a centralized or distributed directory from
a design and planning point of view are covered in Chapter 4. Next, Chapter 5
discusses security topics like authentication of directory users and access
control lists (ACL). Chapter 6 provides information about the installation and
configuration of the IBM SecureWay Directory. Directory and system
administration considerations are discussed in Chapter 7. Chapter 8 finally
explains how to develop directory-enabled applications. Various reference
material is collected in the appendices.

1.1 What Is a Directory?

A directory is a collection of information about objects arranged in some order
that gives details about each object. Popular examples are a city telephone
directory and a library card catalog. For a telephone directory, the objects
listed are people; the names are arranged alphabetically, and the details
given about each person typically include an address and telephone number.
Books in a library card catalog are ordered by author or by title, and
information such as the ISBN number of the book and other publication
information is also contained.

In computer terms, a directory is a specialized database, also called a data
repository, that stores typed and ordered information about objects. A
particular directory might list information about printers (the objects)
consisting of typed information, such as location (a formatted character
string), speed in pages per minute (numeric), print data streams supported
(for example PostScript or ASCII), and so on.

Directories allow users or applications to find resources that have the
characteristics needed for a particular task. For example, a directory of users
can be used to look up a person’s e-mail address or fax number. A directory
can be searched to find a nearby PostScript color printer. Or, a directory of
application servers can be searched to find a server that can access
customer billing information.

The terms white pages and yellow pages are sometimes used to describe
how a directory is used. If the name of an object (person, printer) is known, its
characteristics (phone number and pages per minute) can be retrieved. This
is similar to looking up a name in the white pages of a telephone directory. If
the name of a particular individual object is not known, the directory can be
searched for a list of objects that meet a certain requirement. This is like
looking up a listing of hairdressers in the yellow pages of a telephone
directory. However, directories stored on a computer are much more flexible
2 LDAP Implementation Cookbook

than the yellow pages of a telephone directory because they can usually be
searched by specific criteria not just by a predefined set of categories.

1.1.1 Differences Between Directories and Databases
A directory is often described as a database, but it is a specialized database
that has characteristics that set it apart from general purpose relational
databases. One special characteristic of directories is that they are accessed
(read or searched) much more often than they are updated (written).
Hundreds of people might look up an individual’s phone number, or
thousands of print clients might look up the characteristics of a particular
printer. But, the phone number or printer characteristics rarely ever change.

Because directories must be able to support high volumes of read requests,
they are typically optimized for read access. Write access might be limited to
system administrators or to the owner of each piece of information. A general
purpose database, on the other hand, needs to support applications, such as
airline reservations and banking applications, with relatively high update
volumes.

Because directories are meant to store relatively static information and are
optimized for that purpose, they are not appropriate for storing information
that changes rapidly. For example, the number of jobs currently in a print
queue probably should not be stored in the directory entry for a printer
because that information would have to be updated frequently to be accurate.
Instead, the directory entry for the printer can contain the network address of
a print server. The print server can be queried to get the current queue length
if desired. The information in the directory (the print server address) is static,
whereas the number of jobs in the print queue is dynamic.

Another difference between directories and general purpose databases is
that directories normally do not support transactions. This may, however,
change in the future and some vendor implementation may already support
transactions. Transactions are all-or-nothing operations that must be
completed in total or not at all. For example, when transferring money from
one bank account to another, the money must be debited from one account
and credited to the other account in a single transaction. If only half of this
transaction completes or someone accesses the accounts while the money is
in transit, the accounts will not balance. General-purpose databases usually
support such transactions, which complicates their implementation.

Because directories deal mostly with read requests, the complexities of
transactions can be avoided. If two people exchange offices, both of their
directory entries need to be updated with new phone numbers, office
Introduction 3

locations, and so on. If one directory entry is updated, and the other directory
entry is then updated, there is a brief period during which the directory will
show that both people have the same phone number. Because updates are
relatively rare, such anomalies are considered acceptable.

The type of information stored in a directory usually does not require strict
consistency. It might be acceptable if information such as a telephone number
is temporarily out of date. Because directories are (currently) not
transactional, it is not a good idea to use them to store information that is
sensitive to inconsistencies, such as bank account balances.

Because general-purpose databases must support arbitrary applications
such as banking and inventory control, they allow arbitrary collections of data
to be stored. Directories may be limited in the type of data they allow to be
stored (although the architecture does not impose such a limitation). For
example, a directory specialized for customer contact information might be
limited to storing only personal information such as names, addresses, and
phone numbers. If a directory is extensible, it can be configured to store a
variety of types of information making it more useful to a variety of programs.

Another important difference between a directory and a general-purpose
database is in the way information can be accessed. Most databases support
a standardized, very powerful access method called Structured Query
Language (SQL). SQL allows complex update and query functions at the cost
of program size and application complexity. LDAP directories, on the other
hand, use a simplified and optimized access protocol that can be used in slim
and relatively simple applications.

Because directories are not intended to provide as many functions as
general-purpose databases, they can be optimized to economically provide
more applications with rapid access to directory data in large distributed
environments. Because the intended use of directories is restricted to a
read-mostly, non transactional environment, both the directory client and
directory server can be simplified and optimized.
4 LDAP Implementation Cookbook

1.1.2 Directory Clients and Servers
Directories are usually accessed using the client/server model of
communication. An application that wants to read or write information in a
directory does not access the directory directly. Instead, it calls a function or
application programming interface (API) that causes a message to be sent to
another process. This second process accesses the information in the
directory on behalf of the requesting application. The results of the read or
write are then returned to the requesting application (see Figure 1).

Figure 1. Directory client/server interaction

The request is performed by the directory client, and the process that
maintains and looks up information in the directory is called the directory
server. In general, servers provide a specific service to clients. Sometimes, a

Many of the differences just mentioned may lead to the suspicion that a
directory is no more than a limited-function database. This is indeed partly
true since one of the important design goals of a directory service is that it
can be accessed and used from relatively small and simple applications. In
fact, certain vendor products, such as the IBM SecureWay Directory, use a
relational database under the cover to implement the functions. Also,
proposals are being discussed in the standards bodies to add some
functions to future versions of LDAP that currently are specific to
databases, such as support for transactional updates.

What About the Future?

Application Client Directory Server

Request Message

Reply Message

Application

TCP/IP

Directory Client

Request Reply

TCP/IP

Receive Message
Access Directory
Return Reply

Directory

API
Introduction 5

server might become the client of other servers in order to gather the
information necessary to process a request.

A directory service is only one type of service that might be available in a
client/server environment. Other common examples of services are file
services, mail services, print services, Web page services, and so on. The
client and server processes might or might not be on the same machine. A
server is capable of serving many clients. Some servers can process client
requests in parallel. Other servers queue incoming client requests for serial
processing if they are currently busy processing another client’s request.

An API defines the programming interface that a particular programming
language uses to access a service. The format and contents of the messages
exchanged between client and server must adhere to an agreed upon
protocol. LDAP defines a message protocol used by directory clients and
directory servers. There is also an associated LDAP API for the C language
and ways to access the directory from a Java application using JNDI (see
Chapter 8, “Developing Directory-Enabled Applications” on page 223 for more
details on these APIs). The client is not dependent upon a particular
implementation of the server, and the server can implement the directory
however it chooses.

It may seem confusing, at this time, to discuss directories as well as protocols
while the acronym LDAP strictly refers to a protocol only. Section 1.3, “LDAP:
Protocol or Directory?” on page 13 will clarify this.

1.1.3 Distributed Directories
The terms local, global, centralized, and distributed are often used to
describe a directory or directory service. These terms mean different things
to different people in different contexts. In this section, these terms are
explained as they apply to directories in different contexts.

In general, local means something is close by, and global means that
something is spread across the universe of interest. The universe of interest
might be a company, a country, or the Earth. Local and global are two ends of
a continuum. That is, something may be more or less global or local than
something else. Centralized means that something is in one place, and
distributed means that something is in more than one place. Like local and
global, something can be distributed to a greater or lesser extent.

The information stored in a directory can be local or global in scope. For
example, a directory that stores local information might consist of the names,
e-mail addresses, public encryption keys, and so on of members of a
6 LDAP Implementation Cookbook

department or workgroup. A directory that stores global information might
store information for an entire company. Here, the universe of interest is the
company.

The clients that access information in the directory can be local or global.
Local clients may all be located in the same building or on the same LAN.
Global clients might be distributed across the continent or planet.

The directory itself can be centralized or distributed. If a directory is
centralized, there is one directory server (or a server cluster) at one location
that provides access to the directory. If the directory is distributed, there are
multiple servers, usually geographically dispersed, that provide access to the
directory.

When a directory is distributed, the information stored in the directory can be
partitioned or replicated. When information is partitioned, each directory
server stores a unique and non-overlapping subset of the information. That is,
each directory entry is stored by one and only one server. The technique to
partition the directory is to use LDAP referrals. LDAP referrals allow the users
to refer LDAP requests to either the same or different name spaces stored in
a different (or same) server. When information is replicated, the same
directory entry is stored by more than one server. In a distributed directory,
some information may be partitioned, and some information may be
replicated.

The three dimensions of a directory — scope of information, location of
clients, and distribution of servers — are independent of each other. For
example, clients scattered across the globe can access a directory containing
only information about a single department, and that directory can be
replicated at many directory servers. Or, clients in a single location can
access a directory containing information about everybody in the world that is
stored by a single directory server.

The scope of information to be stored in a directory is often given as an
application requirement. The distribution of directory servers and the way in
which data is partitioned or replicated can often be controlled to effect the
performance and availability of the directory. For example, a distributed and
replicated directory might perform better because a read request can be
serviced by a nearby server. A centralized directory may be less available
because it is a single point of failure. However, a distributed directory might
be more difficult to maintain because multiple sites, possibly under the control
of multiple administrators, must be kept up-to-date and in running order.
Introduction 7

The design and maintenance of a directory service can be complex, and
many trade-offs may be involved. You can see more detailed information
about the topic in the following chapters.

1.1.4 Directory Security
The security of information stored in a directory is a major consideration.
Some directories are meant to be accessed publicly on the Internet, but any
user should not necessarily be able to perform any operation. A company’s
directory servicing its intranet can be stored behind a firewall to keep the
general public from accessing it, but more security control may be needed
within the intranet itself.

For example, anybody should be able to look up an employee’s e-mail
address, but only the employee or a system administrator should be able to
change it. Members of the personnel department might have permission to
look up an employee’s home telephone number, but their co-workers might
not. Depending on the confidentiality of the data, information may need to be
encrypted before being transmitted over the network. A security policy
defines who has what type of access to what information. The security policy
is defined by the organization that maintains the directory.

A directory should support the basic capabilities needed to implement a
security policy. The directory might not directly provide the underlying
security capabilities, but it might be integrated with a trusted network security
service that provides the basic security services. First, a method is needed to
authenticate users. Authentication verifies that users are who they say they
are. A user name and password is a basic authentication scheme. Once
users are authenticated, it must be determined if they have the authorization
or permission to perform the requested operation on the specific object.

Authorization is often based on access control lists (ACLs). An ACL is a list of
authorizations that may be attached to objects and attributes in the directory.
An ACL lists what type of access each user or a group of users is allowed or
denied. In order to make ACLs shorter and more manageable, users with the
same access rights are often put into security groups. Table 1 shows an
example ACL for an employee’s directory entry.

Table 1. Example ACL for an employee’s directory entry

User or Group Access Rights

owner read, modify (but not delete)

administrators all

personnel read all fields
8 LDAP Implementation Cookbook

The authentication and authorization methods and related standards and
proposals relevant to LDAP, like Secure Sockets Layer (SSL) and Simple
Authentication and Security Layer (SASL), are discussed in more detail in
Chapter 5, “Directory Security” on page 103.

1.1.5 Users, Platforms, and Networks
The concept of users, what a user is, where the information about a user is
stored, how it is used, and so on is key to understanding the relationship
between LDAP directory services and platform operating systems.

Starting with LDAP directory service, there are two obvious ways to think
about users:

• A user may be an LDAP directory user. LDAP sessions begin with a bind
operation. For cases other than unauthenticated access, a bind request
must supply a distinguished name (DN) and a password or another type of
credential. So, a user must be defined in the directory server (the user
must have a DN) in order to be authenticated to access the directory.

• A user may be a white pages entry in an LDAP directory. The common
white pages or phone book application will contain information about
people, in most cases many people. There can be, but does not have to
be, a relationship between a white pages entry and an LDAP directory
user; that is, everyone listed in the white pages directory may not have
access to the directory. The inverse may also be true; people not listed in
the directory may access the data as, for example, when internal users
access a directory that stores customer person objects.

Most operating system platforms provide local or remote access for users; so,
a user can also be the following:

• A user may be a system-defined user. The user must be defined on the
system platform in order to be authenticated so he/she can be a user of
that platform for access to system services, such as file and print sharing.
Such users are usually defined by a user ID and a password, or, with
increasing importance, by a digital certificate signed by a known
Certificate Authority (CA).

Historically, multi-user interactive applications and subsystems used the
platform-level user definitions on the hosted platform to authenticate user
access to transactions, programs and data. While single sign-on, and the

all others read restricted

User or Group Access Rights
Introduction 9

overall security architecture are beyond the scope of this guide, it is sufficient
to say that, as the number of systems in a network continues to grow and
applications themselves are distributed across multiple systems, the strict
application-to-host system user affinity is insufficient. So, many applications
have developed their own private user and authentication files.

• A user may be an application user. The user must be defined/enrolled in
the specific application in order to be authenticated and have access to
that application and its resources.

It is important to understand this current topology with its mix of semantics,
syntax, and backing stores for user information in order to understand the
context of users within a distributed environment.

1.2 The Directory as Infrastructure

A directory that is accessible by multiple applications is a vital part of the
infrastructure supporting networked systems. A directory service provides a
single logical view of the users, resources, and other objects that make up a
distributed system. This allows users and applications to access network
resources transparently. That is, the system is perceived as an integrated
whole, a network, not a collection of independent parts. Objects can be
accessed by name or function without knowing low-level identifiers such as
host addresses, file server names, and e-mail addresses.

1.2.1 Directory-Enabled Applications
A directory-enabled application is an application that uses a directory service
to improve its functionality, ease of use, and administration. Today, many
applications make use of information that can be stored in a directory. For
example, consider a group calendar application that is used to schedule
meetings of company personnel in different conference rooms.

In the worst case, the calendar application does not use a directory service at
all. If this were the case, a user trying to schedule a meeting would have to
remember the room number of every conference room that might be
appropriate for the meeting. Is the room big enough, does it have the
necessary audio and video equipment, and so on? The user would also have
to remember the names and e-mail addresses of every attendee that needs
to receive a meeting notice. Such an application would obviously be
cumbersome to use.

If conference room information (size, location, special equipment, and so on)
and personnel information (name, e-mail address, phone number, and so on)
10 LDAP Implementation Cookbook

can be accessed from a directory service, the application will be much easier
to use. Also, the functionality of the application can be improved. For
example, a list of all available conference rooms meeting the size and
equipment requirements can be presented to the user.

But, the developers of directory-enabled applications are faced with a
problem. What if they cannot assume that a directory service will exist in all
environments? If there is a directory service, it might be specific to a certain
network operating system (NOS) making the application non-portable. Can
the existing directory service be extended to store the type of information
needed by the application? Because of these concerns, application
developers often take the approach of developing their own
application-specific directory.

1.2.2 The Benefits of a Common Directory for Applications
An application-specific directory stores only the information needed by a
particular application and is not accessible by other applications. Because a
full-function directory service is complex to build, application-specific
directories are typically very limited. They probably store only a specific type
of information, probably do not have general search capabilities, probably do
not support replication and partitioning, and probably do not have a full set of
administration tools. An application-specific directory can be as simple as a
set of editable text files, or it can be stored and accessed in an
undocumented proprietary manner.

In such an environment, each application creates and manages its own
application-specific directory, which quickly becomes an administrative
nightmare. The same e-mail address stored by the calendar application might
also be stored by a mail application and by an application that notifies system
operators of equipment problems. Keeping multiple copies of information
up-to-date and synchronized is difficult especially when different user
interfaces and even different system administrators are involved.

What is needed is a common, application-independent directory. If application
developers could be assured of the existence of a directory service,
application-specific directories would not be necessary. However, a common
directory must address the problems mentioned above. It must be based on
an open standard that is supported by many vendors on many platforms. It
must be accessible through a standard API. It must be extensible so that it
can hold the types of data needed by arbitrary applications. And it must
provide rich functionality without requiring excessive resources on smaller
systems. Since more users and applications will access and depend on the
common directory, it must also be robust, secure, and scalable.
Introduction 11

When such a directory infrastructure is in place, application developers can
devote their time to developing applications instead of application-specific
directories. In the same way that developers rely on the communications
infrastructure of TCP/IP, remote procedure call (RPC), and object request
brokers (ORBs) to free them from low-level communication issues, they will
be able to rely on powerful, full-function directory services. LDAP is the
protocol to be used to access this common directory infrastructure. Like
HTTP (hypertext transfer protocol) and FTP (file transfer protocol), LDAP will
become an indispensable part of the Internet’s protocol suite.

When applications access a standard common directory that is designed in a
proper way, rather than using application-specific directories, redundant and
costly administration can be eliminated, and security risks are more
controllable. The calendar, mail, and operator notification applications can all
access the same directory to retrieve an e-mail address. New uses for
directory information will be realized, and a synergy will develop as more
applications take advantage of the common directory.

1.2.3 Directory-Enabled Networks
But, it is not only directory-enabling your applications, but also
directory-enabling all your network resources, such as users, systems, and
network devices, and integrating them into the directory infrastructure. The
information model and schema for the next generation of distributed networks
has been defined by the Directory-Enabled Networks (DEN) initiative
incorporated by Desktop Management Task Force’s Common Information
Model (CIM). The information models and schemas are discussed in more
detail in Chapter 2, “Schema and Namespace” on page 31.

What does this mean to directory development projects? It means that the
IBM SecureWay Directory or other LDAP-based directory services will define
users and other resources. While this will occur in stages, the goal is to sign
on to the network via the LDAP directory, rather than signing on to a platform
or to an application. As the mechanisms for supporting the platform/system
resource user and the application user decline, they will be replaced by the
network-enabled user by providing the directory infrastructure for
authentication and authorization of the network resources.

The guidelines for directory exploitation projects are:

• For new applications, use the IBM SecureWay Directory or other LDAP
directory services for enrolling and defining users and resources and for
authentication.
12 LDAP Implementation Cookbook

• For existing applications and subsystems: When re-engineering for
network computing, implement LDAP based resource enrollment,
definition, and authentication.

• For existing platform and platform services: When re-engineering for
network computing or other initiatives, implement LDAP-based user and
resource enrollment, definition, and authentication.

When it comes to administration of network resources, directory-enabled
networks will bring even greater benefits than are described in 1.2.2, “The
Benefits of a Common Directory for Applications” on page 11. Directory
services are the central pillar for network computing.

1.3 LDAP: Protocol or Directory?

LDAP defines a communication protocol. That is, it defines the transport and
format of messages used by a client to access data in an X.500-like directory.
LDAP does not define the directory service itself. Yet, people often talk about
LDAP directories. Others say LDAP is only a protocol and that there is no
such thing as an LDAP directory. What is an LDAP directory? Let us first
consider some basic information about X.500.

1.3.1 X.500: The Directory Service Standard
The CCITT (Comite Consultatif International Telephonique et Telegraphique
or Consultative Committee on International Telephony and Telegraphy, which
is nowadays ITU-T, International Telecommunications Union -
Telecommunication Standardization Sector) defined the X.500 standard in
1988, which then became ISO 9594, Data Communications Network
Directory, Recommendations X.500/X.521 in 1990, though it is still commonly
referred to as X.500.

X.500 organizes directory entries in a hierarchical name space capable of
supporting large amounts of information. It also defines powerful search
capabilities to make information retrieval easier. Because of its functionality
and scalability, X.500 is often used together with add-on modules for
interoperation between incompatible directory services.

X.500 specifies that communication between the directory client and the
directory server uses the directory access protocol (DAP). However, as an
application layer protocol, the DAP requires the entire OSI protocol stack to
operate. Supporting the OSI stack requires more resources than are available
in many small environments. Therefore, an interface to an X.500 directory
server using a less resource-intensive or lightweight protocol was desired.
Introduction 13

1.3.2 LDAP Server as a Gateway
An application client program initiates an LDAP message by calling an LDAP
API. But, an X.500 directory server does not understand LDAP messages. In
fact, the LDAP client and X.500 server even use different communication
protocols (TCP/IP vs. OSI). The LDAP client actually communicates with a
gateway process (also called a proxy or front end) that translates and
forwards requests to the X.500 directory server (see Figure 2). This gateway
is known as an LDAP server. It services requests from the LDAP client. It
does this by becoming a client of the X.500 server. The LDAP server must
communicate using both TCP/IP and OSI.

Figure 2. LDAP server acting as a gateway to an X.500 server

This way, clients can access the X.500 directory without dealing with the
overhead and complexity which X.500 requires.

1.3.3 LDAP as Standalone Server
As the use of LDAP grew and its benefits became apparent, people who did
not have X.500 servers or the environments to support them wanted to build
directories that could be accessed by LDAP clients. So, why not have the
LDAP server store and access the directory itself instead of only acting as a
gateway to X.500 servers (see Figure 3). This eliminates any need for the OSI
protocol stack. Of course, this makes the LDAP server much more
complicated since it must now be able to store and retrieve directory entries.
These LDAP servers are often called stand-alone LDAP servers because
they do not depend on an X.500 directory server. Since LDAP does not
support all X.500 capabilities, a stand-alone LDAP server only needs to
support the capabilities required by LDAP.

LDAP
Client

LDAP
Server

X.500
Server

TCP/IP OSI

Directory

(LDAP) (DAP)
14 LDAP Implementation Cookbook

Figure 3. Stand-alone LDAP server

RFC 1777 (LDAP Version 2) discusses providing access to the X.500
directory. RFC 2251 (LDAP Version 3) discusses providing access to
directories supporting the X.500 model. This change in language between
Version 2 and Version 3 of the LDAP protocol standard reflects the idea that
an LDAP server can implement the directory itself or can be a gateway to an
X.500 directory.

From the client’s point of view, any server that implements the LDAP protocol
is an LDAP directory server, whether the server actually implements the
directory or is a gateway to an X.500 server. The directory that is accessed
can be called an LDAP directory whether the directory is implemented by a
stand-alone LDAP server or by an X.500 server.

In fact, when referring to an LDAP server, as is the case throughout this book
in reference to the IBM SecureWay Directory, only a standalone LDAP server
is meant.

1.4 The LDAP Road Map

LDAP has evolved to meet the need of providing access to a common
directory infrastructure. LDAP is an open industry standard that is supported
by many system vendors on a variety of platforms. It is being incorporated
into software products and is quickly becoming the directory access protocol
of choice. LDAP allows products from different vendors on different platforms
to interoperate and provide a global directory infrastructure much like HTTP
enabled the deployment of the World Wide Web.

Directory

LDAP
Client

LDAP
Server

TCP/IP
Introduction 15

Current LDAP products support at least the LDAP Version 2 protocol level.
Many products already support parts or all of LDAP Version 3. Further
enhancements beyond Version 3 are being discussed by the IETF (Internet
Engineering Task Force).

Application developers can take advantage of LDAP to develop
next-generation directory-enabled applications. While X.500 has traditionally
been deployed only in large organizations that can commit the resources
necessary to support it, LDAP is also appropriate for small organizations. For
example, a small company might want to exchange documents with its
customers and suppliers using Electronic Data Interchange (EDI). EDI
requires both parties to agree on the types of documents to be exchanged,
communication requirements, and so on. Companies can publish their EDI
characteristics in publicly accessible LDAP directories to facilitate EDI.

A common directory infrastructure encourages new uses. The Directory
Enabled Networks (DEN) specification, for example, allows information about
network configuration, protocol information, router characteristics, and so on
to be stored in an LDAP directory. The availability of this information in a
standardized format from many equipment vendors will allow for the
intelligent management and provisioning of network resources. These
examples show the diverse uses of directory-enabled applications supported
by a common directory infrastructure accessed with LDAP.

1.4.1 LDAP Is More than a Programming Model
Most of the books and articles on LDAP provide sample applications that help
to explain the LDAP programming model. These samples are quite often
some form of a white pages (address book) application and are implemented
on a pristine system as the sole user of the directory service.

These samples are valuable as a quick-start lesson for LDAP programming,
but, while there are a few brand new applications written from scratch that will
use an LDAP directory service, most directory exploitation projects will
involve the re-engineering of existing applications. The LDAP literature does
not provide much guidance for this complex re-engineering task.

The opportunity to implement an LDAP exploitation project on a pristine
system or as the sole user of the directory service is similarly unlikely.
Typically, there will be many applications using the directory accessing and
sharing the data it contains. This, after all, is the primary objective driving the
acceptance of a common access method and directory service.
16 LDAP Implementation Cookbook

In fact, very little is written about the real-life considerations that most
directory exploitation projects experience. Based on the trivial sample
application model, many projects set very aggressive schedules and design
points and begin to code as if a new application using LDAP on a new
directory service will be the only application. Exploiters in these projects
quickly realize the need for application re-engineering and data modeling
tasks which are, as designers and developers discover, fundamental to the
success of directory exploitation projects.

It is the intention of his book to define some of the important design
considerations for many of the directory exploitation and implementation
projects. While not every topic may apply to every project, the understanding
gained should help to make design goals and schedules more realistic and
such projects more successful.

1.5 The Framework for Creating Enterprise-Wide Solutions

As businesses incorporate Internet technologies into their core business
processes, they start to achieve real business value. Today, companies large
and small are using the Web to communicate with their partners, to connect
with their back-end data systems, and to conduct electronic commerce. This
is e-business where the strength and reliability of traditional information
technology meet the Internet. The IBM Application Framework for e-business
(Figure 4 on page 18) is designed to enable businesses to build and deploy
applications based on Internet and Web technologies quickly and easily. To
accomplish this goal, the architecture is based on open industry standards
(like LDAP among others) that are or have been widely adopted in the
computer industry.

The Application Framework for e-business network infrastructure provides a
platform for the entire e-business environment and includes TCP/IP and
network services, security services, directory services, mobile services, client
management services, and file and print services. The supported standards
include LDAP, TCP/IP, Common Data Security Architecture (CDSA), Secure
Socket Layer (SSL), and X.509v3 certificates among others. Directory
services is a major component of the framework’s network infrastructure.
Introduction 17

Figure 4. Application framework for e-business

Now that directory standards are emerging, the opportunity exists for
enterprises to simplify their directory issues. If an enterprise is able to store
directory information once, the total cost of maintaining this information can
be significantly reduced. However, in some enterprises, specific application
requirements and migration costs may dictate that multiple directories
continue to be maintained. In these environments, directory standards enable
central administration and reduce the cost and complexity of synchronization.

Given the distributed and heterogeneous nature of network computing, the
Application Framework for e-business directory architecture is defined to
satisfy the following requirements:

• Directory services must be based on existing or emerging standards when
available.

• Access to directory services must be available from a variety of client
platforms through a standardized API and standard Web browsers.

• A common schema for universal objects, such as users and groups, must
be standardized to eliminate application dependence on specific directory
implementations.

• Information maintained in existing directories must be accessible without
requiring a complete migration to a new directory.

• Central administration of common objects stored in multiple different
directories must be provided.

• Directory services must be secure. Access to information in the directory
must be guaranteed for authorized users and denied for non-authorized
18 LDAP Implementation Cookbook

users. In addition, the directory architecture must allow for storage and
management of security information.

• Directory services must be available when needed by applications.

As part of the Application Framework for e-business, IBM has defined a
standards-based directory architecture to address the requirements of
directory-based enterprise computing. The architecture contains the following
key elements:

• Standards-based LDAP client and server

LDAP, the lightweight directory access protocol, was developed to provide
standards for accessing the data in network directories. The LDAP
distributed architecture supports scalable directory services with server
replication capabilities (being defined for LDAP Version 3) ensuring that
directory data is available when needed. For security, LDAP supports both
basic client authentication using a distinguished name and password and
SSL (Secure Socket Layer), which provides mutual authentication
between clients and servers as well as data security via encryption. LDAP
Version 3 supports the Simple Authentication and Security Layer (SASL),
a framework for adding additional authentication mechanisms. (More
information on security can be found in Chapter 5, “Directory Security” on
page 103.)

• Common directory schema

A directory schema defines the rules by which objects are stored and
retrieved in the directory. A common schema allows different applications
to share the same set of objects (user, printer, etc.) such that the
information for a person or resource is not created and stored in multiple
places in different formats within the network. In addition, a common
schema definition allows directory-enabled applications to be developed
independently of a specific directory implementation. More detailed
information about schemas can found in Chapter 2, “Schema and
Namespace” on page 31.

• Meta directory

To ensure interoperability with non-LDAP based directory and
synchronization of their contents, a set of meta directory functions is
defined. The meta directory serves two purposes: it is used as the master
for directory information by all other directories and it synchronizes the
information between the different directories in an organization allowing
users accessing any of the directories to see the same information. The
meta directory provides the basis for common administration of the
Introduction 19

information stored in the directory by different applications, such as
configuration and security data.

1.6 IBM Directory Strategy

To address the proliferation of application-specific directory services, it is
IBM’s strategy to consolidate its directory offerings onto a standards based
LDAP directory service. In addition, IBM will directory-enable a wide range of
products to reduce the administrative effort required to maintain them and to
improve the level of data consistency across IBM product offerings.

IBM's directory strategy comprises four principles:

1. Directory enable IBM and ISV products.

Several IBM product groups and selected ISVs (Independent Software
Vendors) work together to exploit the IBM SecureWay Directory since the
benefits for customers proportionally grow as a common directory is
exploited across operating systems, networks, and applications. IBM
offerings will be able to use this LDAP directory to store user,
configuration, and security information reducing administrative costs and
improving end users access to information.

Though this is not a formal announcement, the following examples show
how this can be achieved. IBM networking products can store
configuration information in the directory so that each individual device
can load its configuration from a central directory service. IBM firewall
products can store policy information in the directory so that the policy can
be quickly updated throughout the enterprise. IBM middleware products
can exploit the directory to maintain a common base of users and security
information that can be shared across applications. Once the various
levels of the product stack are directory enabled, the synergy between
components can be leveraged to deliver powerful benefits. A user running
a transaction can be given a high priority on the transaction server and
priority on the network to provide improved end-to-end response time.
This can be made possible by providing a common directory service that
can be leveraged by multiple components. As more and more products
become directory-enabled and share the same data, the possibilities for
providing cross-product synergy become limitless.

2. Provide a highly scalable cross platform LDAP directory

A common LDAP server will be included as a core part of IBM operating
systems and software suites; so, customers can be certain that an LDAP
directory is available. IBM is developing the LDAP- and DB2-based IBM
SecureWay Directory to provide a very scalable, high performance
20 LDAP Implementation Cookbook

directory service for the wide range of directory-enabled products IBM will
be delivering as well as providing leading directory support for third party
directory-enabled solutions. The choice of a relational database as a
backing store will provide high levels of scalability and reliability. For
customers that use a Lotus Domino/Notes environment in their
organizations, their Lotus Domino directory conforms to the LDAP
standards beginning with Domino Release 5.

IBM also offers the eNetwork X.500 Directory for customers that need an
LDAP directory that is also compliant with the X.500 standard. This
directory is available on the AIX platform.

3. LDAP support across existing IBM directories

IBM supports LDAP across the existing directory servers to provide
consistent access for application developers and clients. This will provide
customers (ISVs, corporate developers, and users) with a single API and
protocol for IBM and Lotus-based networks. IBM is also further improving
the operational characteristics of LDAP support by providing a common
schema across the IBM, Lotus, and Tivoli directories, which is expected to
be consistent with the networking-oriented schema that IBM is actively
working on as part of the Desktop Management Task Force (DMTF)
Directory-Enabled Networks (DEN) initiative.

4. Provide directory management tools

With the IBM SecureWay Directory (server and client SDK), IBM ships the
graphical Directory Management Tool (DMT) that allows an administrator
to easily browse the directory tree and perform common administration
tasks (see 7.1, “The Directory Management Tool” on page 159).

In environments where Tivoli is deployed, support for a heterogeneous
directory environment through the Tivoli User Administration is provided.
Today, this component allows Tivoli to manage NT, NetWare, Domino,
various UNIX directories, and the OS/390 Security Server. Through the
LDAP Connection (see 1.7.4, “Tivoli User Administration: LDAP
Connection” on page 26), the Tivoli User Administration is even capable of
managing information stored in an LDAP directory through the versatile
administration user interface.

1.7 IBM Directory Offerings

As explained in the previous section, IBM product development groups work
on developing directories as well as directory enabling other products to
exploit LDAP. Both the IBM SecureWay Directory and Lotus Domino are
LDAP Version 3-conforming directory servers and are based on the
Introduction 21

requirements in each particular environment that the selection for the
directory infrastructure can be made. In some situations, the infrastructure
can contain multiple directory servers that might even be using a mixture of
IBM SecureWay Directory and Domino servers.

1.7.1 The IBM SecureWay Directory
The IBM SecureWay Directory implements the IETF LDAP V3 specifications.
It also includes enhancements added by IBM in functional and performance
areas. This version uses the IBM DB2 as the backing store to provide
per-LDAP operation transaction integrity, high performance operations, and
on-line backup and restore capability. It interoperates with the IETF LDAP V2
based clients. Other major new features include:

• A graphical directory management tool – The IBM SecureWay Directory
Management Tool (DMT) allows an administrator to easily browse the
directory and add or edit objects, such as object classes, attributes, and
entries.

• A dynamically extensible directory schema – This means that
administrators can define new attributes and object classes to enhance
the directory schema. Changes can be made to the directory schema, too,
which are subject to consistency checks. Users may dynamically modify
the schema content without rebooting the directory server. Since the
schema itself is part of the directory, schema update operations are done
through standard LDAP APIs. The major functions provided by LDAPv3
dynamic extensible schema are:

• Queryable schema information through LDAP APIs
• Dynamic schema changes through LDAP APIs
• Server rootDSE
• Dynamic configuration changes using LDAP APIs

• The Directory-Enabled Network (DEN) schema – The DEN specification
defines a standard schema for storing persistent state and an information
model for describing the relationships among objects representing users,
applications, network elements and networking services. More about
schema and namespace is described in Chapter 2, “Schema and
Namespace” on page 31.

• Subclassing – Supports object inheritance for object class definitions and
attribute definitions. A new object class can be defined using parent
classes (multiple inheritance) and the addition or change of attributes.
Schema update operations are checked against the schema class
hierarchy for consistency before being processed and committed.
22 LDAP Implementation Cookbook

• UTF-8 (Universal Character Set Transformation Format) – An IBM
SecureWay Directory server supports data in multiple languages and
allows users to store, retrieve and manage information in a native
language code page. More information about UTF-8 support can be found
in 4.3, “UTF-8 Support” on page 83.

• Simple Authentication and Security Layer (SASL) – This support provides
for additional authentication mechanisms. SSL provides encryption of data
and authentication using X.509v3 public-key certificates. A server may be
configured to run with or without SSL support. Security is further detailed
in Chapter 5, “Directory Security” on page 103.

• Replication – Replication is supported, which makes additional read-only
copies of the directory available thus improving the performance and
reliability of the directory service. Replication is further described in 7.6,
“Replication” on page 178.

• Referrals – Support for LDAP referrals allows directories to be distributed
across multiple LDAP servers where a single server may only contain a
subset of the whole directory data. More about referrals is explained in
7.7, “Referrals” on page 184.

• Access Control Model – A powerful, easy-to-manage access control model
is supported through ACLs (Access Control Lists, further explained in 5.6,
“Access Control” on page 120).

• Support for DNS – An LDAP server can be located through DNS (Domain
Name Services) by publishing the Directory server address via Service
Resource record in DNS, and clients can find the LDAP server knowing
only a symbolic name. See more details in 7.11, “Locating LDAP Servers
Using DNS” on page 218.

• Support for server plug-ins – An extensible server architecture which
allows implementers to write server plug-ins that carry out additional
functions for the server to perform. A plug-in is a dynamic link library (or
shared object) that can be included in the server’s address space
dynamically. They follow the plug-in APIs published by Netscape, and
directory plug-ins are compatible with the Netscape LDAP directory
server. Server plug-ins are not further discussed in this book.

The LDAP V3 RFCs implemented in the IBM SecureWay Directory are RFC
2251, RFC 2252, RFC 2253, RFC 2254, RFC 2255, and RFC 2256. You can
find more information about these RFCs in Appendix A, “Standards” on page
269.
Introduction 23

Administration and configuration for the IBM SecureWay Directory is provided
by a Web browser-based GUI. The administration and configuration functions
allow the administrator to:

• Perform the initial setup of the directory
• Change configuration parameters and options
• Manage the daily operations of the directory

The IBM SecureWay Directory is available on IBM AIX, Microsoft Windows
NT/Intel, and Sun Solaris platforms, and it supports ten languages including
English, French, German, Japanese, Simplified Chinese, Traditional Chinese,
Korean, Italian, Spanish and Brazilian Portuguese. Catalan is also supported
on AIX.

The IBM SecureWay Directory is also available for OS/390 and OS/400. They
are integrated in the OS/390 Security Server software and OS/400 Operating
System, respectively. The OS/390 and OS/400 implementations are currently
on LDAP V2 level.

Platform-specific considerations are described in more detail in Chapter 6,
“Installation and Configuration” on page 131.

1.7.2 The IBM SecureWay Directory Client SDK
In addition to the IBM SecureWay Directory, which incorporates an LDAP
server, IBM also provides a client development kit that provides the
necessary APIs and libraries for development of directory-enabled
applications. The IBM SecureWay Directory Client SDK also contains the
directory management utilities as explained in Chapter 7, “LDAP Data and
System Administration” on page 159.

The IBM SecureWay Directory Client SDK is available for IBM AIX, Microsoft
Windows NT/95/98, Sun Solaris. Please check the IBM SecureWay Directory
Web site at http://www.ibm.com/software/enetwork/directory for the latest
information about products, supported platforms, and availability.

1.7.3 Lotus Domino R5.0
Lotus Domino supports a variety of business applications including an
LDAP-based directory service. The Domino directory is designed to serve as
a key enabling technology for a directory-enabled infrastructure. To leverage
the inherent value of this potentially rich and useful store of corporate
information beyond e-mail addresses and certificates, Domino/Notes
customers can exploit this directory architecture, which they already have in
place.
24 LDAP Implementation Cookbook

Today's Domino Directory can be part of a general purpose directory
infrastructure for the enterprise and for multi-enterprise extranets. On the
other hand, in a heterogeneous networking environment with other directory
systems, the Domino Directory can also serve as the integration point for
directory synchronization, administration, and authentication.

Directory features in Domino R5 include:

• Support for X.500 naming conventions, including hierarchical naming and
extensible attributes, for maximum flexibility in configuring the namespace.

• LDAP protocol support in both the client and the server providing lookup
(read), add, delete, and modify (write) support for non-Notes clients (for
example Web browsers) and servers (for example NDS and Four11).

• Rule-based domain relationships for faster lookups across large
namespaces.

• Hierarchical naming and trust between domains to support the relationship
of entries across domains.

• Support for a Public Key Infrastructure.

• A dynamically extensible directory schema ideal for customizing the
directory to meet specific business requirements.

• Multi-master replication, a key element for reliable directory
synchronization and maximum availability.

• An open architecture that can easily incorporate support for emerging
standards.
Introduction 25

Figure 5. The Domino 5.0 directory architecture

Lotus Domino R5 is available for all the IBM platforms (AIX, OS/2, OS/390,
and OS/400), Windows NT, Solaris and HP-UX platforms.

1.7.4 Tivoli User Administration: LDAP Connection
The Tivoli Management Architecture is a highly sophisticated, universal
systems management framework available for all major platforms, including
Windows NT/95, many UNIX brands and all the IBM platforms.

The Tivoli User Administration (TUA) is based on the Tivoli Configuration and
Change Management (CCMS) architecture. The central database, together
with a graphical management user interface, allows an administrator to
manage user accounts, called profiles, independently of any underlying
system. The user information database supports a large number of attributes
suitable for almost any kind of target environment. Sets of profiles are
maintained within a profile manager. The profile managers distribute profile
information to subscribed profile endpoints. The Tivoli LDAP Connection is
such a profile endpoint. For example, data in user profiles can travel to LDAP
directories via distribute. The reverse process, called population, collects the
data from an LDAP directory and stores it in Tivoli user profiles for
subsequent management. Figure 6 on page 27 depicts this relationship.

Replicas of Domino Directories A & B on Local Servers

Directory
Catalog

Domino
Directory

A

Domino
Directory

B

Domino Server

Domino

Directory
C

Domino
Directory

D

Domino ServerDomino Server

LDAP Request
(Queries can be
made against the

Replica
of

Catalog

A B

entire namespace)
26 LDAP Implementation Cookbook

Figure 6. Tivoli database versus the real configuration

Through the addition of an LDAP endpoint, Tivoli User Administration is
enriched in its functionality to manage LDAP directory data (while other
system-related management and monitoring can be done using other Tivoli
systems management and monitoring functionality). This connection runs on
any managed node that may or may not be on the same system as the Tivoli
Administration Server, which is also called the TMR Server (Tivoli
Management Region) Server. Since LDAP is a system-independent standard,
the actual LDAP service can be run on any platform. This approach centers
the Tivoli User Administration database, and all other user data repositories,
including the LDAP directory, are kept in sync with the master Tivoli
database. An administrator only uses one common user interface and one
single tool to manage user accounts whether the actual users exist on a UNIX
system, in an NIS domain, in LDAP, or in any other of the many supported
endpoints (Figure 6 above).

It should be mentioned that the Tivoli User Administration also supports a
command line interface for all operations. This allows automation of
administration tasks from within command language programs.

Tivoli
User

LDAP
Directory

NIS
Users

UNIX
Users

Distribute

Populate

Tivoli User Administration Object Configuration

Other
User
Repositories

Add User:

Graphical User
Interface

Name
UID
Group Database
Introduction 27

Tivoli User Administration is supported on AIX V4, OS/390, Windows NT,
Solaris 2.5, and HPUX 10.

At the time of writing, the Tivoli LDAP Connection was under the Technology
Preview program. The product was supposed to be generally available shortly
thereafter.

1.8 LDAP Standards

Several standards in the form of IETF RFCs exist for LDAP. The following is a
brief list of RFCs that apply for LDAP Version 2 and Version 3:

LDAP Version 2:

• RFC 1777: Defines the LDAP protocol
• RFC 1778: The String Representation of Standard Attribute Syntax
• RFC 1779: A String Representation of Distinguished Names
• RFC 1959: An LDAP URL Format
• RFC 1960: A String Representation of LDAP Search Filters

LDAP Version 3:

• RFC 2251: LDAP protocol - V3
• RFC 2252: Lightweight Directory Access Protocol (v3): Attribute Syntax

Definitions
• RFC 2253: Lightweight Directory Access Protocol (v3): UTF-8 String

Representation of Distinguished Names
• RFC 2254: The String Representation of LDAP Search Filters
• RFC 2255: The LDAP URL Format
• RFC 2256: A Summary of the X.500 (96) User Schema for use with

LDAPv3

More information and a brief description about these standards (RFCs) can
be found in Appendix A, “Standards” on page 269.

1.9 Summary

The combination of the IBM cross-platform applications and services
integrated on an open standards-based LDAP directory provides an excellent
base for directory exploitation projects. As the product lines of IBM and its
partners becomes directory enabled, IBM will offer services from the
networking layer through the middleware to the end user applications that can
share a common base of user, security, and object information based on open
standard directory services. This will provide customers with the flexibility to
28 LDAP Implementation Cookbook

deploy applications and services across the platforms of their choice and
leverage the investment in their current install base of hardware and software.
All this will be backed by the experience and reach of the IBM Global
Services organization, worldwide services and support infrastructure and IBM
experience in providing mission-critical services.
Introduction 29

30 LDAP Implementation Cookbook

Chapter 2. Schema and Namespace

This chapter includes a comprehensive definition of the Directory Schema
and Directory Namespace for the IBM SecureWay Directory. Some
introductory information on the naming and information model is also
included along with general guidelines of reuse for objects and attributes.
Some examples will be introduced in a simple way, that is, from an exploiter’s
perspective rather than from a directory architecture perspective in order to
help the reader understand how the schema is used.

2.1 LDAP Information Model Overview

The LDAP information model is based on a subset of the X.500 information
model but is extensible and modifiable. Complex attribute types supported in
X.500 are not supported in LDAP.

Information is stored into entries which contain attributes. The allowed set of
characters for object and attribute names is defined in Lightweight Directory
Access Protocol (v3): Attribute Syntax Definitions, RFC 2252 (for example,
the underscore character is invalid). Attributes are typed in the form of
<type>=<value> pairs in which the type is defined by an object identifier
(OID) and the value has a defined syntax. Attributes can be single-valued or
multi-valued. There is no ordering for multiple values or a multi-valued
attribute. An entry can contain multiple attributes. Entries are organized
hierarchically by their distinguished name (dn). Entries whose distinguished
name contains the distinguished name of another entry as a suffix are
considered to reside under the latter entry in the hierarchy, that is, the
namespace is hierarchical.

The IBM SecureWay Directory Management Tool (DMT) is a graphical tool
that is part of the product. It lets you browse and edit various kinds of
information in your directory, such as schema definitions, the directory tree,
and data entries.

If not already done, we recommend that you install the IBM SecureWay
Directory on a workstation and use the DMT to walk through the various
kinds of objects. It gives you a broad picture and helps you understand the
terms used and the relationships between these objects.

Tip
© Copyright IBM Corp. 1999 31

Schema defines rules for distinguished names and what attributes an entry
must and/or may contain. To organize the information stored in LDAP
directory entries, the schema defines object classes. An object class consists
of a set of mandatory and optional attributes. Every entry in the LDAP
directory has an object class associated with it. Thus, every entry in the
LDAP directory contains a set of mandatory attributes and (possibly) a subset
of the optional attributes based on the entry’s object class and that object
class’ defined schema. The object class definition also defines where (with
respect to other objects in the namespace) it may appear.

An object class is declared as abstract, structural, or auxiliary. An abstract
object class is used as a template for creating other object classes. A
directory entry cannot be instantiated from an abstract object class. Directory
entries are instantiated from structural object classes. An auxiliary object
class cannot be instantiated by itself as a directory entry; it can be attached
to directory entries that are instantiated from structural object classes.
Auxiliary object classes provide a method for extending structural object
classes without having to change the schema definition of a structural class.

Let’s look at the following example: Top is an abstract class that contains the
objectClass attribute. Person is a structural class that instantiates the
directory entry for a given person where the objectClass attribute is also part
of that Person entry. So far, this example has used only attributes and object
classes defined in a standard. So, now, you may want to tailor the people
entries to include information that your company requires and that is not
defined in the standard Person object definition. There are two ways to do
this:

1. Subclass the Person object to create a new structural class that includes
those additional attributes defined by your company, and instantiate the
Person directory entry based on that new class.

2. Define that collection of company attributes needed for your company’s
Person definition as an auxiliary class, and attach it to the directory entry
instantiated from the Person class.

Either method is recommended. The downside to auxiliary classes is that if
the auxiliary class includes an attribute that is also included in the structural
class definition, when that attribute is included in the instantiated directory
entry and that attribute contains multiple values and you want to delete the
attribute, you cannot tell whether the attribute (when added to the entry) was
added when the structural class was instantiated or when the auxiliary class
was instantiated. This may be important to the implementor or administrator.
32 LDAP Implementation Cookbook

Special entries exist in the namespace called aliases. Aliases represent links
to other entries or partitions of the namespace. When the distinguished name
of an alias is used, the entry accessed is the entry to which the alias refers
(unless specified otherwise through the programming interface).

The collection of directory entries forms the Directory Information Tree (DIT).
The method of storage for the DIT of the LDAP directory is
implementation-dependent and hidden from the user of that LDAP directory.
For example, the IBM SecureWay Directory uses DB2 as its data store, but no
DB2 constructs are externalized to LDAP.

2.2 LDAP Names

Entries in the IBM SecureWay Directory are identified by their names. The
characteristics of these names include:

• They have two forms: a string representation and a URL.
• They have a uniform syntax.
• Namespace boundaries are not apparent in them.

A component of a name is called a relative distinguished name (RDN). An
RDN represents a point within the namespace hierarchy. RDNs are separated
by and concatenated using the comma (“,”). Each RDN is typed. RDNs have
the form <type>=<value> for single valued RDNs. The plus sign (“+”) is used
to form multi-valued RDNs: <type>=<value>+<type>=<value>.

The <type> is case-insensitive and the <value> is defined to have a particular
syntax. The order of RDNs in an LDAP name is the most specific RDN first
followed by the less specific RDNs moving up the DIT hierarchy. A
concatenated series of RDNs equates to a distinguished name. The DN is
used to represent an object and the path to the object in the hierarchical
namespace. A URL format for LDAP has been defined that includes a DN as
a component of the URL. These forms are explained in the sections that
follow.

2.2.1 String Form
The exact syntax for names is defined in RFC 2253. Rather than duplicating
the RFC text, the following are examples of valid distinguished names written
in string form:

• cn=Joe Q. Public, ou=Austin, o=IBM

This is a name containing three relative distinguished names (RDNs).

• ou=deptUVZS + cn=Joe Q. Public, ou=Austin, o=IBM
Schema and Namespace 33

This a name containing three RDNs in which the first RDN is multi-valued.

• cn=L. Eagle, o=Sue\, Grabbit and Runn, c=GB

This example shows the method of quoting a comma (using a backslash
as the escape character) in an organization name.

• cn=Before\0DAfter,o=Test,c=GB

This is an example name in which a value contains a carriage return
character (0DH).

• sn=Lu\C4\8Di\C4\87

This last example represents an RDN surname value consisting of five
letters (including non-standard ASCII characters) that is written in
printable ASCII characters. Table 2 explains the quoted character codes.

Table 2. The ASCII encoding of an RDN surname (example)

For the detailed definition of DNs in string form, consult RFC 2253. More
about Unicode character encoding (superset of ISO 10646) and its
transformation into UTF-8 can be found at http://www.unicode.org and in RFC
2279.

2.2.2 URL Form
The LDAP URL format has the general form ldap://<host>:<port>/<path>,
where <path> has the form <dn>[?<attributes>[?<scope>?<filter>]].

The <dn> is an LDAP distinguished name using the string representation (see
previous section). The <attributes> indicates which attributes should be
returned from the entry or entries. If omitted, all attributes are returned. The
<scope> specifies the scope of the search to be performed. Scopes may be
current entry, one-level (current entry’s children), or the whole subtree. The
<filter> specifies the search filter to apply to entries within the specified scope
during the search. The URL format allows Internet clients, for example, Web
browsers, to have direct access to the LDAP protocol and thus LDAP
directories.

Unicode Letter Description ISO 10646 Code UTF-8 Quoted

Latin capital letter L U0000004C 0x4C L

Latin small letter u U00000075 0x75 u

Latin small letter c with caron U0000010D 0xC48D \C4\8D

Latin small letter i U00000069 0x69 i

Latin small letter c with acute U00000107 0xC487 \C4\87
34 LDAP Implementation Cookbook

Examples of LDAP URLs are:

• ldap://austin.ibm.com/ou=Austin,o=IBM

This URL corresponds to a base object search of the <ou=Austin, o=IBM>
entry using a filter <of objectClass=*> requesting all attributes (if a filter is
omitted, a filter of <objectClass=*> is assumed by definition).

• ldap://austin.ibm.com/o=IBM?postalAddress

This is an LDAP URL referring to only the postalAddress attribute of the
IBM entry.

• ldap:///ou=Austin,o=IBM??sub?(cn=Joe Q. Public)

This is an LDAP URL referring to the set of entries found by querying any
capable LDAP server (no hostname was given) and doing a subtree
search of the IBM Austin subtree for any entry with a common name of
Joe Q. Public retrieving all attributes.

The LDAP URL format is defined in RFC 2255.

2.2.3 Additional Syntaxes
The IBM SecureWay Directory supports the syntax described above. In the
future, additional syntaxes for distinguished names may be supported. Using
the simple LDAP syntax example <cn=Joe Q. Public, ou=Austin, o=IBM>, the
additional name syntaxes can include:

• DCE (OSF) form

RDNs are ordered from least significant to most significant and are slash
(/) separated: /o=IBM/ou=Austin/cn=Joe Q. Public

• Reverse LDAP form

RDNs are ordered from least significant to most significant, but are still
comma (,) separated: o=IBM, ou=Austin, cn=Joe Q. Public

Although the LDAP URL format basically allows updates (not only reads
and searches) to be performed against an LDAP directory, its use for
updates is discouraged until adequate security methods are mandated
and/or implemented.

Using URLs for Directory Updates
Schema and Namespace 35

2.3 Directory Information Tree (Namespace) Structure

This section explains the basics for the structure of the namespace. The key
for understanding the relationship between the namespace and the schema is
that there is no pre-defined rigid artificial namespace, but, rather, the power
of the object class definitions is used (for example the objectClass attribute,
DIT structure hierarchy, and so on) to allow the exploiter to define an explicit
shape of the namespace. Neither are there any artificial intermediate nodes
in the namespace hierarchy to segregate subtrees within a partition of the
namespace. However, container nodes are used where appropriate either
because the directory administrator chooses to exploit them or because they
provide useful isolation within an application/product-constructed portion of
the DIT. A container is essentially an empty node in the namespace that can
be used to partition the namespace. Analogous to a file system directory, a
container can have directory entries beneath it in the DIT structure.

So, continuing with the example, <cn=John Smith, ou=Austin, o=IBM> is a
natural form for John Smith. The objectClass attribute (which is part of every
directory entry) is used to specify the type of entry. The data store, which
holds the directory entries and their attributes, is trusted to organize the
storage of the data in a performance-efficient manner transparent to the user
of the directory data.

This results in a hierarchical structure where the names of directory entries
can be natural and meaningful. The directory administrator or designer is
provided flexibility in structuring the data in the directory.

To understand the namespace structure, a partition of the global namespace
is divided into three logical pieces:

• The suffix, which defines (names) the root of a partition of the global
namespace. Other directory servers are interested in the suffix because it
states the partition that this directory server holds. In other words, the
suffix is the top-most entry of a partition that a server stores. A server can
serve more than one partition of a namespace, in which case, there is
more than one suffix.

• The organizational structure(s) of the namespace (a hierarchy)
underneath that suffix. The hierarchy can be flat (one single level
underneath the suffix) or branched to several levels.

• The directory data stored in some hierarchical manner (either flat or
hierarchical) within the two logical pieces (suffix and organizational
structure) of the partition.
36 LDAP Implementation Cookbook

Figure 7 on page 37 depicts the relationship between the conceptual
namespace organization and a practical implementation.

Figure 7. Namespace organization

The suffix for a specific directory server can be defined to be a DN that spans
any part of those three logical pieces and the directory server’s data beneath
that suffix. On the other hand, if the most-significant RDN of the suffix’s DN is
a leaf, there is no data held by that directory server’s partition.

In the IBM SecureWay Directory, the schema definition is part of the directory
itself in the subschema object class which is discussed in more detail in 2.6.1,
“Directory Server Objects” on page 45.

2.4 Relationship Between Objects

The associations between two directory entries can be defined in two ways:

• By containment: the DIT hierarchy

• By reference: the use of attributes of type (syntax) distinguished name
(DN)

The directory entry associations provide both logical correlation (for example,
an operating system is part of a computer system and a user is authorized to
use certain system resources) and directory traversal paths for the operations
supported by the schema. The use of the DIT containment hierarchy permits
certain searches to be made more efficiently; searches may be scoped and
filtered to retrieve all of a related set of objects in one LDAP request.

suffix

hierarchy

data

data

organizational

ou=austin,o=ibm

<directory data
hierarchy>

ou=R&D <directory data
hierarchy>

ou=manufacturing

<directory data
hierarchy>

ImplementationConceptual
Schema and Namespace 37

Traversals based on DN pointer associations, on the other hand, cannot be
grouped this way, but the associations may be many-to-many.

The simplest association between objects is established by their structure in
the directory information tree. This is analogous to the structure of a file
system directory tree. The DIT hierarchy is a natural method for aggregate
associations (for example: part of), but it can also be used for other
associations that are one-to-many. As noted above, associations encoded in
the DIT can provide retrieval of a collection of entries in a single LDAP call.
This use must be balanced against the requirement for flexibility in the
directory administrators’ choices for DIT structure.

A distinguished name can be thought of as a directory pointer, and, as such,
can provide associations between directory entries. The value of an attribute
that is defined as syntax DN can be said to point to an entry named by that
DN. The entry that the DN pointer names may be in the same partition or in a
different partition as the directory entry that holds the DN pointer. For
example, an account entry may contain the DN of the white pages (person)
object for the user’s account entry. This is called a forward pointer, and it
represents an association from the account object to the person object.
Additionally, the object pointed to (by the DN pointer) may also contain a
pointer back to the originating object. Continuing with the preceding example,
the white pages person object may contain a DN pointer back to the account
object. This is called a backward pointer (or simply back pointer). A back
pointer in our example represents an association from the person object back
to the account object.

Both forward and backward pointers are considered valid if there is a method
by which referential integrity can be maintained (a guarantee that the values
of each pointer are always valid such as via a transaction). However, this
complicates the application since referential integrity is not supported by the
directory server itself and must be handled by the exploiting application. If a
back pointer is defined, the integrity of its values is not guaranteed. In this
case, the back pointer can only be used as a hint or assertion. These back
pointers may be used to optimize traversals through the directory, and they
may be used to assert a relationship between objects, but it is the forward
pointer that establishes the valid relationship between the objects. It is
expected that the application must be written to handle the failure case, for
example, to reissue an operation that will then search or use a forward
pointer to obtain the information for which it was searching. Optionally, the
application may repair a back pointer it finds invalid. (The exploiting
applications should, however, not run background daemons that constantly
look for and repair any invalid pointers. Utilities of this nature usually do not
scale very well and can be CPU-intensive.) Where practical, use forward
38 LDAP Implementation Cookbook

pointers and the DIT structure to establish associations between objects and
to avoid the use of back pointers. When back pointers are used, they should
be clearly identified as such (for example, as back pointer, hint, or assertion).

2.4.1 Object and Attribute Reuse
There are two kinds of reuse in developing a directory schema: reuse by
subclassing from existing directory object classes and reuse by applying
previously defined attributes in additional (or new subclass) object classes.
Reuse of object class and attribute definitions helps to eliminate redundancy
and, hence, helps to produce a more understandable and usable schema.
Such a schema encourages exploitation of the directory and reuse.

The base schema that IBM ships with the IBM SecureWay Directory already
defines many object classes and attributes. In developing any extensions to
the common schema, use the definitions already in the schema where
possible. These include the industry standard definitions that IBM supports
plus definitions that IBM has developed for additional use. But, you may
discover that you will probably need to define some new objects and
attributes to put your information into the directory service. You should then
subclass the objects where possible and define new objects only when the
current ones do not meet your needs. Likewise, examine the attributes in the
existing schema. Just because an attribute is used in an object class that is of
no interest to you should not hinder you from still using (reusing) that attribute
in your object class. This is because the object class is just a mechanism for
defining a collection of attributes for the instantiation of a directory entry.

Let’s look at an example. Suppose there is an object class dog that includes
the attributes objectClass, cn, breed, description, weight, and gender. These
attributes are known within the directory server so anyone can use (re-use)
these attributes in other object classes within that same directory server.
Next, define a new object class human. You define it to have attributes
objectClass, cn, weight, gender, height, and race. Note that you have re-used
the attributes objectClass, cn, weight, and gender and defined only the new
attributes; height and race. The objectClass attribute is reused because all
objects are subclasses of top; the cn, weight and gender attributes can be
reused by subclassing if there is a common superclass for dog and human
(perhaps mammal) or, if there is no common superclass with cn, weigh and
gender, by simply adding the already defined attributes to the newly defined
human object class.

Object classes and attributes are not the only elements that can be reused.
The schema also defines matching rules and syntaxes. And, in fact, you must
Schema and Namespace 39

use (reuse) those that are defined. It is also possible to define your own
matching rule or syntax.

2.4.2 Naming Conventions
Section 2.2, “LDAP Names” on page 33 introduced the formal LDAP grammar
for naming entries in the IBM SecureWay Directory. In addition to these rules
for syntaxes and forms, there are several guidelines or conventions for
naming entries in the IBM SecureWay Directory. Some of these conventions,
such as the desire to use object names that connote meaning to a human
reader, are driven more by common sense than any real programming
considerations. On the other hand, a few of the naming conventions
described below are needed precisely for programming or operational
reasons. Naming conventions exist for LDAP names that have the following
goals:

• A user (directory designer, exploiter, or application programmer) can
understand the conventions used to name the objects and attributes in the
IBM SecureWay Directory.

• A user can use the same conventions for naming new schema for his/her
own applications as applicable.

The naming conventions that were used to define the IBM schema are:

1. Distinguished names (DNs) should be relatively short (fewer number of
components).

This is achieved by defining the DIT to be as flat as possible. The
<cn=John Smith> example used in the above sections is an example of
using a short(er) DN by making use of the objectClass attribute value.

2. Object and Attribute names should be user friendly.

For example, consider that the attribute name for a fax phone number is
facsimileTelephoneNumber rather than an abbreviation, such as faxnum.

3. Distinguished names should connote meaning.

Consider the following two examples:

• cn=4019ps, cn=lpt1, cn=lan5, ou=Austin, o=IBM
• printerModel=4019ps, portNumber=lpt1, networkName=lan5,

ou=Austin, o=IBM

The second example using descriptive attribute names as part of the RDN
connotes more meaning than the first, although both may be
grammatically correct.

4. Take advantage of multi-valued relative distinguished names (RDNs).
40 LDAP Implementation Cookbook

One of the recommendations contained in RFC 1617, Naming and
Structuring Guidelines for X.500 Directory Pilots (by P. Barker, S. Kille,
May 1994) is that multi-component (also called multi-valued) RDNs is a
useful way to ensure uniqueness of an entry, especially in a flat DIT.
<ou=deptUVCS + cn=Joe Q. Public, ou=Austin, o=IBM> is an example of
an RDN where the first RDN is multi-valued.

5. Use objects and attributes that are defined by standards organizations.

Special care must be taken to ensure semantic and syntactic consistency
and precision between the standard definition and your implementation.
You must ensure that standard names are used when you implement an
object or attribute that is likely to become part of an industry solution (that
is not just your own solution) so that an industry client application can
locate entries in your directory implementation.

Many object and attribute names are defined by more than one standards
body. In many cases the definitions have been kept common across the
standards bodies and industry groups involved in defining directory
schema. Where inconsistencies arise, choices are made based on market
penetration expectations, model consistency, and the defining
specifications (for example X.500, IETF, CIM, and so on).

6. For IBM-specific objects and attributes, IBM uses the eObjectname or
eAttributename naming convention.

The lower case e prefix convention is used for human readability only. In
naming convention 5 (above), IBM defined the convention that standard
names must be used when defining objects that may be used by an
industry solution. The reverse is also true. Object and attribute names that
have been defined by standards groups should not be used by
implementation projects to define other or similar objects or attributes. IBM
chose the e prefix as a convention to help ensure that name collisions will
not occur with either standard names or with names chosen by other
directory server vendors or other directory-enabled products that define
schema. The e prefix is an IBM convention and does not guarantee that
there will not be any collisions with any other vendor’s implementation or
future definitions within the standards.

2.5 The IBM Schema

With the IBM SecureWay Directory, IBM provides an extensive schema called
the IBM schema. The IBM schema is comprised of object classes and
attributes defined by industry standards as well as object classes and
attributes defined by IBM that are either derived from industry standards or
new. The IBM schema is not a static schema, and new classes and attributes
Schema and Namespace 41

will be added as requirements dictate. Figure 8 on page 42 shows the main
object classes that IBM has derived from industry schemas that form the
basis for the IBM SecureWay Directory. This overall view is quite complex; so,
it is also dissected into smaller sections and discussed in the succeeding
schema sections.

Figure 8. The big picture of the IBM schema

Each of the subtrees may appear in the namespace per the previous section
that discussed DIT structure.

The IBM SecureWay Directory schema is based on industry standards where
standards exist. It also extends the industry schema as necessary so that
IBM products can exploit the directory service and management utilities can
manage that data. As the schema for exploiting products is defined, it will be
folded in the base schema shipped with the IBM SecureWay Directory. The
industry standards on which the IBM schema is based include:

accessGroup

eProperty

eUser

ePerson

eProperty

eComputerSystemeApplicationSoftwareeApplicationSystem

eAccount

eOperatingSystem eSoftware

Sys eProperty

ePropertyeProperty
ePropertySet

ePropertySet

eProperty

Sys

Sys

eSAP

Sys

eSAP

Object Relationships

Sys
Name Space DIT Options
Optional DIT container
DN Forward Pointer
DN Assertion (back ptr)

eProperty

accessRole

eService

ePerson

eProperty
42 LDAP Implementation Cookbook

• Desktop Management Task Force’s Common Information Model, CIM
(http://www.dmtf.org).

CIM defines schema for managed elements in a system. These consist of
physical objects such as computer systems, software objects, devices,
network elements, user related elements, security elements, policies, and
so on. IBM incorporates these definitions and creates subclasses from
them when reasonable. The Directory-Enabled Networks (DEN) schema is
incorporated by CIM.

• Internet Engineering Task Force, IETF (http://www.ietf.org).

There are several RFCs that define schema for LDAP V2 and LDAP V3:
RFC 1778, 2252, 2256. These RFCs are derived from industry experience
and X.500 standards. The set IBM supports in its IBM SecureWay
Directory are mainly the objects and attributes related to country,
organization, person, group, and their subclasses. There are some object
classes and attributes that IBM lists in its schema from RFC 1274,
although many of them are superseded by the RFCs listed above.

• Network Application Consortium’s Lightweight Internet Person Schema,
LIPS (http://www.netapps.org).

LIPS is an industry consensus definition of a person. It includes
information pertaining to white pages, organization, residence, phone
numbers, IDs and passwords, and more. This schema has also been
adopted and standardized by The Open Group and specified in the
Internet White Pages profile (a profile that directory servers may support).
The LIPS object class, along with its attributes, is a subclass of the X.500
person object class.

2.5.1 Schema Information
The schema defined is stored in a special directory entry cn=schema. The
schema contains the following information:

• Object class is a collection of attributes. A class can inherit attributes from
one or more parent classes.

• Attribute types contains information about the attribute, such as name,
OID, and matching rules.

• IBM attribute types are the implementation-specific attributes, such as
database table name, column name, SQL type, and max length of each
attribute.

• Syntaxes include:

• Distinguished Name
Schema and Namespace 43

• Telephone Number
• Binary
• IA5 String
• Directory String
• Boolean
• Integer
• Generalized Time and UTC Time

• Matching Rules supported in the IBM SecureWay Directory V3.1 server
are those defined in the LDAPv3 specifications for each syntax.

• The syntax for schema definitions complies with what is defined in RFC
2252.

2.6 Schema Categories

The schema provided by IBM is based on the industry work (see previous
section) in addition to what is needed to support IBM products that exploit the
directory service. The schema is logically divided into several categories for
ease of understanding and discussion:

• directory server objects such as top and subschema (also, some object
classes included in this category are for convenience, although they are
not just used by a directory server).

• white pages, which includes objects such as person, group, country,
organization, organizational unit and role, locality, state, and so on.

• security, which includes the objects necessary for authorization,
authentication, accounting, and audit.

• policy and profile, which include objects for security- and non-security-
related policies and profiles.

• system, which includes objects such as application, computer, and
operating systems.

• software, which includes objects such as software inventory.

• services, which includes objects such as services, and access points.

• other, which includes objects that are IBM-defined and not yet
categorized.

In the sections that follow, each of these schema categories is briefly
explained with a description of its object classes, the (noteworthy) attributes
of that object class, and its relationships to other object classes.
44 LDAP Implementation Cookbook

2.6.1 Directory Server Objects
The directory server objects are those that the directory server maintains for
storing information about itself and other directory servers. It includes the
following object classes:

• top
• subschema
• extensibleObject
• replicaObject
• referral
• cacheObject
• container
• linkedContainer

The top object class is an abstract class. All other object classes are
subclasses of top. top has just one mandatory attribute: the objectClass
attribute. This attribute says what type of object a particular directory entry
describes. All entries in the directory must have an objectClass attribute
because they are subclasses of top.

The subschema object class is an auxiliary object class. It contains the
schema (for example object classes, attribute types, matching rules, and so
on) for the LDAP directory server. As an auxiliary object class, it can be
attached to any structural object class that is instantiated on a directory entry.
This object class defines what schema is allowed where in the DIT. At
minimum, this object class is found at the top of a server’s DIT, that is, at the
suffix directory entry.

The extensibleObject object class is an auxiliary object class. It contains
every attribute defined by a directory server’s schema. IBM supports this
object class for completeness but discourages its use since it basically
permits any attribute to be added to any directory entry (which is not
conducive to a structure-enforced DIT).

The replicaObject object class is an IBM-defined structural class that is used
to represent a directory server replica. It contains attributes used to control
directory server replication. This object and its attributes are used only by the
directory server and its administration/management utilities; other products
do not use this object.

The referral object class is a structural object class that presents a referral
directory entry. It contains a single attribute, ref, that specifies a reference to
another part of the global namespace in URL format.
Schema and Namespace 45

The cacheObject object class is an auxiliary object class that allows a
time-to-live attribute, ttl, to be associated with a directory entry. This enables
a client to know how long it may cache that directory entry’s information
before it must re-fetch another copy of that directory entry from the directory
server.

The container object class is a structural object class that can contain other
objects. It is used to provide subtree grouping in the namespace. A container
object is analogous to a file system directory. Objects associated with the
directory container are hierarchically beneath that container in the
namespace (see also 2.3, “Directory Information Tree (Namespace)
Structure” on page 36).

The linkedContainer object class is an abstract object class with a DN-valued
property pointing to another container to search if the desired object is not
found in the current container. This class is a DEN class and is used to build
content hierarchies.

2.6.2 White Pages Objects
The white pages schema is analogous to telephone directory information. It is
meant to describe people and organizations. It contains the following objects:

• Organizational objects:

• country
• locality
• organization
• organizationalUnit
• dcObject
• domain
• liOrganization

• Person objects:

• person
• organizationalPerson
• inetOrgPerson
• residentialPerson
• liPerson
• ePerson

• Group objects:

• groupOfNames
• groupOfUniqueNames

• Miscellaneous objects:
46 LDAP Implementation Cookbook

• alias
• aliasObject
• organizationalRole

All these objects are defined by industry standards, except for the ePerson
and aliasObject objects, which are defined by IBM. The following sections
describe these objects in more details.

2.6.2.1 Organizational Objects
The organizational objects consist of several structural object classes, each
of whose superior is the top object class in the class hierarchy (except the
liOrganization class, which is subclassed from organization).

The country object class is used to define country entries in the DIT. The
locality object class is used to define locality in the DIT. The organization
object class is used to define organization entries in the DIT. The
organizationalUnit object class is used to define entries that represent
subdivisions of organizations.

The dcObject and domain object classes in Using Domains in LDAP/X.500
Distinguished Names, RFC 2247, are used to map domains into distinguished
names. The first, dcObject, is intended to be used in entries for which there is
an appropriate structural object class. For example, if the domain represents
a particular organization, the entry would have organization as its structural
object class, and the dcObject class would be an auxiliary class. The second,
domain, is a structural object class used for entries in which no other
information is being stored. The domain object class is typically used for
entries that are plan holders or whose domains do not correspond to
real-world entities. The dcObject object class permits the dc attribute to be
present in an entry. This object class is defined as auxiliary, because it would
typically be used in conjunction with an existing structural object class, such
as organization, organizationalUnit or locality. If the entry does not
correspond to an organization, organizational unit, or other type of object for
which an object class has been defined, the domain object class can be used.
The domain object class requires that the DC attribute be present and permits
several other attributes to be present in the entry. The DC attribute is used for
naming entries of the domain class.

The liOrganization object class is a structural object class that is subclassed
from the organization object class. It defines organizations in a manner
acceptable for the Internet in a lightweight fashion.
Schema and Namespace 47

2.6.2.2 Person Objects
The person objects consist of several objects subclassed from the person
object. The Figure 9 on page 48 shows the class hierarchy (subclassing).

Figure 9. Class hierarchy for person object classes

The person object class is a structural object class defined by X.521 and RFC
2256 (same definition). It defines entries representing people generically. It
contains the minimal set of attributes that the directory entry of type object
class=person must contain: commonName (or cn) and surname (or sn) plus
some additional optional attributes.

The organizationalPerson object class is a structural object class subclassed
from person and is also defined by X.521 and RFC 2256 (same definition). It
defines entries representing people employed by or associated with an
organization. It adds optional attributes to those already defined in the person
object class.

The inetOrgPerson object class is a structural object class subclassed from
organizationalPerson. It is defined in an Internet Draft (not yet ratified). It
defines entries representing person information requirements found in typical
Internet and intranet directory service deployments. It incorporates attributes
needed to define both organizational and residential characteristics of a
person. It adds optional attributes to those already defined in the person and
organizationalPerson object classes.

The residentialPerson object class is a structural object class subclassed
from person and is also defined by X.521 and RFC 2256 (same definition). It

top
(abstract)

residentialPerson
(structural)

person
(structural)

ePerson
(auxiliary)

lips
(structural)

orgPerson
(structural)

inetOrgPerson
(structural)
48 LDAP Implementation Cookbook

defines entries representing people in a residential environment. It adds
optional attributes to those already defined in the person object class.

The liPerson (lightweight Internet person) object class is a structural object
class subclassed from person and is defined by the Network Applications
Consortium and The Open Group (same definition). It defines entries
representing people and contains the commonly used organizational and
residential attributes that have been accepted by a wide group of companies.
It adds these optional attributes to those already defined in the person object
class.

The ePerson object class is an auxiliary object class defined by IBM (the e
prefix identifies it as an IBM extension, see 2.4.2, “Naming Conventions” on
page 40) and subclassed from top. It may be attached to any person directory
entry, that is, a directory entry instantiated from any of the person structural
classes: person, organizationalPerson, inetOrgPerson, residentialPerson, or
liPerson. The ePerson object class supplements the existing person class
directory entries with attributes needed for IBM software. When attached to
an instantiated directory entry, that directory entry has the characteristics
presented by the attributes of its structural class plus those attributes defined
by IBM. If no structural class is specified when a new person needs to be
instantiated, the default class used is inetOrgPerson, otherwise the existing
entry for that person is used. This allows IBM software to use any customer
or vendor chosen person class, that is, IBM software can depend on the
ePerson object class independently of what others may use as their person
structural class. For example, Microsoft has defined its own person class for
Windows NT users as structural. IBM can then append it’s ePerson definition
to this NT class, and, thereby, not disturb the NT definition while allowing its
software products based on ePerson to continue to work without modification.
Queries for object classes of type ePerson will return any directory entry to
which the ePerson auxiliary class was appended.

2.6.2.3 Group Objects
The Group object classes are defined by X.521 and RFC 2256 (same
definition). Figure 10 shows the class hierarchy (subclassing).
Schema and Namespace 49

Figure 10. Class hierarchy for group object classes

The groupOfNames object class is a structural object class. It is used to
define entries representing an unordered list of names that represent
individual objects or other groups of names. The membership of a group is
static, that is, it is explicitly modified by administrative action rather than
dynamically determined each time the group is referenced. The membership
of a group can be reduced to a set of individual object’s names by replacing
each group with its membership (expansion of nested groups). Examples of
groups are e-mail lists or department memberships.

The groupOfUniqueNames object class is a structural object class. It is the
same as groupOfNames except that the integrity of its unordered list of
names can be assured.

2.6.2.4 Miscellaneous Objects
The miscellaneous object classes are defined by X.521 and RFC 2256 (same
definition). Figure 11 below shows the class hierarchy (subclassing).

Figure 11. Class hierarchy for miscellaneous object classes

The alias object class is a structural object class whose superior in the class
hierarchy is the top object class. It allows an object to be known by more than
one name. Each alias name has a corresponding alias entry in the DIT which

top
(abstract)

groupOfUniqueNames
(structural)

groupOfNames
(structural)

top
(abstract)

alias
(structural)

aliasObject
(auxiliary)

organizationalRole
(structural)
50 LDAP Implementation Cookbook

contains a pointer to the object entry. It has only one attribute (the attribute is
required) which is the alias name, and it must be used as the naming (RDN)
attribute.

The aliasObject object class is an auxiliary object class defined by IBM
whose superior is the top object class. It is similar to the alias object class,
except that its one attribute does not have to be used as the naming attribute
because the class is defined as auxiliary.

The organizationalRole object class is a structural class whose superior is the
top object class in the class hierarchy. It is used to define entries that
represent an organizational role. An organizational role may be filled by a
person or a non-human entity. An example of an organization role is Vice
President of Business Operations.

2.6.3 Security Objects
The security objects can be divided into the following categories:

• Authentication objects (RFC 2256)

• strongAuthenticationUser
• userSecurityInformation
• certificationAuthority
• certificationAuthority-V2
• cRLDistributionPoint
• eUser (IBM-defined)

• Authorization objects (IBM-defined)

• accessGroup
• accessRole

• Accounting objects

• account (RFC 1274)
• eAccount (IBM-defined)

2.6.3.1 Authentication Objects
All these objects are subclassed (in the class hierarchy) from top except for
the certificationAuthority-V2 object class which is subclassed from
certificationAuthority.

The strongAuthenticationUser object class is an auxiliary object class used to
add strong authentication information to structural objects requiring it. This
object class contains the certificates. For example, the person object class
optionally allows a user password to be specified. If that person directory
entry is used for primary authentication and that authentication needs to be
Schema and Namespace 51

via certificate, the strongAuthenticationUser object class would be appended
to that directory entry.

The userSecurityInformation object class is an auxiliary object class that
specifies the (encryption) algorithms supported by the server.

The certificationAuthority object class is an auxiliary object class which is
used to define entries for objects which act as Certificate Authorities (CA). It
must contain the CA’s certificate and its certificate and authority revocation
lists and, optionally, its cross certificate lists.

The certificationAuthority-V2 object class is subclassed from the
certificationAuthority object class and additionally contains delta revocation
lists. This class provides compatibility between LDAP V2 and V3
implementations.

The cRLDistributionPoint object class is a structural object class that contains
certificate revocation lists and authority revocation lists.

The eUser object class is a structural object class that is subclassed from top.
For white pages applications, the person class and its derivatives are
generally sufficient. However, in an enterprise environment, a person may
have access to a variety of applications and data on a variety of systems in
some authenticated and authorized manner. People may play multiple roles
(for example, manager, member of a particular team, and so on) where their
role may need to reflect their access to resources.

Figure 12. Person - User relationship

eUser

Person/ePerson

eUser

ePropertyeProperty

...

...
Object Relationships

DIT containment
52 LDAP Implementation Cookbook

The eUser object class may be used to represent this classification and
management of their roles and expected application behavior/preferences
(Figure 12). The eUser object entry is associated with the person object entry
by placing it in the DIT beneath the person entry as shown in Figure 12. (The
eProperty objects will be discussed later in 2.6.5, “Profile Objects” on page
55).

2.6.3.2 Authorization Objects
The authorization objects are IBM defined structural object classes whose
immediate superior in the class hierarchy is the class top. They provide the
definition for directory entries by which the ACL (Access Control List)
manager as part of the directory service can grant or deny the requested
access. These object classes are associated with IBM ACL model (see 5.6,
“Access Control” on page 120). The access-ID (for example a person’s DN or
a device’s DN), access group DN, or role DN are part of the ACL entry of an
object.

The accessGroup object class is identical in format to the groupOfNames
object class, except its objectClass attribute is different (that is, the
accessGroup object has an objectClass attribute of accessGroup). IBM
defines a new group specifically to hold a list of DNs (human and non-human)
because not all the groups are appropriate to be used for access control (for
example, an e-mail distribution list is not appropriate to use for access
control).

The accessRole object class is also identical in format to the groupOfNames
object with the same exception as noted above. Although the definition is the
same, the semantic of a role is different from that of a group. A role has an
implied set of expectations. An example of a role might be Administrator.

2.6.3.3 Accounting Objects
The account object class is a structural object that is subclassed from top and
defines the basic information for an account.

The eAccount object class is a structural object class that is subclassed from
account and used to define entries that model accounts based on IBM needs.
ePerson object entries (and other principals such as eUser entries) have DN
assertions to any associated eAccount object entries, but the DN relationship
is defined by the account administrator in the eAccount object. The eAccount
class may be subclassed by products as necessary to add product-specific
information. A query for eAccount objects will yield these application system
tailored accounts as well as any additional eAccount subclasses defined by
the directory implementor.
Schema and Namespace 53

Figure 13 on page 54 shows the associations between persons, accounts,
and their application systems (the eApplicationSystem class is defined later
in this document, but, in short, it represents a logical system, that is, a set of
logical and physical resources within a single administrative domain), as well
as access control lists and access groups or roles. The account objects
represent the authentication relationship between a system and a user (or
other principal); they are associated with their application system (or
operating system) in the name hierarchy. The DN relationship must be
checked whenever traversing the directory to an eAccount object entry based
on a principal’s back pointer.

Figure 13. Person - Account and their application system relationships

2.6.4 Policy Objects
Policy objects define a set of common base policies for use in the directory
service from which more specific policies may be subclassed. Policies may be
security and non-security related.

• passwordPolicy

The passwordPolicy object describes the characteristics needed to
implement a policy for passwords that an organization may need to enforce. It

eProperty

eUser

ePerson

eProperty

eApplicationSystemaccessGroup

accessRole

eAccount

Sys

0..n

0..n

0..n

0..n

0..n

0..n 0..n

Object Relationships

Sys
Name Space DIT Options
Optional DIT container
DN Forward Pointer
DN Assertion (back ptr)
54 LDAP Implementation Cookbook

allows for the definition of characteristics such as composition of passwords,
aging of passwords, and password reuse.

Policy objects for Service Level Agreement and Virtual Private Network are
currently under definition at IETF. IBM is participating in that work.

2.6.5 Profile Objects
The profile objects defined to-date are based on the CIM_Configuration and
CIM_Setting classes:

• cimConfiguration
• cimSetting
• eProperty
• PropertySet

They provide the customization attributes for a set of preferences, for
example, for a product’s shipped defaults, an installation’s defaults, or even a
user’s defaults. These preferences are defined by an eProperty object. In
some cases, it is desirable to define a set of defaults, for example, for an
organization, but also allow the users in that organization to override some of
that organization’s defaults to meet their needs. The ePropertySet object
allows a hierarchy of preferences to be defined.

The eProperty object class is a structural object class subclassed from the
abstract class cimSetting. The eProperty object can be used just about
anywhere in the namespace (see, for example, Figure 8 on page 42) to
provide a set of preferences for the object to which it is associated. Direct
association of an eProperty object to the object for which those preferences
are to be associated is via the DIT structure, that is, an eProperty object is
placed hierarchically underneath the object in the DIT for which those
preferences are to be associated. The eProperty object class has only one
required attribute, its name. Its optional attributes include semantic typing
information for the eProperty object entry and three paired sets of attributes
for describing the type and property values in binary, caseExactString, and
caseIgnoreString syntax.

The ePropertySet object class is a structural object class that is subclassed
from cimConfiguration. It provides a method for indirectly associating a set of
properties with a resource and a mechanism for organizing those sets of
preference properties into a hierarchy for coalescing multiple eProperty
objects. The association between the property set and the object entries for
which it is used may be encoded as a DN pointer in either direction (and the
opposite pointer used as a hint). The property set hierarchy (for example,
organization defaults and role-based defaults) is defined by linking together
Schema and Namespace 55

ePropertySet objects using DN pointers to form the relationship. Figure 14 on
page 56 shows such an example.

Figure 14. Property set and property object relationships

The model for preferences also permits a hierarchical DIT structure for
eProperty objects, i.e. eProperty objects can be containers for other
eProperty objects.

2.6.5.1 How to Structure Preferences
Let’s look at two examples of how you might structure preferences in the
namespace.

Example 1 . The distinguished name of an eProperty object might be:

cn=1-2-3, cn=Lotus, ou=Raleigh, ou=us, o=IBM

where Lotus and 1-2-3 are the names of hierarchically-related eProperty
object entries. Figure 15 on page 57 shows the DN pointer and namespace
DIT subtree relationships for this example.

eProperty

eUser

Person/ePerson

eProperty

ePropertySet
ePropertySet

eProperty

0..n

0..n

0,1

0,1

0,1

Object Relationships
Name Space DIT Options
DN Forward Pointer

eUser

eProperty
56 LDAP Implementation Cookbook

Figure 15. Preferences - Example 1

Similarly, when a user customizes his or her preference, the eProperty object
entries may be structured in the namespace subtree of the ePerson or eUser
directory entries.

Example 2. This example produces the same result as in example 1 above,
but removes empty containers. Removing these empty containers results in a
flattened namespace for preferences. This type of structure may improve
performance by a small amount. If the Lotus eProperty object (in Figure 15)
has no property values, it would not appear in the directory. Instead,
eProperty objects would appear with RDN values like Lotus.Text.format,
Lotus.Notes, and Lotus.Components.Spell.V4 where those RDN values carry
a hierarchical semantic for preferences. Figure 16 on page 58 depicts this
solution.

eProperty

ePropertySet

eProperty

ePropertySet

ePropertySet

eProperty Object Relationships
Name Space DIT Options
DN Forward Pointer

configPtr

Division "X"

"Lotus"

"Notes" "1-2-3"

configPtr
Schema and Namespace 57

Figure 16. Preferences - Example 2

2.6.6 System Objects
The object classes used for representing systems are derived from the DMTF
Common Information Model. Some X.500-derived classes are provided for
completeness, but the CIM-derived object classes are recommended to be
used for consistency with the rest of the model.

• device (RFC 2256 & X.521)
• labeledURIObject (RFC 2079)
• cimManagedElement (Proposed CIM)
• cimManagedSystemElement (CIM)
• cimLogicalElement (CIM)
• eSystem (CIM)
• eOperatingSystem (CIM)
• eComputerSystem (CIM)
• eApplicationSystem (CIM)

The device object class is a structural object class that is defined by X.500
and is used to define entries representing devices. A device is a physical unit
which can communicate, such as a modem, printer, and so on. It is suggested
that at least one of the localityName, serialNumber, or owner attributes
should be included. The choice is dependent on device type.

The labeledURIObject class is an auxiliary object class subclassed from top
and may contain the labeledURI attribute. The intent is that this object class
can be added to existing directory objects to allow for inclusion of URI values.

ePropertySet

eProperty

ePropertySet

ePropertySet

ePropertyeProperty

Object Relationships
Name Space DIT Options
DN Forward Pointer

"SERegion"

Division "X"

"DirTeam"
configPtr

configPtr

"Lotus.Text.format" "Lotus.Notes" "Lotus.Components.Spell.V4"
58 LDAP Implementation Cookbook

This approach does not preclude including the labeledURI attribute type
directly in other object classes as appropriate.

The CIM-derived system object classes are derived from the superclass
cimManagedElement, which is based on the proposed
CIM_ManangedElement abstract class for user classes. The
cimManagedElement class contributes common name, caption, and
description attributes to the CIM-derived object classes. The
cimManagedSystemElement abstract class adds an installation date and a
DN pointer that can be used to associate a derived object entry with
configuration information. The cimLogicalElement abstract class adds no
attributes to the inheritance hierarchy, but it divides the logical object classes
from those that represent physical resources in the CIM model.

The CIM-based classes for systems are derived from cimLogicalSystem. The
eSystem object class and its descendents, eOperatingSystem,
eComputerSystem and eApplicationSystem, are used to represent their
respective systems. The eComputerSystem and eOperatingSystem object
classes are straightforward. The eApplicationSystem class provides a
collection point for a set of application services and represents a logical
system (that is, a set of logical and physical resources) within a single
administrative domain. So, for example, an eApplicationSystem entry could
represent an administrative set of application resources available on a CICS
subsystem, a set of Notes applications, and databases or an Orion domain.

Generally, the directory object entry represents the administrative scope of
the application subsystem. The eSystem object class generally will not be
instantiated in the directory. However, it can be used as a container-like
object entry to represent system administrative scopes within the containing
system hierarchy. In the example shown in Figure 17 on page 60, within the
scope of an eApplicationSystem DIT, an eSystem object can be used to
isolate the creation and maintenance of superuser accounts (for example, a
subclass of eAccount) from the creation and maintenance of regular user
accounts (represented as eAccount objects in this example).
Schema and Namespace 59

Figure 17. System-level object relationships

The DIT structure for these system-level objects is flexible, but, in most
cases, an eComputerSystem object entry will be the superior for an
eOperatingSystem entry. An eApplicationSystem object may be used to
represent an application subsystem which may be contained within a
computer system. In this case, a natural representation is to have the
eApplicationSystem entry subordinate to the eOperatingSystem entry
representing its execution environment as shown in Figure 17 for Appl_A.
However, distributed application systems span computer systems, and the
administration of those distributed resources may be represented in the
directory and in the directory information tree independently of a computer
system.

2.6.7 Software Objects
The object classes used for representing software are derived from the DMTF
Common Information Model. Some classes derived from X.500 classes (that
is applicationProcess, and applicationEntry) are provided for completeness,
but the CIM-derived object classes are recommended for consistency with
the rest of the model.

• cimProduct (CIM)
• eApplicationSoftware (CIM)
• eSoftware (CIM)
• applicationProcess (RFC 2256 and X.521)
• applicationEntity (RFC 2256 and X.521)

eApplicationSystem

eSystem eSystem

eComputerSystem

eOperatingSystem

eApplicationSystem

eSuperuserAccount eAccount

superusers users

"Appl_D"

"Appl_A"

...
60 LDAP Implementation Cookbook

Figure 18. Software object class relationships

Application software, for example, the software installed on a computer
system, is represented using the eSoftware structural class (based on both
the CIM_SoftwareFeature and CIM_SoftwareElement structural classes). It
identifies a product function set (such as, for example, Lotus 1-2-3 bean or an
Orion configuration servlet) hosted on a computer system (Figure 18). The
eSoftware attributes contain attributes based on the CIM_SoftwareFeature
class that identify the vendor, product, and version information as well as the
de-normalized CIM_SoftwareElement class attributes, such as the target
operating system, language edition, and software installation state. Rather
than base the file description information on the entire CIM file system
subschema, IBM includes file information in the eSoftware class as well.

Because there can be multiple computer systems with identical copies of a
software product, the model also adds an eApplicationSoftware structural
object class (based on the CIM_Product class and derived from the
cimProduct directory object class) to represent the entire set of instantiated
copies of the software. The eApplicationSoftware entries may be used as
meta-objects to permit the selection of an instance of the software based on
network policies and client location information. In the near-term, products
may choose a combination of heuristics such as physical location,

ePropertySet
ePropertySet

eProperty

eApplicationSoftware

eAccount

Sys

0..n
Object Relationships

Sys
Name Space DIT Options
Optional DIT container
DN Pointer
DN Assertion (back ptr)

eProperty

eComputerSystemeApplicationSystem

eSoftware

eProperty eProperty

eOperatingSystem

Sys
eProperty

eProperty eProperty

eProperty

0..n

0..n 0..n

0,1

0,1

0,1

0,1
0..n

0..n
Schema and Namespace 61

longest-prefix IP address matching, load balancing weights, and so on. The
eApplicationSoftware and eSoftware classes model software in various
stages of installation (that are deployable, installable, executable and
running), but the running state is not modeled for most software.

The applicationProcess object class is a structural object class that is used to
define entries representing application processes. An application process is
an element within a real open system which performs the information
processing for a particular application. It is defined by X.500.

The applicationEntity object class is a structural object class that is used to
define entries representing application entities. An application entity consists
of those aspects of an application process pertinent to OSI. It is defined by
X.500.

2.6.8 Service Objects
The service and service access point object classes are derived from CIM.

• cimService (CIM)
• eService (CIM)
• eSAP (CIM)

The eService structural object class (based on the CIM_Service class)
provides the directory representation for the long-running software services
(for example, a Web service, a configuration service, or an authentication
service). An eService object entry may be used to represent an accessible
service. For example, the equivalent instances of an SQL server, where the
externals (interfaces, access rights, and data) are the same, might be
represented as a service. The eService entries differ from the
eApplicationSoftware and eSoftware entries. Whereas eApplicationSoftware
and eSoftware entries present programs and supporting files, an eService
entry that is started represents a set of running images with, for example,
ports on which they listen for incoming connections. As with the
eApplicationSoftware class, the eService class permits the selection of an
instance based on network policies and client location information. In the
near-term, products may choose a combination of heuristics such as physical
location, longest-prefix IP address matching, load balancing weights, and so
on.

The eSAP structural object class (based on CIM_ServiceAccessPoint)
represents those service connection points as instantiated on a computer
system with a URL for access. Both eService and eSAP object classes may
be extended with product-specific subclasses as needed.
62 LDAP Implementation Cookbook

Figure 19 shows the relationship between the services object classes.

Figure 19. Service object class relationships

2.6.9 Other Objects
This is a collection of objects that are IBM-defined and used by the exploiting
products. These objects will be categorized at a later time.

• publisher

The publisher object class is an auxiliary object class that is subclassed from
top. It contains the name of the host publishing the information in the
structural class to which this auxiliary publisher class is attached.

2.7 The IBM Schema Repository

For its internal product development, IBM uses a tool for directory exploiters
(either product or application developers). The IBM Schema Repository is a
single place that holds all the schema definitions that IBM ships with its IBM
SecureWay Directory. This is the central location for schema definitions that
the IBM SecureWay Directory supports, and it also incorporates applicable
schemas from standards organizations including IETF, DEN, and DMTF/CIM.

ePropertySet
ePropertySet

eProperty

eApplicationSoftware

eAccount

Sys

0..n Object Relationships

Sys
Name Space DIT Options
Optional DIT container
DN Pointer
DN Assertion (back ptr)

eProperty

eComputerSystemeApplicationSystem

eSoftware

eProperty eProperty

eOperatingSystem

Sys

eService

Sys
eProperty

eProperty eProperty

eProperty

0..n
eSAP

Sys

0..n 0..n

0,1

0,1

0,10,1

0,1

0..n

0..n

0..n

eApplicationSystem
Schema and Namespace 63

The benefits of such a centralized repository are:

• It eliminates redundancy in object class and attribute definitions.
• It encourages reuse of defined object classes and attributes.
• It encourages exploitation of the directory.
• It provides information needed to work with industry groups defining

schema.

This information is kept on-line through the use of a Lotus Domino database.
This database provides:

• object classes and attributes of the IBM schema

• forms to define new object classes and attributes with OID assignments

• views of the object classes and attributes already defined along with their
state information (requested, active/approved, retired)

• tools for automated creation of the schema files

IBM employees can access the database by pointing their browsers at:

http://ends390d1.endicott.ibm.com/ldap/oidrgy.nsf

or using their Lotus Notes client, where the server name is
ends390d1/ends390 and the directory/filename is LDAP/oidrgy.nsf.

IBMers may also replicate a copy of the database to their workstations for
their own purposes.

Non-IBM readers may find this information useful for a few reasons. They may
consider implementing a similar function within their own organization when
starting to build a new directory infrastructure based on LDAP. They may also
want to define additional object classes and attributes needed in their own
systems and applications that are not covered by the schema provided by the
IBM SecureWay Directory. The benefits will be similar as described earlier in
this section. Contact your local IBM representative to find out what is the best
way to get the described tool (or similar) implemented in your own
environment.
64 LDAP Implementation Cookbook

Chapter 3. A Step-by-Step Approach for Directory Implementation

In the previous two chapters, we have introduced the principles of an
LDAP-based directory service and the possible implications for LDAP
implementation projects. Now that directory standards are emerging, the
opportunity exists for enterprises to simplify their directory problems. If an
enterprise is able to store directory information once and administer it in one
place, the total cost of maintaining this information is significantly reduced.

This chapter provides an overview of the planning and design work required
for most LDAP implementation projects. Key concepts are introduced, and the
subsequent chapters will have more detailed information about actual
implementation. Though the descriptions in this chapter are not very detailed,
and some of the steps outlined below may seem trivial and therefore tempting
to be bypassed, it is strongly suggested, however, to follow each step as
explained below. The time you spend on trivial issues, such as defining your
data, will be worthwhile.

Designing a directory has much in common with designing a relational
database. Distinctively, a directory design cannot be verified by applying
checking rules, such as the normal forms that apply for relational databases.
Thus, designing a directory allows for more freedom that can be used for
specific requirements, such as application requirements, performance
considerations, or namespace partitioning. It must be clearly understood,
however, that common sense as well as fundamental application and
database design principles apply equally for a directory. The most important
principles to have in mind when designing a directory are:

• Avoid data redundancy

• Ensure data consistency

• Cross-platform and cross-application exploitation

• Extensibility

• Use standards whenever possible

The step-by-step approach explained in the following sections give you a
guideline for designing a directory.

3.1 Define the Objective for Using an LDAP Directory Service

There have to be clearly defined business requirements before you start your
directory service project. What is meant by a business requirement is that
your business is driving you to exploit new technologies like LDAP into the IT
© Copyright IBM Corp. 1999 65

environment. Such a requirement can be the implementation of a new
extranet application to link your suppliers with your legacy systems, and you
need to integrate this group of new users with your existing authentication
and access control methods. Or, it can be a consolidation of multiple
dissimilar directories to a common directory to simplify administration and,
thus, reduce the related costs.

Define the objectives for the directory service implementation project based
on your requirements. The objectives should define the service that you are
planning to implement including the goals you plan to achieve with this new
service, who will be the users (applications/users), what will be the availability
requirements for the directory service, and so forth.

This first step is completely independent of any directory implementation.

3.2 Define the Data to Store in the Directory Service

Planning the directory's data is the most important aspect of the directory
planning activities, and it is probably the most time-consuming aspect as well.
Based on the requirements defined in the first step (see above), you should
locate all the data stores where the relevant directory information is
managed. As this survey is performed, expect to find that some kinds of data
are not well managed; some processes may be inefficient, inadequate, or
nonexistent altogether; and some kinds of data may not be available at all. All
of these issues should be addressed before finishing a data-planning phase.

3.2.1 The Type and Use of Directory Data
A directory service is not a substitute for a generalized relational database or
transaction system. In a directory service, reading or searching data is
generally more frequent than updating the information. Some of the common
criteria for storing information in the directory include:

• The data will be accessed by multiple applications.
• The data will be accessed from multiple locations in the network.
• The data to be stored conforms to an industry or open-system definition

that has been standardized on schema and namespace definitions.
• The data is typically more often read than written (updated).

Some applications use the directory for reading data only and will not store
any data in the directory. This type of application typically uses the existing
schema and namespace definitions for developing their LDAP code.
Applications that write to the directory have additional design considerations.
Thus, evaluate how the data is used by your application. For example, if the
66 LDAP Implementation Cookbook

data is used during the initial start-up of the application prior to the
application’s ability to make a call to the directory, it is not a good candidate
for storing in the directory for obvious reasons.

3.2.2 Survey the Directory Data
Having in mind the types of data suitable and unsuitable for use in a directory,
it is now possible to survey what the directory service data will be. In doing
this, it may be helpful to do the following:

• Survey the organization and identify where the data comes from (such as
Windows NT or Novell NetWare directories, Human Resources databases,
e-mail systems, and so forth).

• Determine what directory-enabled applications to deploy and what their
data needs are. Do not forget possible future applications.

• Determine who needs access to the data, particularly the organization's
mission-critical applications. Find out if those applications can directly
access and/or update the directory.

• For each piece of data, determine the location where it will be mastered,
who owns the data, that is, who is responsible for ensuring that the data is
up-to-date.

• If data is going to be imported from other sources, develop a strategy for
both bulk imports and incremental updates. Try to limit the number of
applications that can change the data. Doing this will help ensure the data
integrity while reducing the organization's administration.

• Identify duplications and data that is not actually used or required.
Harmonize the data by eliminating such duplications, and discard
unnecessary data.

Having decided on the type of data to use in the directory service, what the
directory will be used for, and how the data will be updated, it is possible to
start structuring the data.

It is considered a general design guideline that data that is subject to
frequent updates should not be stored in a directory because directory
services are optimized for queries. The IBM SecureWay Directory with the
relational database backing store, however, does provide surprisingly good
update performance. The decision on whether or not to store
frequently-changing data in a directory should also be based on application
requirements and client cacheing capabilities and algorithms.

Note on Updates
A Step-by-Step Approach for Directory Implementation 67

3.3 Evaluate Data and Its Relationship to Directory Schema

Rather than defining the data as if it is the only data in the directory and the
application the sole application, the design point is to evaluate the data you
defined in the previous step against the default schema defined for the IBM
SecureWay Directory (see Chapter 2, “Schema and Namespace” on page
31). The design objective for directory exploitation projects is to maximize the
sharing of common objects and attributes. For each piece of data, determine
the name of the attribute(s) that you will use to represent the data in the
directory and the object class(es), that is, the type of entry, that the data will
be stored on. Wherever possible, you should use existing schema for your
application rather than private definitions.

It is very likely that using existing objects and attributes will have an impact on
the design of your application as you re-engineer from a side-file-based (data
defined and used by just one application) to a shared directory. The value of
an integrated directory is the reason for each application to make the
changes necessary to use common schema definitions.

Most LDAP-enabled application clients are designed to work with a specific
well-defined schema. Shrink-wrapped standard applications (and any tools
and applications that depend on standard applications) most likely only work
with a standard schema. This is an important reason why LDAP-based
directory services should support at least the standard LDAP schema. Then,
the schema may be extended as the site discovers site-specific needs not
met by the standard schema.

If your application data is not found in the standard schema, new objects
and/or new attributes can be added. The entire process for evaluating the use
of schema and the need for extensions, as explained in Chapter 2, “Schema
and Namespace” on page 31, will ensure that extensions to the schema are
validated and implemented correctly.

3.4 Define and Assign Responsibilities for the Data

As soon as the data that goes in the directory has been evaluated (or,
possibly, during the process of data evaluation), responsibilities need to be
defined and assigned to the appropriate persons or administrative authorities,
such as departments in a company. These authorities must be involved early
in the implementation process, and they will keep these responsibilities for as
long as their data is in the directory. In particular, the responsibilities are:

• To ensure that all necessary data for the area of responsibility is taken
care of in the design phase and that no unnecessary duplications exist
68 LDAP Implementation Cookbook

• During the migration phase, to ensure that possible problems, for
example, due to character set conversion difficulties, are promptly
detected and corrected

• To reliably maintain the data after the directory has been put into
production

3.5 Evaluate Data and Its Placement in the Namespace

Every LDAP directory will implement a structure, usually hierarchical, that
defines the namespace. The namespace definition will determine where you
should place your objects and attributes. This will then determine the
distinguished name (DN) of your entries. If your application data does not fit
into the existing namespace and you have considered possible adoptions to
the existing namespace with no success, the namespace will need to be
extended.

It is important that namespace extensions are coordinated within your
organization to avoid any duplication and inconsistencies, just as IP
addresses and hostnames need to be coordinated within an organization.

When deciding on suffixes, where a suffix is the root DN of a directory tree as
described in section 2.3, “Directory Information Tree (Namespace) Structure”
on page 36, one of the methods is to use the same naming structure for LDAP
as is used for X.500. This method will set the root of the directory tree to a
specific organization in a specific country or to a specific organization and
organizational unit.

Another method that you can use, if the X.500 does not seem appropriate, is
to use the DNS naming model when choosing the directory suffix. This would
result in a suffix using the domainComponent (dc) attribute, for example
<dc=xyz.se, dc=abc.us, or dc=abc.com>.

Choosing to branch a directory tree based on the organizational structure,
such as departments, can lead to a large administrative overhead if the
organization is very dynamic and changes often. On the other hand,
branching the tree based on geography may restrict the ability to reflect
information about the organizational structure. A branching methodology that
is flexible and that still reflects enough information about the organization
must be created.
A Step-by-Step Approach for Directory Implementation 69

3.6 Evaluate the Existing Security Policy

If, based on the evaluation done in section 3.3 on page 68, you determine that
you will use (reuse) existing objects and attributes in the LDAP directory, you
must re-evaluate your security policy against the existing security policy for
those shared objects and attributes that are to be stored in the directory.

Having designed the directory tree, you now need to decide on a security
policy. A security policy should be strong enough to prevent sensitive
information from being modified or retrieved by unauthorized users while
simple enough to keep administration simple and enable authorized parties to
access it easily. Ease of administration is very important when it comes to
designing a security policy. An overly-complex security policy can lead to
mistakes that either prevent people from accessing information that they
should have access to or allow people to modify or retrieve directory
information that they should not have access to.

The security policy that needs to be designed for the directory service is a
reflection of the:

• Kind of data (confidentiality of information that will be stored in the
directory)

• Ways in which clients will be accessing the directory

• Ways which will be used to update and manage the directory

• Acceptable administration effort for security

To reach these goals, two basic areas must be considered and the following
questions must be answered: What level of security is needed when clients
identify themselves to the directory server, and what methodology will be
used when authorizing access to the different kinds of information in the
directory?

Security aspects are discussed in Chapter 5, “Directory Security” on page
103.

3.7 Define the Migration Model

Having done all the planning and design work to introduce LDAP as a new
directory service, one more important task has to follow. Remember that the
job of designing an LDAP directory very likely started with an analysis of
currently available data and the various locations and services where
directory data might be stored and serviced from. For example, there might
be several LAN-based directories installed and operational already in your
70 LDAP Implementation Cookbook

organization, such as IBM Warp Server domains, Microsoft Windows NT/95
domains, Novell NetWare domains, or other databases with directory-type
information.

In most cases, introducing LDAP will not be an introduction of a new service
from scratch, but some kind of a migration from existing services to LDAP will
have to take place. Once your organization has decided to move to an open,
vendor-independent directory service, which describes LDAP perfectly, you
have to carefully analyze if and how current directories can participate in,
benefit from, or even be migrated to an LDAP directory infrastructure. Bear in
mind that such a migration is not just a software or application replacement; it
is also an opportunity and the right time to redesign and harmonize the data
in your directories.

Because migrating current directory services to LDAP may not be a trivial or
risk-free undertaking, your decision might be to run and maintain proprietary
directory services in parallel with LDAP for some period of time (while this is
certainly not textbook advice, it may be considered for practical reasons).
This might also be necessary when you need to keep some of the proprietary
services that cannot be supported with LDAP running for some time. Another
common reason for running LDAP and other directory services in parallel
might be a shortage of skills or staff personnel.

The migration approach just described involves little risk because there is
always a backout method in case a migration step fails. Clients may be
migrated within a time period, which is especially useful in large installations.
New services may experience a delay when problems are encountered after
their introduction. Migration of a complete service at one time imposes a
much higher risk because both servers and clients (including applications)
have to be ready immediately. The only (usual) backout solution is to go back
and (re)install the old environment. The decision on which scenario to follow
largely depends on the size of the installation, the risk that can be taken, and
the possibilities to run directory services in parallel.

If planning for a migration, it should also be considered that, according to
their public program announcements, vendor-specific directory services, such
as Novell's NDS or Microsoft's Active Directory, support an LDAP interface.
Using this interface, LDAP clients can access data in these directories.

Different migration models are described in detail in 4.6, “Migration from the
Previous Release” on page 91 and in 4.7, “Migration from Non-LDAP
Sources” on page 92.
A Step-by-Step Approach for Directory Implementation 71

3.8 Define the LDAP Programming Model

This step is the first time we actually discuss LDAP programming. The initial
six steps are focused primarily on data. This is a good indication that
directory exploitation is all about data: what data to store, how to store it,
where to store it, and how to share it. One of the reasons LDAP has been so
well received is that it is a lightweight client in a client/server computing
model.

But, like LDAP programming in general, the client/server implementation has
also been oversimplified in some of the literature. The programming examples
usually describe a client application as invoked by an end user using the
LDAP client that then communicates, via LDAP protocol flows over TCP/IP, to
an LDAP server. Using the ever-present address book application as the
norm, the two-tier client/server computing is defined as the standard
implementation.

In practice, the prevalent programming model for directory exploitation
projects is usually a three- (logical) tier model where the end user interacts
with an application or subsystem, and that application or subsystem then
accesses the LDAP directory. The second tier uses the client code located on
the second-tier system to access the directory.

This three-tier computing model is worth mentioning for two reasons:

1. The two-tier client/server model usually describes the interaction with end
users where the end user signs-on (binds) to the directory server with
his/her DN (distinguished name). The assumption that the end users know
or have their DNs and that they can then be used to authenticate to the
directory server may not be true in the three-tier model. The use of an
LDAP directory server by the second tier may be transparent to the end
user, or an application that has been re-engineered to store side file
information in the LDAP directory may not want to (or be able to) change
existing end user business applications. In this case, your design may
have to be able to map between the current identification mechanism
(often eight-character user ID) and the DN of that person in the LDAP
directory. This is called delegation and is further detailed in 5.5,
“Delegation Model” on page 117.

2. The two-tier model that defines the interaction as being between the end
user and the LDAP directory may be invalid for your three-tier application,
either because the second-tier application accesses the LDAP directory
using its own identity to perform some function or because the second-tier
application accesses the LDAP directory to read the end user’s record in
72 LDAP Implementation Cookbook

order to do its own authentication rather than rely on the authentication
capability of the LDAP server.

The application development considerations are explained in more detail in
Chapter 8, “Developing Directory-Enabled Applications” on page 223.

3.9 Define the Deployment and Performance Criteria

The physical design of a directory involves building a network and server
infrastructures to support availability, scalability, and manageability. Methods
to do this in LDAP are partitioning (referrals) and replication (replication is
actually not standardized in LDAP Version 3, but most vendors, including
IBM, do have an implementation). In this section, we concentrate on
deployment issues regarding when partitioning and/or replication is
appropriate when trying to reach the goals of availability, scalability, and
manageability, and what the trade-offs are.

Availability for a directory service may not be a hot issue in cases where the
directory is not business-critical. However, if the use of the service becomes
mission-critical, the need to design a highly available system emerges.
Designing a highly available system involves more than what is supported by
the LDAP standards. The components from LDAP that are needed are
partitioning and replication. Since high availability involves eliminating single
points of failure or reducing their impact, it is necessary to have redundant
hardware, software, and networks to spread and lower the risk.

3.9.1 Availability of the Directory Service
A simple approach to create a highly available directory service (despite
using application-independent solutions with high-availability hardware and/or
software implementations) is to create a master and a slave directory server,
each one on its own physical machine. By replicating the data, we have
eliminated the single point of failure for both hardware and software failures.
A mechanism must be added to handle client redirection if one server fails.
This can be done manually or semi-automatically by a DNS switch over, or
automatically with a load-balancing technique by using a router designed for
this (such as the IBM eNetwork Dispatcher). Such a router forwards client
requests to one of the servers based on configurable criteria. There is also
the issue of network bandwidth and its reliability to take into consideration. In
some cases, it may be necessary to distribute a replica to another network
with slow network connections to the master.

If the method of spreading the risk is used to create high availability, it is
possible to partition the directory tree and to distribute it to different locations,
A Step-by-Step Approach for Directory Implementation 73

LANs, or departments. As a side-effect, depending on how the directory tree
is branched and distributed to these servers, each location, department, or
LAN administrator can then easily manage his/her own part of the directory
tree on a local machine if this is a requirement. If a single server fails in such
a configuration, only a portion of the whole directory will be affected.

A combination of the methods explained above can be used to create a
dynamic, distributed, highly available directory service.

Replication and referrals are further explained in 7.6, “Replication” on page
178 and 7.7, “Referrals” on page 184.

3.9.2 Performance Considerations
An application written to use LDAP will exhibit certain performance
characteristics based on the type, complexity, and frequency of accesses to
the directory. This is an important consideration, especially for those products
that are moving from using side-files to using a client/server directory service.

Another aspect of performance is the location of the directory (or directories)
in the network. While the IBM SecureWay Directory will run on and integrate
with all IBM and other systems, this means that the directory may be installed
on each system but not that it must. A directory-enabled application may
exhibit better performance by locating the IBM SecureWay Directory on the
same system, but this advantage may be more than discounted by the
administrative burden of maintaining dozens or hundreds of distributed
directories in an enterprise. The number and location of IBM SecureWay
Directory servers (master and replicas) in an enterprise is a balancing act
that includes:

• The overall size of the namespace
• How/if to split the namespace (suffix) across the enterprise
• Administration and administrative sub-domain considerations
• Processor capacity and throughput
• Network bandwidth and load
• Performance requirements of directory-enabled applications

The deployment and performance considerations are discussed in more
detail in the Chapter 4, “Managing an LDAP Directory” on page 77.

3.10 Step-by-Step Summary

As was mentioned at the beginning of this chapter, the step-by-step approach
as described here only gives an overview of the planning and design work
74 LDAP Implementation Cookbook

required for most LDAP exploitation projects. Key concepts were introduced,
and these concepts can be used as a starting point when planning for a
common directory service project.

IBM Application Framework for e-business is a model that identifies key
elements for developing and deploying e-business applications. Each
element is based on open vendor-neutral standards allowing you to substitute
components from any vendor that supports these standards. As described in
1.5, “The Framework for Creating Enterprise-Wide Solutions” on page 17, a
common directory service is a key element in the network infrastructure. You
may find it useful to use this model when modifying your existing
infrastructure to include a common directory service. Introducing the new key
element into your systems environment may also cause a need for updates in
your overall systems architecture. The Framework can serve as a model for
this architectural re-design as well.

The step-by-step approach just described is not the only proven methodology
for directory exploitation projects but is described here for planning purposes.
IBM Global Services has architecture and infrastructure design service
offerings where IBM consultants and architects use proven methodologies to
execute such engagements. Contact your local IBM representative if you
want more information about available offerings.
A Step-by-Step Approach for Directory Implementation 75

76 LDAP Implementation Cookbook

Chapter 4. Managing an LDAP Directory

Administration of the IBM SecureWay Directory starts with the directory
design and involves planning, setup and configuration of the systems, daily
operations, and, finally, maintaining the data within the directory.

This chapter describes the management of a directory service as far as
design and planning are involved. An overview of administration tools is
provided, and methods are shown that can or need to be in place to establish
a reliable, corporate-wide directory service using the IBM SecureWay
Directory. Subsequent chapters will then provide more detailed information
and how-to instructions for the specific management topics.

4.1 Overview: Administration Tools, Ut ilities, and APIs

Depending on specific needs and preferences, administration of the IBM
SecureWay Directory can be done using several ways:

• Using the graphical administration tool
• Using the graphical Directory Management Tool (DMT)
• Using command line utilities
• Using the APIs for custom-written utilities
• Using the Tivoli User Administration LDAP Connection

The most obvious (and probably most intuitive) way to administer the IBM
SecureWay Directory from a systems management point of view is by using
the graphical administration interface that is provided with the product. It
allows an administrator to both examine the current status and settings, and
to configure and change server settings and certain directory properties.
Administrators are discouraged from editing the configuration file(s) with a
text editor, and should rather use this administration tool to change the
configuration of the IBM SecureWay Directory server. The graphical
administration interface, however, does not support the administration of the
data stored in the directory.

Administration of the data contained in the directory can conveniently be
done using the DMT. It lets an administrator browse and edit not only the data
contained in the directory but also schema definitions (object classes and
attributes) and the directory tree itself. Search capabilities are provided to
help find entries. Although it is not its primary purpose, the DMT can also
serve as a perfect tool to learn about the various objects contained in an
LDAP directory and their relationships to each other.
© Copyright IBM Corp. 1999 77

If large amounts of data are involved or if automation is a goal, a graphical
tool might not be appropriate to use. For this purpose, command line utilities
are provided with the IBM SecureWay Directory. These utilities provide
several methods of directory administration and data manipulation. Simple
and powerful command line utilities have been developed to perform all
common LDAP operations. For example, these utilities read in LDIF (LDAP
Data Interchange Format) files, translate the file into the format necessary to
use the LDAP protocol, and then handle the request(s) with the directory
server.

Using the provided utilities is the simplest method of updating a directory’s
data. It takes little effort to set up. All that an administrator must do is create
the appropriate LDIF files. The directory administrator does not need to worry
about the sequence of LDAP operations against servers, server versions,
binding, referral chasing, and unbinding. Additional facilities for performing
the operations over SSL are also provided. The necessary information is
passed to the tool on the command line and sometimes through an LDIF file,
and the rest of the particulars to complete the operation are taken care of by
the utility.

These utilities can be useful for batch operations, such as adding a large
number of users at a time or adding a new attribute to many entries.
Custom-written administration applications that need to have a customized
user interface can develop an interface for modifying directory information,
write this information to an LDIF file, and then call the client tools.

As an alternative to using the administration utilities, custom-written
administration tools can directly use the LDAP APIs provided with the libldap
library. Such administration tools might be desirable when typical data
administration, such as adding or modifying employee data, is done by
non-technical staff. Writing directly to the API layer may also be necessary for
applications that need to control the bind/unbind sequence, or, perhaps, want
to customize the referral behavior. This is a more difficult approach since the
developer must deal with the conversion of the data to the structures that are
sent over the LDAP protocol. Additionally, the developer must be aware of a
particular security setup, such as SSL. The C programming language API is
described further in 8.2, “C LDAP Application Programming Interface (API)”
on page 235.

Another approach for custom-written tools is to use the Java Naming and
Directory Interface (JNDI) client APIs. This approach is good for developers
who must maintain their client applications across multiple platforms. The
JNDI interface is easy use and provides a means of quickly developing
78 LDAP Implementation Cookbook

portable programs using the LDAP directory. More about the JNDI can be
found in 8.1, “Java Naming and Directory Interface (JNDI)” on page 223.

The Tivoli User Administration LDAP Connection, as introduced in 1.7.4,
“Tivoli User Administration: LDAP Connection” on page 26, is another way to
manage directory data. It is, however, limited to managing users to the extend
Tivoli supports. More about the LDAP Connection can be found in 4.4, “Tivoli
TME Considerations” on page 85.

4.2 Centralized versus Distributed Administration

The directory administrator (the user with the root DN) is, by default, the only
one person who can administer information in the directory. At times, it will be
necessary to allow other users to have administrative privileges on all or
portions of the directory. The Directory Information Tree (DIT) can be divided
into administrative areas; the directory administrator can give other
distinguished names (DNs) full privileges to manage some subsection of the
directory. In order to grant a user administrative permission to a subtree, that
user DN must be specified in the entry owner attribute. The administrative
domain will be delimited by the value of an owner inheritance attribute
(OwnerPropagate); if it is set to FALSE, the scope of the administrator will be
the single entry on which the owner was set, and if OwnerPropagate is set to
TRUE, the administrative domain will be the entire subtree unless a new entry
owner is specified in a descendant entry. For more details, see 7.9.3,
“Ownership and Access Control” on page 206.

The following three sections discuss some general consideration that apply
when administration is being distributed to multiple administrators.

4.2.1 Who Administers The Data?
The simplest model of data administration is to allow only the directory
administrator (root DN) to administer all the data. While this is clear cut and
simple, it is not probable that the same person will be administrating all
applications using the directory. In order to facilitate data administration, it is
possible to allow additional users to administer parts of the directory. This
flexibility allows administrative privileges to users, groups of users, or users
acting in particular roles.

There are two methods of granting a user the ability to administer directory
data. One is to grant them permissions on attribute classes via the ACL entry,
and the other option is to make them an entry owner.
Managing an LDAP Directory 79

By making someone an entry owner, that person becomes an administrator
for that particular entry. They can modify any attribute within the entry and
can change the access control lists of that entry. Users given permissions by
the ACL entry cannot modify the ACLs on the entry and only have
permissions to what is specified in the ACL entry.

In order to facilitate administration of the ACL information, two DNs have
been created and are used as pseudo-subjects. These pseudo-subjects are
not represented by an object in the directory but can be used on an ACL.
They are used to refer to large numbers of DNs, which, at bind time, share a
common characteristic in relation to either the operation being performed or
the object on which the operation is being performed.

The first of these is the group <cn=Anybody>. When specified as part of an
ACL, this group refers to all users. Users cannot be removed from this group,
and this group cannot be removed from the database. <cn=Anybody> is
considered to be the group of all unauthenticated users or any user which
does not have a specific ACL on an object. By default, this group has read,
search, and compare permissions to attributes within the normal class.

The second pseudo DN is the access-id <cn=self>. When specified as part of
an ACL, it grants permissions when the bind DN matches the object DN on
which the operation is performed. If an operation is performed on the object
<cn=personA, ou=IBM, c=US>, permissions associated with the access ID
<cn=self> would be granted when the bind DN is <cn=personA, ou=IBM,
c=US>.

An example of when a pseudo subject might be useful is a phone book
application. The administrator might want to give individuals permissions to
update parts of their own entry. If all the attributes that the user should be
able to update are in the normal class, the administrator will put a single ACL
on the entry (or propagate some parent ACL) which stated
<access-id:cn=self:normal:rwsc>. Each user would now have permission to
update parts of their own entry.

You can see an example in 7.9.3, “Ownership and Access Control” on page
206 that gives you more information regarding this topic.

4.2.2 Attribute Grouping
It is likely that many attributes will require the same type of protection. It is,
therefore, useful to coarsen the access policy granularity by grouping
attributes with similar access sensitivities. This reduces the number of access
lists within the directory and greatly simplifies administration.
80 LDAP Implementation Cookbook

Attributes are grouped together in attribute access classes. Within the
schema file, attributes are mapped to an access control class. Each class is
discrete, that is, access to one attribute class does not imply access to
another class.

Instead of specifying that a subject has access to an attribute, the
administrator gives a subject permissions to an access class. This grants the
subject the specified permissions to all attributes within that access class.

Let's use the example of modeling an organization. People attributes can be
grouped into several categories. One might group critical attributes, such as
salary, job grade or level, and hire date together. Attributes such as phone,
location, and e-mail address will be considered normal, and the performance
evaluation ratings attribute might be sensitive.

Subjects will then be given access to a given class of information. If the
information they were requesting is within a class to which they are
authorized, then the LDAP operation succeeds. For example, a person might
have read and write access to their own normal attributes but only read to
sensitive and critical. One might want the person's manager to have read
access to normal and critical and read-write access to sensitive while critical
attributes can be read and written by anyone who is acting in the personnel
role. The ACL for this might read something like (Aclentries are explained in
5.6, “Access Control” on page 120):

Aclentry: access-id:cn=self:normal:rwsc:sensitive:rcs:critical:rsc
Aclentry: access-id:cn=manager, ou=org,
c=us:normal:rcs:critical:rsc:sensitive:rwsc
Aclentry: role:cn=personnel, ou=org,c=us:critical:rwsc

The default schema has classified each attribute into an access class based
on the expected use of the attributes. The assigned classes can be seen by
looking at the schema files. When adding attributes to the directory schema,
the administrator will have to assign attributes to access classes.

Generally, overall guidelines for establishing the types of data that fall into
each of the attribute classes can be decided on by the directory administrator.
For instance, normal attributes are those which are readable by everyone,
modifiable by the object DN, and possibly modifiable by some other DNs
which have the authority to do so. Sensitive attributes might be those that are

The preceding example has granted search and compare permissions
wherever read permissions are given.

Note
Managing an LDAP Directory 81

writable by the object DN and possibly one or two other DNs. Critical
attributes might be those that are readable to the object DN, but writable by
one or two other administrative users.

4.2.3 Multiple Applications
When there is only one application that uses a directory, defining the objects
and attributes and administering the data in the directory is very simple. Or, if
an administrator is simply merging multiple existing directories into a single
directory, it's easy to merge the objects and the attributes and decide on a
grouping policy.

This activity becomes more difficult as the number of applications and
administrators increases. It is very important to maximize common semantics
and syntax of similar objects and attributes. However, for some small subset
of object classes, multiple applications may need to use the same object and
its attributes in slightly different manners.

In an ideal situation, the application administrators will reach an agreement
regarding which attributes belong to which access classes. Furthermore, they
will come to a consensus as to which DNs are given permissions to
administer those classes. While this sounds like an unlikely event at first, it is
realizable. For instance, two applications (A and B) want their own attributes,
which they alone administer. Previously, both had used the critical attribute
class for these attributes. If they both continue using the critical attribute
class, the people granted rights on the critical class can now update the
attributes for both application A and application B. This may, in fact, be the
desired scenario if the administrator for the two applications is the same. If
not, one must consider that the number of administrators updating critical
attributes is probably very small. One alternative is to trust that the
administrator for application A will read the documentation and know which
attributes belong to their application and operate only on those attributes.
Unless the administrator is trying to maliciously undermine another
application, there is no worry that they will harm the other application’s
attributes.

For those instances where an agreement cannot be reached, there is another
possibility. Each application can create a child node that contains the
attributes necessary for its own function. For instance, the object in question
might be a person object of DN <cn=person, o=organization>. Application A
wants total and complete control over some subset of the attributes as does
Application B. Each application will create a child node with the relative
distinguished name (RDN) of the application name:
<appName=applicationName, cn=person, o=organization>. This new node
82 LDAP Implementation Cookbook

will be of objectclass <applicationNamePersonNode>. The application will
store its secret application data in this subnode. As much common
information should be shared as possible, but, in cases where it is not
feasible, another object is created. One can still effectively retrieve all the
attributes of the object by performing a one-level search, which would return
the application-specific attributes.

This approach has several benefits. It ensures that the <cn=person,
o=organization> object cannot be deleted by anyone who does not have
permission to delete all to the application-specific nodes under that object.
Therefore, application A does not have to worry about nasty side effects of
application B deleting the object. If application B wants the object gone, it
deletes its own subNode <appName=applicationB, cn=person,
o=organization>, and the entry <cn=person, o=organization> is gone from
application B's perspective. However, for application A, the entry still exists.

Using the access control list on the application-specific subnode, the
administrator can completely control who has permissions to those attributes.
It may be that some are still world-readable where in some cases some other
applications find them useful. It is, of course, possible that each application
can give delete or modify permission to administrators of one or more other
applications. For instance, the user administrator might give modify
permissions on some classes to the help desk administrator so passwords or
other information can be reset when the user calls the help desk.

4.3 UTF-8 Support

The LDAP V3 protocol defines that string values use UTF-8 (see Figure 20
below). As the name implies, UTF-8 (UCS Transformation Format) is a
transformation of Unicode characters into a byte representation that takes up
from one to eight bytes per character. As such, UTF-8 gives a clearly defined
conversion to and from Unicode while, on the other hand, maintaining
compatibility with most existing character encoding, such as ASCII.

Passing data in UTF-8 simplifies and standardizes the handling of national
language characters in the protocol and on the server. The client libraries that
ship with the IBM SecureWay Directory Client SDK are capable of doing the
conversions to and from UTF-8 on behalf of the application.
Managing an LDAP Directory 83

Figure 20. Data passes in UTF-8 character set

By default, the directory server’s database (DB2 in the IBM SecureWay
Directory) is created using a code set based on the server machine’s locale.
The directory data is then translated from UTF-8 to the database’s code set
before it is stored. This limits the support of that directory for other character
sets and collation sequences, but, otherwise, does not cause any problems if
all clients use the same character set.

The IBM SecureWay Directory supports another option, which is to create the
database using the UTF-8 code set. The server will then not need to do code
set translation at the DB2 interface, and this makes the directory support
multiple character sets. This should be considered when multiple languages
are to be supported by the directory. Users should be made aware that, due
to the differences in collation sequences of different languages, searches
with search filters using greater than or smaller than operations may not give
expected results.

When an application uses LDAP V3, string data is expected to flow on the
wire between the client and the server in the UTF-8 character set (Figure 20
on page 84). Most often, the applications operate in the system’s local code
page (that is not UTF-8). The current client implementation makes the
following assumption:

1. String data supplied by the application (for example DNs) is already
encoded as UTF-8. If the application is restricting itself to printable ASCII
range, the strings are already resident in a proper subset of UTF-8. If the
application is using a code set where characters do not fall into a proper

LDAP Client LDAP Server

UTF-8

Japanese
Character Set

English
Character Set
84 LDAP Implementation Cookbook

subset of UTF-8, the application must convert the strings from the local
code set into UTF-8 prior to sending it to the server.

2. String data returned to the application is returned as received from the
server, which for LDAP V3 is UTF-8. It is the application’s responsibility to
perform any necessary conversion to a local code set if required.

The C language API supports separate translation routines for translating
strings to and from UTF-8. The JNDI also supports the necessary conversion
between Unicode (the native Java code set) and UTF-8. More information
about the APIs can be found in Chapter 8, “Developing Directory-Enabled
Applications” on page 223.

4.4 Tivoli TME Considerations

Another important consideration for enterprise-wide systems administration
may, as a component of an overall management framework, include
administering entries in an LDAP directory server. As introduced in 1.7.4,
“Tivoli User Administration: LDAP Connection” on page 26, the IBM
SecureWay Directory can be integrated with the Tivoli systems management
framework using the Tivoli LDAP Connection.

The LDAP Connection is a profile endpoint to aid in the management of user
data. The objectives of this service are to distribute and query user data to
and from LDAP services. Consider it a two-way bridge between Tivoli user
profiles and LDAP directory entries.

The Tivoli Management Environment (TME) release 3.6 adds support for
LDAP directory service management. Using the Tivoli User Administration
user profiles, entries in an LDAP directory can be managed. Two directions of
data flow are supported. The first, a push mechanism, distributes user profile
data from the Tivoli TME to an LDAP directory server. The other method
populates Tivoli user profiles by pulling data from an existing LDAP directory.
It is also possible to schedule synchronization of user data between Tivoli
and the LDAP directory.

In the Tivoli database, user profiles exist that contain the user information,
such as name, employee number, e-mail address, and so on. Tivoli attributes
are mapped to LDAP attributes, which can be configured using the Tivoli
Managing an LDAP Directory 85

LDAP Attribute Name Mapping function. Table 3 below provides an example
of attribute mapping.

Table 3. Tivoli LDAP connection attribute mapping

The Tivoli profile manager(s) keeps track of different user profiles and other
subscriber services, such as the LDAP endpoint. These user profiles can be
used to distribute user information to different endpoints, such as an LDAP
directory.

The LDAP Connection must be installed and configured in a Tivoli
Management Region (TMR) on any managed node in order to provide the
services needed to distribute and query an LDAP directory. The Tivoli LDAP
Connection uses the IBM SecureWay Directory Client SDK that supports the
LDAP version 3 protocol. The IBM SecureWay Directory server may be
installed on any machine to which the client running the Tivoli LDAP
Connection has access using LDAP.

As part of the Tivoli administrator authorization scheme, Tivoli administrators
can delegate management of selected nodes and endpoints including the
LDAP service. This layered administration model is useful when providing
access control to data in different parts of the directory hierarchy. Currently,
there is no support for ACL management of directory services through the
Tivoli LDAP Connection. SSL support can be configured to encrypt data sent
over the network.

Before LDAP resources can be managed, the Tivoli LDAP Connection must
be added as managed resources to the TMR. When adding an LDAP
Connection, you must associate it with an LDAP server.

It may be necessary to install and create multiple LDAP Connections if the
directory tree is partitioned.

The installation requirements for the LDAP Connection services are the
following:

• Tivoli Framework Version 3.6
• Tivoli User Administration
• Tivoli LDAP Connection

Tivoli Attribute Name inetOrgPerson Object Class Attribute Name

real_name cn

sso_password userpassword

sso_login uid
86 LDAP Implementation Cookbook

• IBM SecureWay Directory Client SDK

In order for the LDAP service to exchange information with the Tivoli User
Administration, some connection properties must be configured. Class and
attribute types must be defined in the LDAP Connection from the appropriate
LDAP directory object classes and attribute types. This definition will reflect
the scope of the management Tivoli performs on the LDAP directory.

The following properties must be known to configure the LDAP Connection:

• Hostname of the LDAP server

• Port number where the LDAP service is available to access

• Distinguished name (DN) that the Tivoli service will use to bind to the
LDAP directory

• Password of the above DN identity

• The entry (base DN) in the directory where the Tivoli LDAP Connection
should begin its searches

• The class of the objects to be managed in this directory

The level of system administration is limited to the population and distribution
of attributes that are supported in the current Tivoli User Administration
product. It is important to configure simple LDAP namespaces and
topologies, otherwise, the need for several instances of the LDAP Connection
may become exhaustively complicated.

4.5 Distributed Directories - Split Namespaces

Following are some considerations to take into account for large directories
or when a directory service needs to be available at multiple locations
possibly involving local administration authority without reliable network
connections in between. There are, generally, two ways to distribute a
directory:

• Split Namespaces – Each server only stores a subset (partition) of the
whole namespace. All servers together build up the entire namespace.

• Replication – Each server stores the whole namespace. One server is a
master while all others are exact replicas of the master.

The major reason for replication is load balancing and availability. See 7.6,
“Replication” on page 178 for more details. The following discussion focuses
on split namespaces.
Managing an LDAP Directory 87

4.5.1 Partitioning a Directory
Partitioning a directory tree and distributing it to multiple LDAP servers at
multiple locations has many benefits including:

Scalability – More data can be accommodated by the directory since the tree
information is stored on a collection of servers, not just a single one. This
provides for a (theoretically) indefinite size of namespace.

Manageability – Each location can manage their own part of the directory
tree on the local machine. Alternatively, management can also be done
centrally.

Availability – Spreading the directory information into subtrees reduces the
possibility of a single point of failure. However, one drawback to this
approach is that the probability of failure might increase as more systems are
involved and depending on how the directory information is accessed. If
requests are primarily being handled (and eventually forwarded to other
servers) by a single server, the service still depends on a single machine
(unless other provisions are in place).

Load Balancing – The work load of the actual data retrieval can be spread
among the servers.

A technique to partition a directory tree is to use LDAP referrals. LDAP
referrals point to a different partition of a namespace stored on a different (or
the same) server. For example, if your main directory server is located in New
York, and you want to redirect all the requests for <ou=Austin, o=Your_ORG,
c=US> to a directory server located in Austin, you can specify this with a
referral entry in the main directory tree in the following format:

ldap://<hostname:port>/ou=Austin,o=Your_ORG,c=US

A referral is a pointer to another portion (partition) of a directory. It is returned
by the server to a client and it is then up to the client to follow such a referral.

The steps for partitioning the namespace using referrals are:

1. Plan your namespace hierarchy. For example:

country: US
company: IBM, Lotus
organizationUnit: IBM Austin, IBM Raleigh, IBM HQ

2. Set up multiple IBM SecureWay Directory servers. Each server contains a
part (partition) of the namespace. For example, we assume the following
setup for the directory servers:
88 LDAP Implementation Cookbook

• The HQ server – A server which contains information about
headquarters and contains pointers to other branches within IBM

• The Austin Server – A server which contains information about the
Austin site

• The Lotus Server – A server which contains information about Lotus
Corporation

• The Raleigh Server – A server which contains information about the
Raleigh site

3. Set up referral objects to point to other servers in the hierarchy. You can
set up pointers pointing back to the parent or directly to other subtrees in
the hierarchy. Let’s assume, in our example, that there will be much
interaction between the Austin site and Lotus. In this case, it would make
sense to set up direct pointers between these two servers rather than only
pointing back to the top server of the hierarchy. Figure 21 illustrates the
setup.

Figure 21. Referrals example

In this setup, requests for information can be done in one of the following
ways:

HQ Server

Raleigh Server Austin Server

Lotus Server

c=US
o=IBM,c=US
ou=HQ,o=IBM,c=US

o=Lotus,
c=US

ou=Austin,
o=IBM,
c=US

ou=Raleigh,
o=IBM,
c=US
Managing an LDAP Directory 89

• If a user is searching information related to a specific site, he/she can go
to the site server directly and specify the site DN as the base DN. For
example, if an IBM Raleigh employee tries to find the telephone number of
his team member, he can use the Raleigh server and <ou=Raleigh,
o=IBM, c=us> as the base DN for that search.

• If the user is not sure where the information is located, he/she can start
the search from the root of the directory tree (base DN: <c=US>), using
either the root directory server or the server which is located closest to
him. Either way, the search will eventually be pointing at the correct
server, provided that the referral pointers are correctly set up. For
example, if an IBM Austin employee is trying to find the phone number of
an IBM employee outside Austin using <c=US> as the base DN and using
the root directory server, the search request will be referred to the server
that stores the data through the referral pointer that is returned to the
LDAP client. The LDAP client will then follow the referral.

• If a user sends a request to the local directory server to search for
information not located on the local server, the local server will return the
request back to the client with a referral pointer to either the correct server
(if such a direct pointer was defined) or to the root server. For example, if
a user at the Austin site is requesting information located at the Lotus
server, the Austin server returns a referral pointing to the Lotus server.
This is normally transparent to the user, and he/she will not be aware of
the fact that the information is actually stored on a different server.

4.5.2 Administering a Split Namespace
In the split namespace environment, each location can optionally manage its
own part of the directory tree. This way, each location will need to have a
directory administrator defined in its local directory partition. No single user
will be able to manage the whole directory in such an environment with a
single user credential. Here is why: LDAP referrals automatically forward user
requests along with the user’s logon credentials (DN and password) via the
client to another server. For unauthenticated access, the DN and password
will be null, and another server will treat the forwarded request as an
unauthenticated request and proceed accordingly.

For authenticated access (for example, for directory administration functions),
since the administrator’s DN can be defined only on the server which
manages the suffix of the DN, the next server in the referral chain will not be
able to recognize that user. The user has to rebind to the next server with a
different user ID (that is, a different DN).
90 LDAP Implementation Cookbook

This has an impact on all LDAP requests that administer data
(add/modify/delete) in a split namespace directory implementation. If you are
writing an application program which traverses the directory tree through
referrals, you should use the ldap_set_rebind_proc() call to set the
entry-point of a callback routine (see the on-line LDAP Programming
Reference that ships with the product for more details). This routine will
obtain the bind credentials for use when a new server is contacted during the
following of a LDAP referral.

In the example mentioned previously (Figure 21 on page 89), in order for a
system administrator to manage the directory entries stored on the Lotus
server, he/she has to log on as the system admin for the Lotus server. If the
system administrator wants to manage the server at Raleigh, he/she needs to
logon as the system admin for the Raleigh server (that is, as a different user).
If the system administrator would like to manage all directories under a single
ID, putting all directory information on a centralized server is the
recommended solution. Alternatively, the administration tool this
administrator uses must use the ldap_set_rebind_proc() API call to obtain the
correct bind credentials for each partition of the directory.

4.6 Migration from the Previous Release

The IBM SecureWay Directory V3.1 schema file has a different syntax than its
predecessor, the IBM eNetwork LDAP Directory V2.1. This was introduced
because the IBM SecureWay Directory V3.1 has a richer set of information
stored in this file and uses different keywords.

The migration to IBM SecureWay Directory V3.1 involves directory contents
(data) migration as well as configuration and schema file migration. IBM
provides a migration tool to migrate the configuration and schema file(s) while
the IBM SecureWay Directory V3.1 can access and use the data stored in the
DB2 database without any further migration steps necessary.

The migration tool is integrated with the installation procedure for the IBM
SecureWay Directory V3.1, and it is run transparently to the user (Figure 22
on page 92). Alternatively, it can be run manually from the command line.

The command syntax for the schema migration tool is as follows (make sure
the IBM SecureWay Directory server is stopped while running this conversion
tool with the active configuration):

java migrate <source_dir> <dest_dir>
Managing an LDAP Directory 91

source_dir This is the directory path that contains slapd.conf and V2.1
schema files.

dest_dir This is the directory path that will contain the new slapd.conf and
V3.1 schema files.

Figure 22. The schema migration tool

As can be seen in Figure 22, the migration process follows the basic steps of:

1. Load the data from the source directory (source_dir).

2. Convert the slapd.conf and V2.1 schema file(s) to the new slapd.conf and
V3.1 schema file(s).

3. Install the new files into the target directory (dest_dir).

As mentioned above, the IBM SecureWay Directory V3.1 continues to use the
existing database from the eNetwork LDAP Directory V2.1.

4.7 Migration from Non-LDAP Sources

Many of the LDAP directory exploitation projects may involve the
re-engineering of existing applications and systems to take advantage of a
centralized directory service. One aspect of re-engineering is moving data
from an existing side file, directory, or other structure into the IBM SecureWay
Directory. This section discusses several approaches to data migration.

Start

Run the Tool

and the config. file

Copy Files to Disk

V3.1 Schema

and the config. file
V2.1 Schema
92 LDAP Implementation Cookbook

Data migration is the process of moving data from one repository to another
(in this case, to an LDAP directory). Data migration is part of setting up and
maintaining a directory. When creating the directory, the data must be
migrated into the directory from another directory, a legacy database, or
some more abstract source. Once a directory has been populated with data,
you may have occasions to migrate data from one directory server to another.
This might occur when replacing a directory server with a newer or different
server. Or, it might relate to moving some portion of the directory namespace
from one server to another to balance the load.

This section does not cover the replication features that can be set up so that
updates to a master server are automatically propagated to a number of slave
servers to keep their contents in sync (see 7.6, “Replication” on page 178 for
a discussion of this topic).

The currently prevalent approach to importing or exporting data to or from an
LDAP directory uses the LDAP Data Interchange Format (LDIF). This format
is defined in an Internet Draft (draft-good-ldap-ldif-03.txt, see Appendix A,
“Standards” on page 269). Most LDAP directories provide utilities to import
data from an LDIF file or to export data to an LDIF file. LDIF is a text-based
representation of the data; so, it is relatively easy to work with or to generate
from other forms of data. In addition to migration of data, export and import to
or from LDIF may be used as a form of backup/restore of directory data.

The most straightforward data migration operation is moving data between
two LDAP directory servers from the same vendor. Due to the lack of an
IETF-accepted LDAP Access Control model and numerous differences in
schema definitions across the industry, moving data from one vendor’s LDAP
directory to another may present some additional challenges. Schema
definitions may have to be updated. LDIF files may have to be passed
through a filter to remove portions of the data that do not map to the target
directory.

Because LDIF files are an important tool for directory administrators, it is
briefly overviewed in the following sections, and specifics relative to migration
are pointed out. For a more detailed description, we refer you to the
applicable Internet Draft (see above).

4.7.1 The LDIF File Format
The LDIF format is used to convey directory information or a description of a
set of changes to directory entries. An LDIF file consists of a series of records
separated by line separators. A record consists of a sequence of lines
describing a directory entry or a sequence of lines describing a set of
Managing an LDAP Directory 93

changes to a single directory entry. An LDIF file specifies a set of directory
entries or a set of changes to be applied to directory entries but not both.

The basic form of a directory entry represented in LDIF is:

dn: <distinguished name>
objectClass: <object class>
objectClass: <object class>
...
<attribute type>:<attribute value>
<attribute type>:<attribute value>
...

The DN and at least one object class definition are required. In addition, any
attributes required by the object classes for that entry must also be defined in
the entry. All other attributes and object classes are optional. You can specify
object classes and attributes in any order. The space character after the
colon is optional.

Table 4 below describes the LDIF fields shown in the previous definition of a
directory entry in an LDIF file.

Table 4. LDIF fields

For a more complete description of the LDIF file format, we refer you to the
Internet Draft mentioned in the introduction of this section (or see Appendix
A, “Standards” on page 269).

Field Definition

dn: <distinguished name> Specifies the distinguished name for the entry.

objectclass: <object class> Specifies an object class for the entry. Object classes
determine the types of attributes that are required for the
entry as well as the attributes allowed for the entry.

<attribute type> A name identifying an attribute type. Attribute types are
defined in the schema of the LDAP server and determine
the types of values that are allowed.

<attribute value> A value for the attribute. The <attribute type> and
<attribute value> together make up an Attribute Value
Assertion (AVA) that specifies a particular value
associated with an entry.
94 LDAP Implementation Cookbook

4.7.2 LDIF Data Encoding
Any line in an LDIF file may be wrapped by inserting a line separator and a
space. Any line which begins with a single space is treated as a continuation
of the previous line.

Any line which begins with a pound-sign (“#”, ASCII 35) is considered a
comment line and is ignored when parsing the file.

Binary data, such as a JPEG image, can be represented in LDIF by using
Base64 encoding. Base64 encoded data is identified by using the
double-colon (::) symbol as in the following example:

jpegPhoto:: <encoded data>

In addition to binary data, other values that must be Base64 encoded include:

• Any value that begins with a colon (“:”, ASCII 58), less-than (“<”, ASCII
60), or a space (“ “, ASCII 32).

• Any value that contains data outside of ASCII values 32 - 255 decimal.

4.7.3 Creating Directory Entries Using LDIF
There are many types of entries that can be stored in a directory. This section
will show three of the most common types of entries used in a directory:
organization, organizational unit, and organizational person entries.

The object classes defined for an entry are what indicates whether the entry
represents an organization, an organizational unit, an organizational person,
or something else entirely different from these types of entries.

4.7.3.1 Specifying Organization Entries
Most directories have at least one organization entry. Typically, this is the
first, or root, or topmost entry in the directory. The organization entry often
corresponds to the suffix set for the directory. That is, if the directory is
defined to use a suffix of <o=ibm.com>, the organization will probably have
an entry in the directory named <o=ibm.com>. The LDIF entry that is
specified to define an organization entry should appear as follows:

dn: <distinguished name>
objectClass: top
objectClass: organization
o: <organization name>
<list of optional attributes>
...

The following is a sample organization entry in LDIF format:
Managing an LDAP Directory 95

dn: o=ibm.com
objectclass: top
objectclass: organization
o: ibm.com
telephonenumber: 123-4567

4.7.3.2 Specifying Organizational Unit Entries
There is usually more than one organizational unit or branch point within a
directory tree. The LDIF that you specify to define an organizational unit entry
should appear as follows:

dn: <distinguished name>
objectClass: top
objectClass: organizationalUnit
ou: <organizational unit name>
<list of optional attributes>
...

The following is an example organizational unit entry in LDIF format:

dn: ou=people, o=ibm.com
objectclass: top
objectclass: organizationalUnit
ou: people

4.7.3.3 Specifying Organizational Person Entries
The most common type of entry that will be included in directories will
describe a person within the organization. The majority of the entries in the
directory will represent organizational people. The LDIF used to define an
organizational person should appear as follows:

dn: <distinguished name>
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
cn: <common name>
sn: <surname>
<list of optional attributes>
...

The following is an example organizational person entry in LDIF format:

dn: cn=John Smith, ou=people, o=ibm.com
objectclass: top
objectclass: organizationalPerson
objectclass: inetOrgPerson
cn: John Smith
96 LDAP Implementation Cookbook

sn: Smith
givenname: John
uid: jsmith
ou: Marketing
ou: people
telephonenumber: 838-6004

4.7.4 LDIF File Example
Following is a simple LDIF file which contains two organizational units
beneath the organization ibm.com. The entry of John Smith is the only data
entry for the people organizational unit.

The order of entries is important. An entry can only be added to a directory if
it is a suffix or naming context entry (that is, a root of a local directory tree), or
its parent entry has already been added. So, in the example below, the first
entry will normally be configured as a suffix for the server, and the
subsequent entries all come after their parent entry.

dn: o=ibm.com
objectclass: top
objectclass: organization
o: ibm.com
dn: ou=People, o=ibm.com
objectclass: organizationalUnit
ou: people
dn: ou=marketing, o=ibm.com
objectclass: organisationalunit
ou: marketing
dn: cn=John Smith, ou=people, o=ibm.com
objectclass: top
objectclass: organizationalPerson
objectclass: inetOrgPerson
cn: John Smith
sn: Smith
givenname: John
uid: jsmith
ou: people
telephonenumber: 123-4567

4.7.5 Importing LDIF Data
If the directory you are importing the LDIF data to already contains entries
that match some of those in your LDIF file, you will get entry already exists
errors on those entries. In this case, look for an option of the import utility that
will continue importing entries even if errors occur. The import utility should
also give some indication of the number of entries successfully added to the
Managing an LDAP Directory 97

directory. This allows you to easily verify whether all entries have successfully
been added.

4.7.5.1 Moving Data Between Homogeneous Directories
When moving data between directories, there are several factors that
influence the complexity of the task. From an LDAP perspective, these
factors include the hardware and software platform of the server, the vendor
supplying the directory software, and the implementation or support of LDIF.
Beginning with the simplest, these factors present the following interesting
combinations of source and target directory:

• Homogeneous: same vendor, product, and version (same or different
hardware platform)

• Heterogeneous: different vendor, product, and version (both LDAP,
supporting LDIF)

• Legacy data: from non-LDAP directory or database

The differences and difficulties involved in moving data between platforms
tend to be minor compared to those introduced when moving data between
directories from different vendors.

When homogeneous directories are involved, the process of moving data
from one server to another follows the basic steps of:

1. Export the data from the source directory server to an LDIF file.

2. Transport the LDIF file to the target directory server system.

3. Import the data from the LDIF file into the target directory.

Before beginning this data migration process, compare the schema of the
source and target directories. If the source directory server has definitions of
attribute types or object classes that are not included in the target directory’s
schema, you should update its schema to add them to ensure that the target
directory can accept all the data exported from the source.

The IBM SecureWay Directory server includes the command line utilities
db2ldif to export data to an LDIF file and ldif2db to import from an LDIF file.

The method used to update the schema in the target directory is vendor,
product, and release dependent (for example, the IBM eNetwork LDAP
Directory V2.1 and the newer IBM SecureWay Directory V3.1 do not use
the same schema file syntax).

Note
98 LDAP Implementation Cookbook

The Web browser-based administration GUI (UNIX and Windows NT
platforms only, see 7.2, “The Administrator Graphical User Interface” on page
166) also provides these export/import interfaces. When moving data
between two instances of the directory server, the steps might look like:

1. Export the data on system A:

db2ldif -o dirdata.ldif

2. Move the LDIF (text, not binary) file to system B, for example, using FTP.

3. Import the data on system B:

ldif2db -i dirdata.ldif

4.7.5.2 Moving Data Between Heterogeneous Directories
The process of transferring data between LDAP directories can be more
difficult if the two directories are from different vendors. This is due to
differences in access control models, which have not yet been standardized
for LDAP, as well as other features that may or may not be identical.

As an example of the sort of problems that might be encountered, let’s take a
closer look at moving data from a Netscape Directory Server to an IBM
SecureWay Directory Server. The definition of access control is quite different
between the two directories. It is different enough that it would not be
practical to attempt to transfer the access controls along with the data.
Instead, you will need to strip out the access control information from the
LDIF file, load the data into the IBM SecureWay Directory, and then use the
administrative interfaces to redefine the appropriate access controls.

When the data is dumped to an LDIF file from the Netscape directory, the
access controls (if any were defined) will appear as ACI attributes with the
entries. These lines of the file should be removed prior to loading the data to
the IBM SecureWay Directory directory. For example, on a UNIX platform,
these lines can be very easily removed using the following command:

grep -v “̂ ACI” filename.ldif > newname.ldif

Examples of ACL information in LDIF form for each of the directory
implementations follow.

Data exported in LDIF format will be in readable format. Entries in the
directory that were protected by controlling access will be exported without
regard to access control rights.

Note
Managing an LDAP Directory 99

Example IBM SecureWay Directory ACL format:

dn: cn=John Doe, ou=Austin, o=IBM, c=US
objectclass: top
objectclass: person
objectclass: organizationalPerson
cn: John Doe
sn: Doe
dept: abcd
aclEntry: access-id:cn=Bert Hello, ou=Austin, o=IBM,

c=US:object:da:normal:rwsc:sensitive:rsc
aclEntry: group:cn=Anybody::normal:rsc
aclEntry: access-id:cn=Amy Too, ou=Austin, o=IBM,
c=US:object:da:normal:rwsc:sensitive:rsc:critical:rsc

aclPropagate:TRUE
entryOwner: group:cn=personnel, ou=Austin, o=IBM, c=US
ownerPropagate: TRUE
inheritOnCreate: FALSE

Example Netscape Directory representation of Access Controls:

dn: o=airius.com
objectClass: top
objectClass: organization
ACI: (target = "ldap:///cn=administrators,o=airius.com")

(targetattr="member||uniquemember")(version 3.0; acl
"write-admingrp"; allow (write)userdn = "ldap:///uid=ssarette,
o=airius.com" ||
"ldap:///uid=bjensen, o=airius.com";)

As you can see from these examples, the access control policies and
representations are very different. The approach of removing and then
reapplying access control will be similar when moving data from an IBM
SecureWay Directory to a Netscape directory. In this case, the attributes to be
removed from the (IBM SecureWay Directory) LDIF file include aclEntry,
aclPropagate, entryOwner, and ownerPropagate.

In addition to differences in access control, there may be other differences in
the attributes that are valid from one server to another. Compare the schema
definitions of the servers you are using. In some cases, the schema for the

• If you do not want an access ID to have permission to a particular class,
do not specify the class.

• Attributes are assigned to their respective classes in the slapd.at.conf
file.

Note
100 LDAP Implementation Cookbook

target directory can be modified to add attribute definitions from the schema
of the originating directory server. In other cases, there may be attributes
related to extended features that are not part of the LDAP standard and,
therefore, cannot be added to the target server. In those cases, it may make
more sense to strip those particular attributes out of the LDIF file as was done
for the ACI attributes.

4.7.5.3 Migrating Data to LDAP from Legacy Directories/Databases
Lastly, if you have data in legacy databases or directories (not based on
LDAP), you may well wish to migrate your data to an LDAP directory. The use
of a well-defined, text-based interchange format facilitates development of
tools to import data from legacy systems. A fairly simple set of tools, for
example, written in UNIX shell script language, can convert a database of
personnel information into an LDIF file, which can then, in turn, be imported
into the LDAP directory regardless of the internal database representation the
target directory server uses.

4.8 Summary and Conclusions

There are multiple ways to administer data in the IBM SecureWay Directory
and in the server itself. It is important to understand the options provided
including APIs, utilities, and GUI-based tools. It is also imperative that these
functions are implemented with a clear understanding of who, by role or
responsibility, should perform them.

Any customer may implement the IBM SecureWay Directory and modify the
default namespace, schema, policy, and so on. The recommended approach
for any directory projects should be to assign much of the responsibility to the
directory administrator. The role for Tivoli LDAP Connection is limited to
person and group entries.

The administrative capabilities (to add, change, or delete directory data
entries, schema definition, and access control) of LDAP-enabled applications
must be limited to those elements that are not shared with other applications.
The following table summarizes the administrative responsibilities of the
directory administrator, LDAP enabled applications, and the Tivoli LDAP
Connection.

Table 5. Administration matrix

Function Directory
Administrator

LDAP Enabled
Application

Tivoli TME LDAP
Connection

Query Entries OK OK OK
Managing an LDAP Directory 101

1 Data, Schema, Access Control for non-shared elements only
2 Users and groups only

Add/Modify/Delete
Non-Shared Entries

OK OK 1 -

Add/Modify/Delete
Shared Entries

OK - OK 2

Add/Modify/Delete
Schema

OK OK 1 -

Back-Up/Restore
Entries

OK - -

Back-Up/Restore
Schema

OK - -

Define Access Policy OK - -

Change Access Policy OK OK 1 -

Function Directory
Administrator

LDAP Enabled
Application

Tivoli TME LDAP
Connection
102 LDAP Implementation Cookbook

Chapter 5. Directory Security

Security is very important in the networked world of computers, and this is
equally true for directories as well. Directories are likely to contain sensitive
information that needs to be protected from unauthorized access and
modification. When sending data over networks internally or externally,
sensitive information may also need to be protected against eavesdropping
and modification during transportation. There is a need to know who is
requesting the information and who is sending it.

After a brief introduction to the subject, this chapter explains the security
features supported by the IBM SecureWay Directory and how to configure
them.

5.1 Security of the Directory

The directory may contain many types of information ranging from publicly
accessible data, such as e-mail addresses, to very sensitive data like user
passwords. Hence the appropriate level of security for the data in the
directory must exist.

In particular, the IBM SecureWay Directory provides (explained in the section
that follows):

Authentication The requester must prove his/her/its identity to the
directory. This is supported using the SASL/CRAM-MD5
mechanism and certificates using SASL/SSL.

Access Control The directory server only returns data that the requester is
entitled to access. In other words, the requester must
have adequate authorization. This is implemented through
the use of Access Control Lists (ACLs).

Integrity Data needs to be reliably stored and transmitted such that
alterations can be detected. SSL network transmissions
are protected against alterations.

Confidentiality (Also called privacy) Sensitive data transmitted to/from the
directory or stored in the directory cannot be easily
accessed without proper permission (authorization). User
passwords can be stored encrypted in the directory.
Network transmissions can be protected using SSL.
© Copyright IBM Corp. 1999 103

5.2 Security Support of the IBM SecureWay Directory

The IBM SecureWay Directory supports the following methods for
authentication and privacy:

• Anonymous authentication

• Basic authentication (distinguished name and password)

• Simple Authentication and Security Layer (SASL)

• Secure Sockets Layer (SSL) certificate authentication and encryption

In an LDAPv3 implementation, the client must authenticate itself to the
directory service before accessing any data in the directory, otherwise an
error is returned.

Anonymous authentication is useful for read-only access of directory data
where that data is not sensitive, such as peoples’ e-mail addresses or office
numbers. Essentially, that data is accessible to anyone. To request
anonymous authentication, simple authentication is performed with a
distinguished name (DN) that is empty.

Basic authentication provides authentication facilities with the DN and
password transmitted over the network in clear text. Use of clear text
passwords is not recommended over open networks when there is no
authentication or encryption being performed by a lower layer, such as SSL
(see below). Access (read or write) to directory data is granted based on DNs
contained in the access control list of the object and/or attributes in the
access request.

The Simple Authentication and Security Layer (SASL) is a framework for
multiple authentication and encryption mechanisms for connection-oriented
protocols, as described in Simple Authentication and Security Layer (SASL),
RFC 2222. It has been added to LDAP Version 3 to overcome the
authentication shortcomings of LDAP Version 2. The following section, 5.2.1,
“Overview of Simple Authentication and Security Layer (SASL)” on page 105,
explains SASL in more detail.

The Secure Sockets Layer (SSL) is, strictly speaking, not part of LDAP. It is a
lower-level authentication and encryption service that higher-level
applications, such as LDAP or Web browsers, can use and rely on. It provides
strong authentication using certificates and strong encryption using the Data
Encryption Standard (DES) for securing the network traffic (encryption levels
are subject to country regulations). SSL is widely used in the industry.
104 LDAP Implementation Cookbook

Section 5.2.2, “Overview of Secure Sockets Layer (SSL)” on page 106 and
the sections that follow explain SSL and its configuration.

5.2.1 Overview of Simple Authentication and Security Layer (SASL)
In SASL, connection protocols, such as LDAP, IMAP, and so on are
represented by profiles; each profile is considered a protocol extension that
allows the protocol and SASL to work together. Among these are IMAP4,
SMTP, POP3, and LDAP. Each protocol that intends to use SASL needs to be
extended with a command to identify an authentication mechanism and to
carry out an authentication exchange. LDAP Version 3 includes such a
command: ldap_sasl_bind() . Optionally, a security layer can be negotiated to
encrypt the data after authentication and thus ensure confidentiality. The IBM
SecureWay Directory supports SASL authentication using the Challenge
Response Authentication Mechanism with Message Digest 5 (CRAM-MD5)
mechanism, which transmits message digests rather than the passwords
themselves over the network.

The key parameters that influence the security method used are:

• DN – This is the distinguished name of the entry a requester wants to bind
as. This can be thought of as the user ID in a normal user ID and
password authentication.

• Mechanism – This is the name of the security method that should be used.
The IBM SecureWay Directory supports CRAM-MD5 and external. There
is also an anonymous mechanism available which enables an
authentication as the generic user anonymous. In LDAP, the most
common mechanism used is SSL (or its successor TLS), which is provided
as a so-called external mechanism.

• Credentials – This contains the arbitrary data that identifies the DN. The
format and content of the parameter depend on the mechanism chosen. If
it is, for example, the ANONYMOUS mechanism, it can be an arbitrary
string or an e-mail address that identifies the user.

Through the SASL bind API function call (sometimes also referred to as
certificate bind), LDAP client applications call the SASL protocol driver on the
server, which, in turn, connects the authentication system named in the SASL
mechanism to retrieve the required authentication information for the user.
SASL can be seen as an intermediator between the authentication system
and a protocol like LDAP.

There is no special configuration necessary on either side (client or server) to
use SASL/CDRAM-MD5 authentication. Applications simply request it by
calling the appropriate API call. The SASL bind operation is explained in
Directory Security 105

more detail with an example in 8.1.4, “JNDI and Security” on page 230. If
CRAM-MD5 authentication is being used, user passwords cannot be stored
encrypted because the algorithm must be able to retrieve them in the clear
(see also 5.7.1.3, “Password Encryption” on page 128).

If you want to verify which SASL mechanisms an LDAP server (Version 3
only) supports, point a Web browser to a Web site like this:

ldap://<ldap_server>/?supportedsaslmechanisms

This is an LDAP URL, very similar to those used for HTTP (http://<host>/...)
or other Internet protocols, as introduced in 2.2.2, “URL Form” on page 34.

As stated earlier, SSL (and its successor TLS) is the external mechanism
commonly used in SASL by LDAP for data encryption. Following is a brief
description of SSL.

5.2.2 Overview of Secure Sockets Layer (SSL)
The IBM SecureWay Directory Server provides the ability to protect both
client and server LDAP access with Secure Sockets Layer (SSL) security.
When using SSL to secure LDAP communications with the IBM SecureWay
Directory, two forms of authentication are supported:

• Server authentication

• Client and server authentication

SSL is an industry-standard security protocol that uses symmetric-key and
public-key cryptographic technology. Symmetric-key cryptography uses the
same key to encrypt and decrypt messages. Public-key cryptography uses a
pair of keys: a public key and a private key. Each server's public key is
published, and the private key is kept secret. To send a secure message to
the server, a client encrypts the message using the server's public key. When
the server receives the message, it decrypts the message using its private
key. Only the server can encrypt this message because it can only be
decrypted with the server’s private key.

SSL was developed by Netscape Communications Corp. and the current
version is 3.0. Transport Layer Security (TLS) is an evolving open standard
currently in the state of an Internet Draft being worked on at the IETF. It is
based on SSL 3.0 with only a few minor differences, and it provides
backwards compatibility with SSL 3.0. It is assumed that TLS will replace
SSL. The following discussion is equally valid for both SSL and TLS.

SSL provides three basic security services:
106 LDAP Implementation Cookbook

• Mutual authentication – Mutual authentication is the process whereby the
client and the server convince each other of (and prove) their identities.
The client and server identities are encoded in public-key certificates. A
public-key certificate contains the following components whereby the
issuer, also known as a Certificate Authority (CA), is a trusted
organization, such as RSA Data Security Inc. or Verisign Inc.:

• Subject's distinguished name
• Issuer's distinguished name
• Subject's public key
• Issuer's signature
• Validity period
• Serial number

Rather than mutual authentication, which provides for maximum security,
many implementations only use server authentication.

• Message privacy – Message privacy is achieved through a combination of
public-key and symmetric key encryption. All traffic between an SSL client
and an SSL server is encrypted using a key and an encryption algorithm
negotiated during session setup.

• Message integrity – The message integrity service ensures that SSL
session traffic does not change while en route to its final destination. SSL
uses a combination of public/private keys and hash functions to ensure
message integrity.

As mentioned earlier, SSL is not actually a part of LDAP, though LDAP does
use it if appropriately configured. SSL support for the IBM SecureWay
Directory requires a separately installable module (see 5.3, “SSL Utilities” on
page 108). If SSL is being used to protect LDAP sessions, the SSL session
has to be established before normal LDAP protocol conversations can take
place. Simplified, the following exchange takes place in order to set up a
secure SSL session:

1. The client and the server exchange hello messages to negotiate the
encryption algorithm and hashing function (for message integrity) to be
used for the SSL session.

2. The client and server exchange X.509 certificates to validate their
identities (if client authentication is not requested, only the server sends
its certificate). Certificates are verified by checking the correctness of
format and validity dates and by verifying that the certificate bears the
signature of a trusted Certificate Authority (CA).
Directory Security 107

3. The client randomly generates a set of keys that are used for encryption.
The keys are encrypted using the server's public key and securely
communicated to the server.

4. Encrypted communication can now start using the generated key for
encryption and decryption.

For server authentication to function, the IBM SecureWay Directory server
must have a digital certificate (based on the X.509 standard). This digital
certificate is used to authenticate the IBM SecureWay Directory server to the
client application(s). During the initial SSL handshake, the LDAP server
supplies the client with its X.509 certificate. If the client validates the server's
certificate, a secure, encrypted communication channel is established
between the LDAP server and the client application.

If client and server authentication is to be used, both the LDAP server and the
client application must have a digital certificate. The server's digital certificate
is used to authenticate the LDAP server to the client application (for example,
an application built with IBM's LDAP application development toolkit).
Similarly, the client's digital certificate is used to authenticate the client to the
LDAP server (in terms of SSL's strong authentication mechanism). During the
initial SSL handshake, the LDAP server and the client exchange certificates
for mutual validation. After the client validates the server's certificate and the
server validates the client's certificate, a secure encrypted communication
channel is established between the LDAP server and the client application.

The following two sections introduce the IBM SSL utilities and the steps
necessary to configure SSL.

5.3 SSL Utilities

The graphical utility ikmgui utility (IBM Key Management GUI) is provided for
IBM AIX, Windows NT, and a number of other IBM and non-IBM platforms to
manage SSL X.509v3 certificate databases (also known as keyring files or
keyring databases). Its use is required to configure and use Secure Sockets
Layer (SSL). The ikmgui utility replaces the mkkf and ikeyman utilities used
with earlier versions of IBM SSL support. With the IBM SecureWay Directory
(and associated clients), both client and server keyring files are managed
with ikmgui.

The ikmgui utility, together with the SSL libraries, form the IBM SSL toolkit
known as GSKit (Global Security Kit). GSKit provides the SSL protocol
functions as well as a set of Certificate Management Services (CMS)
functions. These CMS functions provide access to the certificate database
108 LDAP Implementation Cookbook

(the keyring file) as well as functions such as validating client certificates
(including Certificate Revocation List processing). The current version is
GSKit Version 3, which supports SSL Version 3.0, C/C++ for clients and
servers and Java for clients.

GSKit is not available for OS/400. Instead, in order to configure and use SSL
on OS/400, you need to install Digital Certificate Manager (DCM), Option 34
of OS/400, and the IBM Cryptographic Access Provider licensed program
with program number 5769-AC1, AC2, or AC3. Please read the
documentation pertinent to these options for installation and configuration
instructions.

Starting with V2R7, the LDAP server on OS/390 uses SystemSSL, which, as
part of the Common Data Security Architecture (CDSA), ships with the
OS/390 base. It is based on the GSKit as described above for other
platforms, such as AIX and Windows NT. You should refer to the respective
system documentation or visit the Web site http://www.ibm.com/s390 .

Since strong encryption (as provided by SSL) is controlled by export and
other regulations in the U.S. and other countries, different versions of GSKit
exist for different countries. While the installable options differ among these
versions, the user interface and configuration steps are generally the same
as described in the following sections.

5.3.1 GSKit Installation
GSKit is a separately installable option required only when SSL security is to
be used. GSKit might already be installed on your system if another
application required it to be installed. GSKit is shipped with the IBM
SecureWay Directory in the appropriate version for your country. Please
check for and follow any installation instructions that came with the product.

For your convenience, the following are some hints for Windows NT and AIX
(for OS/400 and OS/390; see the comments in the last section):

Windows NT – GSKit uses the Windows InstallShield for installation. GSKit
normally ships as a self-extracting ZIP file that you need to unpack first. For

Encryption technology is subject to government regulations in the U.S. and
other countries. Such regulations have changed recently and may change
in the future. Due to this, the SSL packaging and implementation may be
different as the product rolls out or may change thereafter.

Note on Government Regulation
Directory Security 109

example, on a command line, change to the directory where the GSKit file
resides and type:

gskru301 <path> /d

The <path> parameter (optional) specifies a destination directory for the
unpacked files and /d (optional) specifies that subdirectories will be created.
If no parameters are given, the files are unpacked to the current directory.
Note that the filename (gskru301.exe) may be different depending on the
actual version you are using. The setup.exe file (one of the unpacked files)
for GSKit must be called from the command line with a parameter as follows
(do not double-click on the file icon to start it):

setup ldap

This registers LDAP as an application for GSKit. A second command line
parameter allows you to select an installation language other than English.
Refer to the documentation for a list of available languages. If GSKit was
already installed, you must still run this command, which will then add LDAP
as an application (installation will not actually take place again).

AIX – GSKit is shipped as one or more installable fileset(s). Installation
should be done using the installp command (or SMIT install_latest).

After the GSKit is installed, the command ikmgui is available to start the
Graphical User Interface.

5.3.2 The ikmgui Utility
The ikmgui utility with its graphical user interface is used to manage
certificates. The specific tasks you can perform with ikmgui include:

• Create a key pair and request a certificate from a CA
• Receive a certificate into a keyring file
• Change a keyring password
• Show information about a key
• Delete a key
• Make a key the default key in the keyring file
• Export a key
• Import a key into the keyring file
• Designate a key as a trusted root
• Remove trusted root key designation

To run ikmgui on AIX, you need to have the Java Development Toolkit (JDK)
installed and the JAVA_HOME environment variable pointing to its root
directory. For example, the following commands run in a default installation:
110 LDAP Implementation Cookbook

export JAVA_HOME=/usr/jdk_base
ikmgui

After starting, the main window of ikmgui is presented as shown in Figure 23 .

Figure 23. IBM key management (ikmgui) utility main window

The tasks that you need to run SSL from the list above are explained in the
following sections.

5.4 Configuring SSL Security

This section describes the procedures required to set up SSL security. To
enable security with server authentication, you must do one of the following:

• Create a certificate signed by a well-known certificate authority (CA)

Create a public/private key pair and obtain and store a certificate from one
of the predefined (well-known) Certificate Authorities. This procedure
requires less setup because the keyring file is preconfigured with the CA
root certificates required to identify the CAs from whom the certificate is
issued.
Directory Security 111

• Create a self-signed certificate

The process of applying for and receiving a certificate from a CA can take
two to three weeks. To enable SSL security until you receive the required
CA root and server certificates, you can create a self-signed root
certificate and store the certificate in the database and class files. To
ensure maximum security for your site, you should only use a self-signed
certificate for server authentication until you receive a CA-issued
certificate.

Once you have either an official or a self-signed certificate, the server(s) and
client(s) can be configured to use SSL. The following sections explain these
steps.

5.4.1 Creating a Certificate Signed by a Trusted Certificate Authority
Using a certificate that was signed by a well-known (trusted) certificate
authority gives you the advantage that most SSL communication partners
know and trust that CA, and they will, therefore, most likely (depending on
their configuration) accept a new certificate. This is especially helpful when
communicating with partners outside your organization and beyond your
authority to change security options. The disadvantages are that it takes
some time (a few days or weeks) to get an official certificate and the fact that
it is not for free.

Creating a certificate signed by a well-known CA involves the creation of a
key database and a certificate request that is then sent to the CA. After
returning the certificate from the CA, it needs to be stored in the key
database. These steps are detailed below using the GUI of the ikmgui utility.

1. Create server key database (.kdb file):

• Select New... from the on Key Database File pull-down menu on the
top of the main window (Figure 23).

• On the dialog window that pops up, select CMS key database file in
the Key database type selection list and then type in the name and
location of the key database file to be created. This file has an
extension of .kdb, as, for example, in ldap_key.kdb. Then, click on OK
to close the dialog panel.

• A new dialog pops up that requests your input for a password for the
key database file, an optional expiration time, and whether or not the
password is to be stashed to a file. Enter a password, an optional
expiration time, and make sure that you check the check box next to
Stash the password to a file?; otherwise, the IBM SecureWay Directory
cannot open the database file. Click on OK to close this dialog. The
112 LDAP Implementation Cookbook

password is then encrypted and stored in a file with the same name as
the key database file but with an extension of .sth.

Your database file is now created. To proceed, you can now create a
certificate request.

2. Create a certificate request.

• Select New Certificate Request... from the Create pull-down menu in
the main window. In the dialog window that shows up, you will have to
fill in the following information for the request:

• Key label (a clear, descriptive label for the certificate)
• Key size (512 or 1024, depending on security requirements and

country version of the ikmgui utility)
• Common name
• Organization and other pertinent information to identify the owner of

the certificate
• Full path of the file name for the certificate request file

• Click on OK to create the request

The file created (default file name is certreq.arm) contains the certificate
request.

3. Send the certificate request, that is, the certreq.arm file, to the certificate
authority of your choice by mail or Web (follow their instructions, which
can be found on their Web sites).

(While you are waiting for the certificate authority to process and return
your certificate, you can enable SSL security by creating, storing, and
importing a self-signed certificate using the procedure described in the
next section.)

Once the certificate has been returned to you by the CA, you have to store
it into the key database file.

4. Store the certificate into your database.

• On the ikmgui main menu (Figure 23), make sure that your key
database file is open (check the filename in the Key database
information portion of the window). If it is not open, choose Open...
from the Key Database File pull-down menu and open your file.

• Select Personal Certificates from the selection list in the lower Key
database content portion of the window.

• Click on Receive... on the right of the window.

• Supply the information about the file containing the signed certificate
and click on OK .
Directory Security 113

This adds the certificate to the key database file. You will see the new
certificate in the list under Personal Certificates.

5. A root certificate of the CA must be stored in the key database file. By
default, root certificates of the most common CAs are already present in
the file; so, you do not need to add them again. A trusted root is simply an
X.509 certificate that has been signed by a trusted entity (for example,
Verisign). You can see what root certificates there are by selecting Signer
Certificates from the selection list in the Key database content portion of
the main window. If your CA is not present in that list, obtain a root
certificate from this CA and add it by clicking on Add... on the right of the
window.

This concludes the creation of a certificate signed by a well-known CA. You
may choose to created a self-signed certificate instead (or while waiting on
the certificate from the CA), which is described in the following section.

5.4.2 Creating a Self-Signed Certificate
You can use the ikmgui utility to create a self-signed certificate to enable SSL
sessions between clients and servers. The steps are essentially the same
except that, in this case, you are your own CA, and you will be creating your
own root certificate. The advantages of using this type of certificate is a quick
start, it is free, and you have no dependencies on other organizations. The
drawback, on the other hand, is that each client or server using this kind of
certificate needs to have the new root certificate imported, which may impose
some administrative burden.

Use the following procedures to set up your site with a self-signed certificate,
using the ikmgui utility (the first step is identical with the described above).

1. Create server key database (.kdb file).

• Select New... from the on Key Database File pull-down menu on the
top of the main window (Figure 23).

• On the dialog window that pops up, select CMS key database file in
the Key database type selection list and then type in the name and
location of the key database file to be created. This file has an
extension of .kdb, as, for example, in ldap_key.kdb. Then, click on OK
to dismiss the dialog panel.

• A new dialog pops up that requests your input for a password for the
key database file, an optional expiration time, and whether or not the
password is to be stashed to a file. Enter a password, an optional
expiration time, and make sure that you check the check box next to
Stash the password to a file?; otherwise, the IBM SecureWay Directory
114 LDAP Implementation Cookbook

cannot open the database file. Click on OK to close this dialog. The
password is then encrypted and stored in a file with the same name as
the key database file but with an extension of .sth.

Your database file is now created. To proceed, you can now create a
self-signed certificate.

2. Create a self-signed certificate.

• Select New Self-Signed Certificate... from the Create pull-down menu
in the main window (Figure 23). In the dialog window that shows up,
you will have to fill in the following information:

• Key label (a clear, descriptive label for the certificate)
• Key version (normally X509 V3, unless you have reasons for other

versions)
• Key size (512 or 1024, depending on security requirements and

country version of the ikmgui utility)
• Common name
• Organization and other pertinent information to identify the owner of

the certificate
• Validity period in days

• Click on OK to create the certificate

This creates a certificate and adds it to the list of Personal Certificates
shown in the main window.

3. From the certificate just created above, you need to extract the root
certificate that is necessary for other communication partners (clients
and/or servers) to recognize the newly created certificate. Here are the
steps for exporting the root certificate:

• Select the new certificate’s entry in the Personal Certificate list and
click on Extract Certificate... on the bottom right in the main window.

• Select Base64-encoded ASCII data from the Data type list and enter a
file name (with an .arm extension) and a location (directory) for the new
root certificate to be exported to. Then click on OK to export the root
certificate. (If you want to create a file for the JNDI SSLight client key
class, you must select SSLight key database class as data type when
creating a file with an .class extension. See also 8.1.4, “JNDI and
Security” on page 230.)

You have now created a file that holds your own root certificate. This must
be imported to all communication partners that will use SSL to connect to
this machine.

4. Use the following steps for importing the new root certificate into others’
key database (using ikmgui):
Directory Security 115

• Make sure the file created in the previous step is available from this
system, for example, on a diskette.

• Invoke the ikmgui utility on the receiving system.

• If not already done, create a key database file (see first step above for
creating a self-signed certificate).

• In the Key data contents portion of the window, select Signer
Certificates from the selection list and click on Add... on the right.

• Select Base64-encoded ASCII data from the Data type list and type
the certificate file name and location into the appropriate fields. Then,
click on OK to import the certificate.

• On the upcoming dialog, supply a label for this certificate and click on
OK .

The steps as described above need to be done on each machine that will
communicate using this certificate with the machine on which the certificate
was created.

Each LDAP server should have its own certificate. Sharing certificates across
multiple LDAP servers is not recommended. By using different certificates
and private keys for each server, your security exposure is minimized should
a keyring file for one of the servers be compromised.

5.4.3 Configuring an LDAP Server to Use SSL
After setting up SSL on the lower layers, you have to configure your LDAP
Server to use SSL. To do so, follow these steps:

1. On the LDAP Administration Graphic User Interface (see also 7.2, “The
Administrator Graphical User Interface” on page 166), click on Server and
then on SSL in the Navigation area.

2. In the working area, select SSL On (or SSL Only , as appropriate)

3. Choose whether you want Server Authentication or Server and Client
Authentication.

4. Set the secure port number (the default is set to 636).

5. Enter the key database file name (including path) and the key label in the
appropriate fields.

6. Click on Apply .

7. Click on V3 cipher (on the left of the working area) and select the desired
cipher from the available cipher algorithms (note that multiple selections
are allowed) and then click on Apply .
116 LDAP Implementation Cookbook

8. The server needs to be restarted for the changes to work. This can be
done through the Administration GUI.

An easy way to check whether or not an SSL connection can be established
is to point a Web browser at ldaps://<server>/ (note the s in ldaps) and check
the result. The LDAP server should return the contents of the rootDSE
(server-specific configuration data), which should be the same as what you
get without SSL, that is, by using the non-secure URL: ldap://<server>/ .

5.4.4 Configuring an LDAP Client to Use SSL
There is no special setup required for LDAP clients using SSL other than the
client must have the CAs root certificate in its key database file (see the steps
described above). The application must then initiate a secure SSL connection
by using the appropriate API calls, that is, ldap_ssl_client_init() . If client
authentication is configured on the server, the client must be set up with its
own certificate as described above for the server.

The application may specify a path to another key database file and may also
exploit the password stash file if needed. For more information, see Chapter
8, “Developing Directory-Enabled Applications” on page 223, or the online
Programming Reference shipped with the product.

5.5 Delegation Model

This section provides a discussion of four alternative solutions that could be
used to implement delegation for SSL. Note that delegation is not supported
natively by LDAP, and the following discussion, therefore, applies to
applications that use LDAP. An example is used to illustrate the four
alternatives.

There are several requirements pertaining to the delegation for SSL. The
example below that we use throughout this section depicts a typical scenario
for delegation (others can be derived from this one). Four solutions are
presented to solve the lack of standardized delegation in SSL.

In the example shown in Figure 24 , Mary, on a client machine, uses a Web
browser to contact a middle tier server (MTS) using HTTP with SSL (https)
over transaction 1 (T1). A program on MTS wants to execute a transaction
(T2) on Mary's behalf on an End Tier Server (ETS). The second transaction
(T2) should be authenticated as Mary rather than as MTS. On each machine,
the SSL code will report to the application the name of the peer. The
applications then use this name for access control logging and other security
and non-security related purposes. The requirement is that the name that is
Directory Security 117

reported is the name of the person using the client not the name of the server.
This is not possible with current technology without an additional application
code.

Figure 24. Delegation

The requirement cannot be met because the authentication for T1 and T2 is
using SSL client authentication. Although client authentication has changed
slightly among SSL Version 2, SSL Version 3, and TLS Version 1.0, all of
these protocols have the client sign data derived from the rest of the
handshake (session establishment messages). The client (Mary in the T1
transaction in the example above) executes this signature using its private
key (normally an RSA key) and then sends the signature and its certificate for
this key to the server (MTS for T1 above). This cannot be repeated for T2
because the private key is never permitted to leave the client; so, the MTS
cannot get access to it.

This section includes four potential solutions to this problem. All of these
solutions assume that a successful client-authenticated SSL or TLS session
has been established between the client and the MTS.

Solution 1 - Client creates new certificate
The client extracts the server's name and server's public key from the
certificate that the server sent to the client during the handshake. The client
then creates a new X509 Version 3 certificate for the server using the name
from the client's certificate as the issuer name. The client would normally set
the certificate to expire in a very short time. Other restrictions could be added
in the form of X.509v3 extensions, but certificate revocation lists (CRLs)
would not be used. The client would send the new certificate to the MTS.

The MTS would then start a normal SSL handshake (as a client) with the
ETS. When MTS is asked for its certificates, it would send the newly created

Client Middle Tier Server End Tier Server

Runs as Mary Runs as MTS -> Mary Runs as ETS -> Mary

T1 T2
118 LDAP Implementation Cookbook

certificate it received from the client, and the client's original certificate. ETS
would then verify the certificate by constructing a certificate chain, and the
rest of the SSL connection for T2 would progress normally.

In this case, the ETS does not know that any delegation is taking place. New
code is required on the client and the MTS. The certificate hierarchy for the
client must have a policy that allows the client to create valid certificates (as
interpreted by the ETS).

Solution 2 - Client create signed document not valid X509 certificate
The client extracts the server's name and server's public key from the
certificate that it sent during the handshake as in solution 1 above. In this
case, it creates a signed document including its name, the server's name, the
server's public key, and any restrictions, such as the end time of the
delegated session. Notice that the certificate created in solution 1 would meet
this criteria. The signed document is sent to the MTS.

The MTS starts a SSL client-authenticated session but uses its own
certificate. During the handshake, it also sends the signed document from the
client along with a signal that delegation is to be used, and the ETS should
assign the client's identity to this session (T2).

The ETS verifies the SSL handshake in the normal manner then processes
the request by the MTS for a delegated session. If the signature on the
signed document from the client is valid, the SSL session was set up by the
MTS server and public key in the signed document; therefore, the SSL code
on the ETS will use the client’s identity.

In this case, the ETS must have modified code and the ETS knows the MTS
and client identity. The client certificate must be valid for signature or SSL use
(as interpreted by the ETS), but this is a default requirement for client
certificates for SSL use.

Solution 3 - Client signs for MTS
The MTS server initiates the SSL session with the ETS and sends the client’s
certificate. When the handshake progresses to the point where a signature is
required, MTS sends all of the handshake data back to the client. The client
(after any desired verification) makes the required signature and sends it to
the MTS. The MTS then uses the signature to complete the handshake for T2
with ETS.

In this case, the ETS does not require new code. No special characteristics
are required for the client certificate. This solution has the advantage that the
client may approve each transaction because it has available the name and
Directory Security 119

certificate of the ETS and is called for each session set up. On the other
hand, this solution has the disadvantage that each MTS/ETS transaction
requires traffic between the MTS and the client.

Solution 4 - MTS signs certificate
In this case, the MTS can act as a certificate authority that is trusted (at least
by the ETS). After the SSL handshake, the MTS extracts the name from the
client certificate, makes up a new RSA key pair, and creates a certificate. It
then uses that certificate and private key for the subsequent SSL session with
the ETS. The key pair and certificate may be stored for later use.

A variation on this scheme is that the MTS can act as a registration authority
for a certificate authority on another machine.

Neither the client nor the ETS need to be modified for this solution. No new
SSL (or other related communications flows) are required. Neither the client
nor the ETS know that delegation is being done. However, the ETS must be
configured to trust either the MTS or a CA that trusts the MTS.

5.6 Access Control

Access Control Lists (ACLs) provide a means to protect information stored in
an LDAP directory. Using ACLs, administrators can restrict access to different
portions of the directory or specific directory entries. Each entry within the
IBM SecureWay Directory has an associated ACL. In conformance with the
LDAP model, the directory server stores the ACL information as
attribute-value pairs. Furthermore, the LDIF syntax may be used to
administer (retrieve/store) these values.

ACL information is broken into two distinct subgroups: The entry owner and
the entry ACL. Each directory entry must have both an entry owner and an
entry ACL.

Entry owner – The entry owner has complete permissions to perform any
operation on the object regardless of the ACL entry. Additionally, the entry
owner is the only one, besides the directory administrator, who is permitted to
administer the ACL for that object. The entry owner is defined to be an ACL
subject.

ACL subjects – The ACL specifically grants a subject permission to perform
a given operation. Subjects are considered the combination of a privilege
attribute and a distinguished name (DN). Valid types of privilege attributes
are:
120 LDAP Implementation Cookbook

• Access ID
• Group
• Role

The DN identifies a particular access ID, group, or role. The following are two
examples for subjects:

access-id: cn=personA, o=IBM, c=US
group: cn=deptXYZ, o=IBM, c=US

Not all directory groups may be used in access control. Groups that are to be
used in access control must have an objec tclass of AccessGroup and are
often called access groups. The accessGroup object class is a subclass of
the GroupOfNames objectclass.

Another type of privilege attribute used within the ACL model is a role. While
roles and groups are similar in implementation, conceptually they are
different. When a user is assigned to a role, there is an implicit expectation
that the necessary authority has already been set up to perform the job
associated with that role. With group membership, there is no built-in
assumption about what permissions are gained (or lost) by being a member
of that group.

Roles are similar to groups in that they are represented in the directory by an
object. Additionally, roles contain a group of DNs. Roles that are to be used in
access control must have an object class of AccessRole. The AccessRole
object class is a subclass of the GroupOfNames object class.

The IBM SecureWay Directory contains two built-in access groups:
cn=Anybody and cn=Authenticated. When specified as part of an ACL, this
first group refers to all users, and the second refers to all users who are
authenticated with the server. Users cannot be removed from these groups,
nor can these groups be removed from the database. There is also a built-in
access ID: The cn=this. See section 5.6.5, “Pseudo DNs” on page 125, for
more information.

5.6.1 ACL Permissions
There are six basic operations that may be performed on a directory object.
From these operations, the base set of ACL permissions are taken. These six
operations are:

• Add an object
• Delete an object
• Read an attribute value
• Write an attribute value
Directory Security 121

• Search for an attribute
• Compare an attribute value

These permissions are discrete, that means, one permission does not imply
another. The following table, Table 6, describes the permissions needed to
perform each of the LDAP operations that are represented by their respective
API calls.

Table 6. Permissions required for basic LDAP operations

The possible attribute class permissions are: read (r), write (w), search (s),
and compare (c). Additionally, object permissions apply to the entry as a
whole. These permissions are: add child entries (a) and delete this entry (d).

5.6.2 Attribute Classes
Attributes requiring similar permissions for access are grouped together in
levels or classes. Attributes are mapped to their attribute class in the
directory schema file. The three classes available in IBM SecureWay
Directory are:

• Normal
• Sensitive
• Critical

Each of these classes are discrete, that means, access to one class does not
imply access to another class. Permissions are set with regard to the attribute
class as a whole. The permissions set on a particular attribute class apply to
all attributes within that class.

Operation Permission Needed

ldap_add() add (on parent)

ldap_delete() delete (on object)

ldap_modify() write (on attribute of object)

ldap_search(), return attribute names search (on attribute)

ldap_search(), return attribute names and values search, read

ldap_modrdn() write

ldap_compare() compare
122 LDAP Implementation Cookbook

5.6.3 Propagation
ACLs and owner can be set to apply to just a particular entry or an entry and
the entire subtree. Although both the entryOwner and aclEntry attributes can
propagate, their propagation is not linked in any way.

Entries on which an ACL has been placed are considered to have an explicit
ACL. Similarly, if an owner has been set on a particular entry, that entry has
an explicit owner. Since the two are not intertwined, an entry with an explicit
owner may or may not have an explicit ACL, and an entry with an explicit ACL
may or may not have an explicit owner. If these values are not explicitly
present on an entry, the values are inherited from an ancestor node in the
tree.

Each explicit ACL and owner applies to the entry on which it is set.
Additionally, the value may apply to all descendants that do not have an
explicitly set value. This values are considered propagated; that is, their
values propagate downwards through the directory tree. Propagation of a
particular value continues until another propagating value is reached.

An object's ACL (or an object’s owner) can, therefore, be conceptually
determined by the following algorithm:

Is there an explicit ACL set at the object?
If yes, then that is the object's ACL.
If no, then traverse the tree backwards until an ancestor node is reached
with a propagate ACL.

If no node is found with a propagate ACL, only the object owner
and the administrator will be granted access to the object.

5.6.4 LDAP ACL Attributes
The various aspects of the ACL model are represented in six attributes that
are part of every directory entry. These are:

1. entryOwner
2. ownerPropagate
3. aclEntry
4. aclPropagate
5. aclSource
6. ownerSource

The aclSource and ownerSource attributes are not user modifiable. They are
maintained by the ACL manager and represent the DN from which this
particular entry receives its ACL information. If the source DN is the same as
Directory Security 123

the object DN, then the ACL has been explicitly set on that object. Otherwise,
the ACL is inherited from an ancestor object.

Each of these attributes can be managed using LDIF notation. The following
defines the syntax for each of the ACL attributes using Backus-Naur Form
(BNF).

<subjectSecurityAttribute> ::= "("
<subjectSecurityAttributeTypeName> ':'
<subjectSecurityAttributeValue>
")"

<subjectSecurityAttributeTypeName> ::= "role" | "group" | "access-id"
<subjectSecurityAttributeValue> ::= <DN>
<entryOwner> ::= "(" <subjectSecurityAttribute> ")"
<aclEntry> ::= "("

<subjectSecurityAttribute> ":"
<accessList> [":" <accessList>]
")"

<accessList> ::= <objectAccessClass> | <attributeAccessClass>
<objectAccessClass> ::= "object:" <objectAccessClassPermissions>
<objectAccessClassPermissions> ::= "a" | "d"
<attributeAccessClass> ::= <class> ":" <permissions> [":" <permissions>]
<class> ::= "normal" | "sensitive" | "critical"
<permissions> ::= "r" | "w" | "s" | "c"
<ownerPropagate> ::= "true" | "false"
<ownerSource> ::= <printablestring>
<aclPropagate> ::= "true" | "false"
<aclSource> ::= <printablestring>

Example: Default ACL
entryOwner: access-id:cn=admin,c=US
ownerPropagate: TRUE
aclPropagate: TRUE
aclEntry: group:cn=Anybody:normal:rsc
aclSource: default
ownerSource: default

Example: ACL for entry <cn=personA, ou=deptXYZ, o=IBM, c=US>
entryOwner: access-id:deptXYZMgr, ou=deptXYZ, o=IBM, c=US
ownerPropagate: TRUE
aclPropagate: TRUE
aclEntry: role:cn=Admins, o=IBM,

c=US:normal:rwcs:sensitive:rwsc:critical:rsc
aclEntry: group:cn=deptXYZRegs, o=IBM, c=US:normal:rsc:sensitive:rsc
aclEntry: access-id:cn=personA, ou=deptXYZ,

o=IBM,c=US:object:ad:normal:rwsc:sensitive:rwsc:critical:rsc
aclEntry: group:cn=Anybody:normal:rsc
124 LDAP Implementation Cookbook

aclSource: ou=deptXYZ, o=IBM, c=US
ownerSource: ou=deptXYZ, o=IBM, c=US

The latter example is an inherited ACL and an inherited owner. Both owner
properties and ACL properties are inherited from object <ou=deptXYZ , o=IBM,
c=US>. In this example, members of group <cn=deptXYZRegs , o=IBM, c=US> have
permission to read, search, and compare objects in both the normal and
sensitive attribute classes. They do not have permission to add or delete
objects under this object, nor do they have permission to access any
information or change any information on attributes in the critical class.
Unauthenticated and all other bound users have permission to read, search,
and compare attributes in the normal attribute class only. PersonA has add
and delete permission on the object, read, write, search, and compare
permissions on normal and sensitive attributes, and read, search, and
compare permission on critical attributes.

5.6.5 Pseudo DNs
The IBM SecureWay Directory contains several pseudo DNs. These are used
to refer to large numbers of DNs, which, at bind time, share a common
characteristic in relation to either the operation being performed or the object
on which the operation is being performed.

The first of these is group:cn=Anybody. When specified as part of an ACL,
this group refers to all users, even those that are unauthenticated. Users
cannot be removed from this group, and this group cannot be removed from
the database.

The second pseudo DN is access-id:cn=this. When specified as part of an
ACL, it refers to the bindDn (the DN at which a client binds to the directory)
that matches the DN on which the operation is performed. If an operation is
performed on the object <cn=personA, ou=IBM, c=US> and the bindDn is
<cn=personA, ou=IBM, c=US>, the permissions granted would be the union
of those given to <cn=this> and those given to <cn=personA, ou=IBM,
c=US>.

The third pseudo DN is group:cn=Authenticated. This DN refers to any DN
that has been authenticated by the directory. The method of authentication is
irrelevant.
Directory Security 125

5.6.6 Granting Access
Access for a particular operation is granted or denied based on the bindDn
(the DN at which a client binds to the directory) for that operation. Processing
stops as soon as access has been determined. Within the ACL entry, if there
is an aclEntry subject DN that matches the bindDn, the permissions granted
are those that are designated by that ACL entry. If there is no aclEntry for that
particular bindDn, then group membership is evaluated.

Group and role membership is determined at bind time and is static for the
length of the bound connection. The permissions given via group membership
are additive. If a user belongs to two groups, both of which are specified
within an aclEntry, then the user receives the combined permissions of both
of those groups. Additionally, the user will receive any permissions given to
the <cn=Anybody> group. If there is no aclEntry for a particular DN, and the
subject is not a member of any access groups specified by the aclEntries,
then the user receives the permissions given to the <cn=Anybody> group. If
there are no permissions specified for this group, permission for the operation
is denied.

5.7 Storing Security Related Information in the Directory

Sensitive data can be stored safely in a directory. Sensitive data includes, but
is not limited to, passwords, certificates, private keys, and any other data one
deems sensitive and should not be readily visible to everyone. The following
discussions elaborate on this topic.

5.7.1 Passwords
The most immediate and interesting case is the storing of passwords in the
directory service because passwords can be used to authenticate oneself to
the directory before data can be accessed. Access to the userPassword
attribute (like all other data in the directory) is governed via access control
provided by and enforced by the directory server.

By default, transmission of data between the directory client and server is
transmitted in the clear. It is, therefore, recommended to use the

On an add operation, the object whose permission is checked is the parent
object; so, the bindDn would have to match the parent object's DN not the
DN of the object being added.

Note
126 LDAP Implementation Cookbook

ldap_ssl_client_init() and ldap_ssl_init() API calls to set up an SSL
connection for privacy during transmission prior to invoking the LDAP APIs.

Passwords show up in (at least) two places in the directory.

• In the person object, where the userPassword attribute is used, for
example, for the primary authentication to authenticate oneself to the
directory service before accessing data in the directory for primary
machine login or for Web server authentication.

• In the account object, where the userPassword attribute can be used for
secondary authentication to authenticate oneself to other services. For
example, this can be used to authenticate a user/client to other
middleware products or to a Web server.

In both cases, for the person object and the account object, the
userPassword attribute is used, and there should not be any new password
attributes defined.

Let us now look at the two cases (primary and secondary authentication) to
understand the use of userPassword. The requirement is the same in both
cases: To retrieve the userPassword attribute in a format so it can be used in
further operations as expected. How the userPassword attribute is stored by
the directory service is orthogonal to transmission. Although userPassword is
allowed to be multi-valued, we assume for these examples that the
userPassword attribute in the directory only has one value. In the
multi-valued case, the values are not ordered; each value of a multi-valued
userPassword attribute is checked.

5.7.1.1 Primary Authentication
Primary authentication is the authentication of a client to the LDAP server in
order to access (retrieve, store, modify) any data in that directory. This is
what is commonly referred to logging on to a service.

There are some guidelines for LDAP exploitation projects to provide security
for transmission, storage, and access of sensitive information, such as
passwords. There are four general guidelines or rules. We recommend that
rules A, B, and C should be used. Rule D should not be used, and it is
included in this discussion only for completeness.

Rule A: Access to userPassword is governed via access control provided by
the directory server. Proper settings of the ACLs must be assured.

Rule B: In the example above, using ldap_bind(), the value of userPassword
is transmitted in the clear. The use of ldap_ssl_client_init() and ldap_ssl_init()
Directory Security 127

prior to the ldap_bind() is recommended. This initiates an SSL connection for
privacy during transmission.

Rule C: To mitigate against the threat of disclosure (for privacy), the value of
the userPassword attribute is encrypted by the directory server and then
stored. The IBM SecureWay Directory supports this option to provide a
maximum level of security (see 5.7.1.3, “Password Encryption” on page 128).
This method cannot be used when applications need to be able to get a
password in clear text.

Rule D: The client application performs a one-way hash operation on the
password. It is stored in the directory in its hashed form. Compare operations
still work because whatever the user types in is first hashed and then
compared against what is stored. It is not recommended to use this method
because it requires all applications to agree on a common hash algorithm,
which limits the flexibility. Also, as a design point, encryption and password
matching should not be done on the application level.

5.7.1.2 Secondary Authentication
Secondary authentication is where an application obtains the user ID and
password (userPassword) from the account object to authenticate the user to
the system referenced by that account. The password cannot be stored
encrypted because the application (most likely) needs a clear password for
secondary authentication to the target system or service. Other than with
primary authentication, it is the account object that contains the
userPassword attribute instead of the person object.

A special case of secondary authentication would be where the LDAP
directory itself is the target system for secondary authentication, and the
primary authentication is done by a trusted third party service. This would be
the case, for example, when the primary authentication is a fingerprint
authentication service that provides an identity mapping such that an
authentication service can obtain the userPassword from the person object
for the person associated with the input fingerprint. The application (or a
logon service) can then authenticate the user to the directory using the user
ID and the password obtained through the third party authentication service.

5.7.1.3 Password Encryption
The IBM SecureWay Directory V3.1 supports a function where the passwords
can be encrypted before they are stored to prevent them from being
compromised via direct SQL queries, database file look-ups, or unauthorized
accesses. To provide this level of security, the userPassword values can be
encrypted in different ways. Two one-way hash algorithms, SHA (Secure
128 LDAP Implementation Cookbook

Hash Algorithm) and crypt, can be selected to encrypt passwords in the
permanent store. An SHA-hashed password can only be used for password
matching, but it cannot be decrypted. At the user login, the login password is
hashed and compared with the stored version for matching verification.
Another option for password encryption is by using the two-way encryption
option imask. With this option, passwords are encrypted before they are
stored in the database and decrypted upon retrieval. This prevents clear text
passwords from being stored in the database.

Password encryption can be configured through the administration GUI or
(though not recommended) by editing the pertinent line in the slapd.conf file.
The attribute pwencryption has four options (none | imask | SHA | crypt) to
select. The default is imask.

5.7.2 Certificates
Public key certificates are appropriate for storage in a directory. These are
needed by anyone wishing to encrypt or sign data to be sent where the
receiver uses their private key to decrypt or verify the signature, respectively.
Public key certificates are binary data and do not need to be encrypted by the
application or the server upon storing in the directory.

Storing private keys in a directory is generally not recommended as they
should, by definition, be kept by the owner (for example, stored on a
Smartcard). However, if an application chooses to do so, then the rules, as
listed above in 5.7.1.1, “Primary Authentication” on page 127, apply.

5.7.3 Displaying Sensitive Data
Clear text passwords should not be displayed on a screen or on paper. The
LDAP directory administrative GUI and any other GUIs that deal with
passwords that are presented to the user do, or must appropriately, protect
any passwords returned when accessing the directory. Appropriate action
means something like displaying asterisks (******) in the password field when
the password field is displayed on the screen.

5.7.4 Attacks
The encryption methods used to protect secure data must be resistant to
attacks based on stealing data from the underlying LDAP data store. Two
particular attacks are of concern.

• Dictionary attacks, where the attacker encrypts a large set of well-known
possible passwords (usually taken from a dictionary) and compares them
to encrypted data in the data store.
Directory Security 129

• Birthday attacks, where the attacker hashes a large number of keys in
hopes of finding a matching value in any securely hashed data kept in the
data store.

Techniques for foiling these attacks (such as salts, password strength rules,
documentation to administrators, and so on) should be employed.
130 LDAP Implementation Cookbook

Chapter 6. Installation and Configuration

The IBM SecureWay Directory runs on IBM AIX, OS/400, OS/390, Sun
Solaris, and Microsoft Windows NT. This chapter describes the installation
and basic server configuration on the IBM platforms. The installation on Sun
Solaris is similar to IBM AIX except that the SMIT tool is not available on
Solaris. Please read the installation documentation that comes with the
product for the most accurate information.

For the latest information and updates about the product on each individual
platform, please read the pertinent documentation including the release notes
and any Read Me First for your platform.

6.1 Windows NT

This section describes the installation and basic configuration of the IBM
SecureWay Directory on Microsoft Windows NT. The IBM SecureWay
Directory for Windows NT is available on the IBM Suites for Windows NT, and
it can be downloaded from the Web (see link below).

For latest information and updates, as well as code downloads, please check
the SecureWay Web site:
http://www.ibm.com/software/network/directory .

6.1.1 System and Software Requirements
The following are the system and software requirements for the IBM
SecureWay Directory server on Windows NT.

• Windows NT 4.0 with:

• Service Pack 3 (or greater).
• An NTFS partition.
• A minimum of 64 MB of memory is recommended.

• One of the following Web servers must be installed and configured:

• IBM HTTP Server powered by Apache 1.3.3.1
• Apache 1.3.2 or later
• Lotus Domino Go 4.6.2 or later
• Microsoft Internet Information Server 2.0
• Netscape FastTrack 3.01
• Netscape Enterprise 3.5.1

(A Web server is necessary to run the Web-based configuration and
administration tools.)
© Copyright IBM Corp. 1999 131

• A Web browser that supports the following:

• Frames.
• HTML version 3.0 or later.
• Java 1.1.7 features including JDK 1.1 AWT events.
• JavaScript 1.2.
• The browser must be enabled to accept cookies.

Most recent versions of popular Web browsers, including Netscape
Navigator/Communicator 4.X or Microsoft Internet Explorer 4.X. and 5.X,
are sufficient.

• DB2 Workgroup, Personal (Universal Personal Edition), or Enterprise
edition, Version 5.2, with fixpack WR09084.

• Approximately 70 MB of disk space for the IBM SecureWay Directory
including DB2. If DB2 is already installed, approximately 25 MB is needed
for the IBM SecureWay Directory server.

6.1.2 Installing the Server
Depending on the source from where the IBM SecureWay Directory was
obtained, you may have to unpack (unzip) a single file first. The IBM
SecureWay Directory uses the Windows InstallShield that can be launched by
running setup.exe from within the directory where the IBM SecureWay
Directory files reside.

Before installing the IBM SecureWay Directory, the Web server and DB2 must
be installed and running. Run the respective installation process for these
components. If you install the Personal edition of DB2, make sure that you do
not select the Connect Personal edition; the IBM SecureWay Directory
requires the Universal Personal edition.

With the Web server and DB2 installed and running, run the setup.exe from
the IBM SecureWay Directory, and the InstallShield will guide you through the
installation process. The InstallShield allows you, at the same time, to do
some basic configuration of the server. However, this basic configuration can
also be done or changed later using the ldapxcfg command. An advantage of
running the configuration using ldapxcfg after the actual installation is that
you will be able, at that time, to access the online documentation.

The installation using the Windows InstallShield covers the following four
general steps:

1. Language selection – You can choose one from the supported ten
languages (English, French, German, Japanese, Simplified Chinese,
132 LDAP Implementation Cookbook

Traditional Chinese, Italian, Spanish, Brazilian Portuguese, and Korean).
The default is English.

2. Select destination location – Choose the destination directory for the
installation. The default is C:\Program Files\IBM\LDAP\.

3. Select the components to configure – A selection allows you to select:

• Set the directory administrator name and password
• Create the directory DB2 database
• Configure a Web server for directory administration

See the next section 6.1.3, “Configuration” on page 133, for more details
about configuration of the IBM SecureWay Directory server.

4. Restart the computer – The system needs to be restarted after installing
the IBM SecureWay Directory.

As mentioned above, the configuration (step three from above) can also be
done after the installation. It is explained in the section that follows. The
database configuration can also be done through the administrator GUI,
which is explained in 7.3, “Database Configuration” on page 169.

The online documentation can be accessed after installation using a Web
browser as follows where x:\<inst_dir> is the root installation directory
(default: C:\Program Files\IBM\LDAP\), and <language> is the installation
language directory (default: enUS1252 for English):

The Installation and Configuration Guide:
x:\<inst_dir>\nls\html\<language>\config\wparent.htm

The Administration Help:
x:\<inst_dir>\web\<language>\help\parent.htm

The Directory Management Tool:
x:\<inst_dir>\nls\html\<language>\dmt\dparent.htm

The C Programming Reference:
x:\<inst_dir>\doc\progref.htm

The JNDI Programming Guide:
Unzip x:\<inst_dir>\java\ibmjndi.zip and load ibmjndi\Guide.html

6.1.3 Configuration
This section describes the third step from the installation above, which you
are either prompted for during the InstallShield installation or by using the
ldapxcfg configuration utility after the installation. The following discussion is
based on ldapxcfg, but it equally applies to the InstallShield configuration as
well.
Installation and Configuration 133

You can either launch the ldapxcfg utility manually or double-click the
SecureWay Directory Configuration icon in the IBM SecureWay Directory
folder on the desktop. There are three options to configure as shown in Figure
25 below.

Figure 25. IBM SecureWay directory configuration (using ldapxcfg)

The installation and configuration utility determines if it is a new installation or
an upgrade from an earlier version to the current version 3.1. If it is an
upgrade, a prompt window will ask you whether you want to migrate the
directory. If you choose to migrate, the migration will be done automatically.
Such a migration concerns the flat files containing schema definitions and the
configuration file; the database does not need to be migrated (see also 4.6,
“Migration from the Previous Release” on page 91). The old schema files will
be kept, and the old configuration file will be renamed to slapd21.conf.

On the panel shown in Figure 25, you have three options to configure; they
can be done all at once by selecting all options or one after the other, but all
must be done.

• To set the directory administrator name (DN) and password:

1. Select Set the LDAP administrator name and password and click the
Next > button.

2. Type in the administrator DN (or accept the default DN) and type in a
password and proceed.

• To create the DB2 database:
134 LDAP Implementation Cookbook

1. Select Create the directory DB2 database and click the Next >
button.

2. The installation and configuration utility will ask you if you want to use
the default LDAP DB2 database for the directory server or if you want
to configure the directory server to use an existing database. The utility
determines if an LDAP database currently exists. If you choose to
create a new database while an LDAP database already exists, all data
will be lost. It is, therefore, highly recommended to back up an existing
database, for example, by using the db2ldif utility. Select whether you
want to create a new, or use an existing database.

3. If you choose to use a default database, a new database instance will
be created. The default database may be adapted to support UTF-8
(see 4.3, “UTF-8 Support” on page 83). If you plan to use this IBM
SecureWay Directory feature, you have to select Create the default
UCS-2 DB2 database (UTF-8) .

4. If your choice is to use an existing database, you have to provide the
following information about this existing database:

• Database name
• Database instance
• Database system administrator ID
• Database system administrator password

• To configure a Web server:

1. Ensure that the Web server is installed and configured.

2. Select Configure a web server for directory administration and
click the Next > button.

3. Choose the respective server from the list and click the Next > button.

Before you move on, you may want to browse through the database
configuration description in 7.3, “Database Configuration” on page
169. It describes the database creation through the administrator
GUI. The basic considerations, however, are the same and apply to
this section as well.

Note

The database name ldapdb2 is reserved by the IBM SecureWay
Directory. Do not use it for your own database name.

Note
Installation and Configuration 135

4. Type the name (or accept the proposed path and name if it is correct)
of the configuration file of your server and click the Next > button to
proceed.

5. Do not forget to restart the Web server after its configuration has been
changed for these changes to take effect.

The ldapxcfg utility gathers all information that is needed to complete each of
the above three tasks before presenting a summary screen and requesting a
final click on Configure before it executes the configuration change.

If you also need SSL for secured LDAP communication, you will have to
install and configure the IBM GSKit. Please read 5.3, “SSL Utilities” on page
108 and 5.4, “Configuring SSL Security” on page 111 for further information.

After installation and configuration, the IBM SecureWay Directory server is
ready to be started. If not already done, a database must be created (or
configured), and then at least one suffix must be defined before any data can
be imported. This can conveniently be done through the administration GUI.
Please go to Chapter 7, “LDAP Data and System Administration” on page 159
and follow the directions provided.

6.1.4 Unconfiguring and Uninstalling the Server
Before you remove the IBM SecureWay Directory server from a Windows NT
system, it is recommended that its configuration be removed from the Web
server first. This can be accomplished with the ldapucfg command as in this
example:

The online documentation titled Installation and Configuration Guide
contains additional information about the installation of the database and
the IBM SecureWay Directory. Please also read any Release Notes or
Read Me First documents that you may have received with the product.

Tip

As an alternative method of using the graphical ldapxcfg configuration
utility, there is also an ldapcfg command line tool that can be used for the
IBM SecureWay Directory configuration. This is especially helpful when
automated configuration methods need to be developed. Please read the
instructions in the online Installation and Configuration Guide or run the
command without parameters to get the command syntax help text.

Command Line Configuration
136 LDAP Implementation Cookbook

ldapucfg -s apache -f c:\apache\conf\srm.conf

The example above specifies Apache as the Web server. The path name of
the configuration file will likely be different in other installations. Please read
the help text that is displayed when issuing ldapucfg -? for other options and
parameters pertinent to other Web servers. Note that the Web server most
likely needs to be restarted (depending on the particular server) in order to
reread the modified configuration.

The -d option of the ldapucfg command optionally removes a default database
instance for LDAP if one was created during configuration (a custom
database, however, will not be removed). This option also removes
configuration information from the configuration file slapd.conf.

To uninstall and remove the IBM SecureWay Directory server, you may either
use the Windows NT Add/Remove Programs function from the Control Panel
or select the unInstallShield function from the Start -> IBM SecureWay
Directory menu list.

6.2 AIX

At the time of writing, the IBM SecureWay Directory V3.1 for AIX was not
available yet, and packaging information was not finalized. Though this is not
a formal announcement, it can be assumed that the IBM SecureWay
Directory will be available on either the AIX product CD-ROMs or the AIX
Bonus Pack CD-ROMs. Additionally, the IBM SecureWay Directory might be
made available for download from an IBM Web site (see link below).
According to current planning at the time of writing, a version of DB2 that is
suitable for running the LDAP server will be included with the IBM SecureWay
Directory.

For latest updates and product information, you should always check the Web
site
http://www.ibm.com/software/network/directory

or the latest AIX announcements at:
http://www.ibm.com/rs6000/software

The following is a description of the installation and configuration that is
based on planning information rather than actual product code. All
information provided below is, therefore, subject to change.
Installation and Configuration 137

6.2.1 System and Software Requirements
The following are the system and software requirements for the IBM
SecureWay Directory server on IBM AIX:

• AIX Version 4.2.X or 4.3.X

• A Web browser that supports the following:

• Frames.
• HTML version 3.0 or later.
• Java 1.1.7 features including AWT events.
• JavaScript 1.2.
• The browser must be enabled to accept cookies.

Most modern Web browsers, including Netscape Navigator/Communicator
4.X or Microsoft Internet Explorer 4.X or 5.X, meet these requirements.

• One of the following Web servers must be installed and configured:

• Apache 1.3.3 or later (or the IBM HTTP Server Powered by Apache)
• Lotus Domino Go 4.6.2 or later
• Netscape FastTrack Server version 2.0.1 or later

• DB2 Version 5.2 or later (a suitable version will likely be available with the
IBM SecureWay Directory).

• Java JDK (included with the AIX CD-ROMs).

• A minimum of 64 MB memory (128 MB or more is recommended).

• Approximately 77 MB of disk space for the IBM SecureWay Directory and
DB2. If DB2 is already installed, 25 MB is needed for the IBM SecureWay
Directory.

6.2.2 Installing the Server
As a prerequisite to installing the IBM SecureWay Directory, make sure you
have a suitable Web server installed and configured (see the list of supported
Web servers above).

The IBM SecureWay Directory comes as a set of installable AIX filesets that
can most conveniently be installed using SMIT (Systems Management
Interface Tool). As a root user, and with the IBM SecureWay Directory filesets
available either on disk or on a CD-ROM, do the following:

1. Run: smitty install_latest (or smit install_latest for the Motif version of
SMIT).

2. Select the appropriate input device or file system directory, such as
/dev/cd0.
138 LDAP Implementation Cookbook

3. With the cursor in the SOFTWARE to install field, press F4 to list the
installable options available from the source specified. Select the options
you want to install and make sure you have at least the LDAP server and
the appropriate HTML documentation selected.

4. It is recommended to have AUTOMATICALLY install requisite software set
to YES (which is the default) in order to install any required additional
software, such as DB2 or the LDAP client, automatically.

5. Optionally set PREVIEW only to YES and run a preview of the installation
first to check for any potential errors or verify the list of options to be
installed.

6. Check and set the other options as appropriate and press Enter to start
the installation.

This installs the IBM SecureWay Directory server and its prerequisite
software options, such as DB2, LDAP client, or message catalog filesets, on
your system.

6.2.3 Configuration
The configuration of the IBM SecureWay Directory server involves three
steps:

1. Defining an administrator ID and password for the LDAP server.

2. Creation of a DB2 database for LDAP data storage.

3. Configuration of the Web server to make the Web based configuration tool
work.

These configuration steps can be done using the ldapcfg command line tool
or using the graphical ldapxcfg utility. Their use is identical to the same tools
provided for the Windows NT version of the IBM SecureWay Directory server.
Please read the appropriate section 6.1.3, “Configuration” on page 133, as it
equally applies for AIX (subject to change).

6.2.4 Unconfiguring and Uninstalling the Server
Before removing the IBM SecureWay Directory, it is recommended to remove
the current configuration from the Web server. Type on the command line:

ldapucfg -s <server type> -f <full path of configuration file>

Once the unconfiguration is done, the product can be uninstalled. If you want
to keep your installation, and just want to restart with a new configuration,
take care of the slapd.conf file, remove if it presents the lines about adminPW
Installation and Configuration 139

and adminDN on the top of the file and any lines about DB2 below database
rdbm:

suffix "o=ibm_uk,c=uk"
databaseName ldapdb2
dbInstance ldapdb2
dbuserpw <secret>
dbuserid ldapdb2

Uninstallation of the IBM SecureWay Directory can then be done using the
SMIT remove software products option (fastpath: smitty install_remove).

6.3 OS/390

The LDAP server on OS/390 is shipped with the OS/390 Security Server and
uses DB2 as its backing store. In general, the LDAP server that runs on
OS/390 accepts the LDAPv2 protocol. The server, like the AIX and Windows
NT LDAP implementation, supports referrals and is capable of replicating its
information to other LDAP-capable servers.

There is one difference between the two implementations worth noting.
Directory entry data is stored in the DB2 backing store in so-called wire
format. Thus, whatever information is stored into the Directory will be
returned as it was entered. However, in order to support attribute-based
searching, character string data is converted to the local code page that the
LDAP server is running in on the OS/390 system. This is typically an EBCDIC
code page. During this conversion, any characters not representable by the
local code page are translated with some loss of information during the
translation. This will affect attribute-based searches for entries where the
character string attribute values contain characters not representable in the
EBCDIC code page.

This section gives an overview of the LDAP server installation on OS/390
Version 2, Release 7. It is based on information from a previous ITSO
redbook: Ready for e-business: OS/390 Security Server Enhancements,
SG24-5158, including the updates brought by OS/390 V2R7. For detailed
instructions for installation and configuration of LDAP on OS/390, please refer
to the OS/390 V2R7 Security Server LDAP Server Administration and Usage
Guide, SC24-5861.

The following list contains an overall description of the LDAP features and
functions on different OS/390 releases:

OS/390 R4 (GA 9/97)
140 LDAP Implementation Cookbook

• LDAP V2 C language client

OS/390 R5 (GA 3/98)

• OS/390 R4 function
• LDAP V2 Server (based on DB2 backing store, common code base with

IBM SecureWay Directory)

OS/390 R6 (GA 9/98)

• OS/390 R5 function
• LDAP V3 C language client
• Remote ACL administration via IBM command-line LDAP ACL utility

(ldapcp)
• Allow multiple LDAP servers to run on the same OS/390 image

(independently and must use separate databases)

OS/390 R7 (GA 3/99)

• OS/390 R6 function.
• JNDI, with a single SPI, for LDAP.
• Access to RACF USER and GROUP profiles.
• Sysplex support allows multiple LDAP servers to access and update the

same set of DB2 tables when used with DB2 data sharing.

6.3.1 System and Software Requirements
The OS/390 LDAP server is part of the OS/390 Security Server feature, which
is linked with the V2R7 Release of OS/390. As such, LDAP has the same
system and software prerequisites as the OS/390 Security Server. In
addition, DB2 Version 5 must be installed.

For more information on OS/390 and its installation prerequisites, please go
to:
http://www.ibm.com/s390/os390/installation

6.3.2 Installing the Server
The LDAP server installation is a normal SMP/E installation of yet another
product into your system. You would, of course, have verified that all relevant
maintenance has been installed and that you have reviewed the Memo to
Users to check for any late changes. See also the OS/390 Security Server
Program Directory, which comes with the LDAP server tape or cartridge.

In OS/390 Release 7, all DLLs for the LDAP server are now shipped in PDS
format only. In order for these DLLs to be located by the server at runtime, the
PDS, which contains these DLLs (GLDHLQ.SGLDLNK, where GLDHLQ is the
Installation and Configuration 141

high-level qualifier used when installing LDAP code), must either be in the
LINKLIST, referenced in a STEPLIB DD card (if the LDAP server is started
from JCL), or listed in the STEPLIB environment variable (if the LDAP server
is started from the OMVS command prompt). Any of these methods can be
used, and the choice of the best method is dependent of the reader’s
operations procedures in his/her environment.

In OS/390 Release 7, access to RACF information through the LDAP server
has been added. The PDS, which contains the LDAP server and the DLLs,
must now be APF-authorized to allow the LDAP server to make the RACF
calls necessary to provide this access. Also, if program control is active on
your system, the PDS, which contains the LDAP server and the DLLs, and the
PDS that contains the C runtime libraries and SYS1.LINKLIB, must be
program controlled. It may also be necessary to APF-authorize and program
control the DB2 SDSNLOAD dataset, which contains the DLL loaded to make
the DB2 CLI calls.

6.3.3 Configuration
After successful installation of the LDAP code, you should prepare for running
the server on your system. You have to ensure that the necessary
prerequisites are in place and that you take necessary actions prior to
starting your server. Assuming you use the OS/390 Security Server, the
following list describes the necessary preparatory work you should do:

• Define a user ID for running your LDAP server.

• Ensure that you have DB2 installed and set up for running the Call Level
Interface (CLI) and Open Database Connectivity (ODBC).

• Create the LDAP server DB2 database.

• Create the LDAP server configuration file.

These steps are described in the following section.

6.3.3.1 Define a User ID for Running the LDAP Server
You need to define a RACF user ID under which to run the LDAP server. This
user ID has to be a so-called superuser (UID equals zero). In addition, you
need to give this user ID relevant access to the FACILITY class profiles
(BPX.DAEMON and BPX.SERVER) if you are using thread-level security.
Finally, you would have to permit the user ID access to the MVS data sets
defined in the LDAP procedure JCL.

The following sample RACF commands can be used to define LDAPSRV:

ADDGROUP LDAPGRP SUPGROUP(SYS1) OMVS(GID(20))
142 LDAP Implementation Cookbook

ADDUSER LDAPSRV DFLTGRP(LDAPGRP) OMVS(UID(0) PROGRAM(’/bin/sh’))
PERMIT BPX.DAEMON CLASS(FACILITY) ID(LDAPSRV) ACCESS(READ)
PERMIT BPX.SERVER CLASS(FACILITY) ID(LDAPSRV) ACCESS(UPDATE)

You also need to define a user ID for the procedure that will be used to start
the LDAP server. The following commands can be used:

RDEFINE STARTED LDAPSRV.** STDATA(USER(LDAPSRV))
SETROPTS RACLIST(STARTED) REFRESH

6.3.3.2 Setting Up DB2 to Run the LDAP Server
The LDAP server requires you to have DB2 Version 5 installed on the system.
Make sure the necessary maintenance for the LDAP server is installed
because there is a specific PTF level for DB2 V5 required (PQ09901 is the
APAR number). Edit and submit the job in GLDHLQ.SDSNSAMP(DSNTIJCL),
where GLDHLQ is the high-level qualifier used for your DB2 installation data
sets. See the section on setting up the DB2 Call Level Interface (CLI) runtime
environment in DB2 for OS/390 Call Level Interface Guide and Reference,
SC26-8959. You must run the job under a user ID with the necessary
database authority. If you have problems finding the job in your DB2 sample
library, you are probably missing some required PTFs.

The next task is to create a DB2 CLI initialization file. There is a sample file in
GLDHLQ.SDSNSAMP(DSNAOINI) that you should copy into a sequential
dataset with a name of your choice. (Note: this must be a dataset not a
sequential file in HFS. Also, the dataset must be FB 80.) Again, you can find
out more about the contents of this file in DB2 for OS/390 Call Level Interface
Guide and Reference, SC26-8959.

Figure 26 shows a sample DSNAOINI file.

Figure 26. Sample DSNAOINI file

; This is a comment line...
; Example COMMON stanza

[COMMON]
MVSDEFAULTSSID=yoursubsystemname
; Example SUBSYSTEM stanza for your DB2 subsystem name
[yoursubsystemname]
MVSATTACHTYPE=yourmvsattachtype
PLANNAME=yourCLIplanname
; Example DATA SOURCE stanza for your data source

[yourdatasourcename]
AUTOCOMMIT=0
CONNECTTYPE=1
Installation and Configuration 143

The term DATA SOURCE may be a bit confusing in tailoring the DSNAOINI
file to your specifications. The other name for this parameter is DB2 server
location, which may be easier to relate to. Be careful when you edit the file so
that you do not inadvertently destroy the square brackets in your initialization
file.

6.3.3.3 Creating the LDAP Server DB2 Database and Table Spaces
There is a sample script in GLDHLQ.SGLDSAMP(LDAPSPFI) that you should
tailor with your own resource names and then run the SPUFI (SQL Processor
Using File Input) script from the DB2 Interactive (DB2I). DB2I is a DB2 facility
that provides for the running of SQL statements, DB2 (operator) commands,
and utility invocation.

If you have an existing R5 or R6 LDAP BD2 database, you can migrate your
database using the ldapspfi.spufi.migrate file (LDAPSPMG in the sample
PDS). The recommendation is that you merge the information in this file with
the original sample file.

You should run this sample script under a user ID that has the SYSADM
authority. Depending on how you have set up your DB2 system, the double
minus signs may not be interpreted as comments, in which case, you have to
change them to your own standard (Figure 27).
144 LDAP Implementation Cookbook

Figure 27. Sample ldapspfi.spufi file

Save the LDAPSPFI member so that you can use it to delete (drop) the tables
when it becomes necessary (change the CREATEcommands into comments
and remove the comment characters (--) from the corresponding DROP

commands).

6.3.3.4 Creating the LDAP Server Configuration File
The LDAP server is highly configurable through a configuration file that allows
you to tailor most aspects of the server. The UNIX implementations of the
LDAP server call it the Stand-alone LDAP Daemon or SLAPD, which is why
the server itself and all the HFS configuration files for it use that name.

The sample configuration file
The default name for the directory used to install the LDAP server is /etc/ldap.
The sample directory for the configuration file and other dependent files is

--//***//
--//*
--//* Licensed Materials - Property of IBM

--//* 5647-A01
--//* (C) Copyright IBM Corp. 1997
--//*
--//***//
-- Use the following statements to create your LDAP Server DB2 database

-- and tablespaces in SPUFI. The database and tablespace names you
-- create will be used to update the database section of the LDAP
-- Server configuration file.
-- Change dddddddd to the name of the LDAP database name you want to create.
-- Change the aaaaaaaa to the LDAP entry tablespace name you want to create.
-- Change the bbbbbbbb to the LDAP 4K tablespace name you want to create.

-- Change the cccccccc to the LDAP 32K tablespace name you want to create.

create database dddddddd;
create large tablespace aaaaaaaa in dddddddd numparts 1 bufferpool BP32K;

create tablespace cccccccc in dddddddd segsize 4 bufferpool BP32K;

-- Use the following statements if you need to delete your LDAP Server DB2

-- from each line before you can run these statements.
-- Change dddddddd with the name of the LDAP database name you want to delete.

-- Change the aaaaaaaa to the LDAP entry tablespace name you want to delete .
-- Change the bbbbbbbb to the LDAP 4K tablespace name you want to delete.
-- Change the cccccccc to the LDAP 32K tablespace name you want to delete.

--drop database dddddddd;

--drop tablespace dddddddd.bbbbbbbb;
--drop tablespace dddddddd.cccccccc;
--drop tablespace dddddddd.eeeeeeee;

create tablespace bbbbbbbb in dddddddd segsize 4 bufferpool BP0;

-- Change the eeeeeeee to another LDAP 4K tablespace name you want to create.

create tablespace eeeeeeee in dddddddd locksize tablespace bufferpool BP0;

-- Change the eeeeeeee to another LDAP 4K tablespace name you want to delete.
--drop tablespace dddddddd.aaaaaaaa;

-- database and tablespaces in SPUFI. You need to remove the "--"
Installation and Configuration 145

found in the /usr/lpp/ldap/examples/sample_server directory. The /etc/ldap
directory is used as the name for the production directory. If you use a
different name, you must create symbolic links from the appropriate files in
your directory to the /etc/ldap directory. You should also make sure to save
copies of the original files prior to your starting to modify them for production
use.

To make your own configuration file, you could create a file, such as
myslapd.conf, and copy the contents of the default /etc/ldap/slapd.conf into it.
Note that the sample slapd.conf file assumes a simple configuration, and if
you want to make use of other capabilities (for example, use of multiserver,
use of sysplex support), you should read Chapter 6, "Configuring" in the
OS/390 V2R7 Security Server LDAP Server Administration and Usage Guide,
SC24-5861, for more detailed descriptions on how to tailor the slapd.conf file.
Figure 28 shows a sample file.

There are a couple of points worth noting in the way you specify values for
some of the parameters in the configuration file. First, when in doubt, you
should specify the full path name for your include files and the like. The other
point is the way in which you specify the name for the dsnaoini parameter
when you use an MVS data set. Note that you do not use any quotes or extra
indicators, just the fully qualified MVS data set name.
146 LDAP Implementation Cookbook

Figure 28. A sample SLAPD file

6.3.3.5 Grant DB2 Resource Authorizations
If a separate user is created to run the LDAP server, such as LDAPSRV as
used in the previous steps, you must grant this user ID the necessary
authorizations for DB2. Use the following commands, where <planname> is the
CLI plan name as specified in the DB2 CLI initialization file (see 6.3.3.2,
“Setting Up DB2 to Run the LDAP Server” on page 143), and <dbname> is the

#/***
* This file is shipped in code page IBM-1047 and must remain
* in code page IBM-1047.
***/
#/***
#*
* Licensed Materials - Property of IBM
* 5647-A01
* (C) Copyright IBM Corp. 1997, 1998
*
***/
#/***
* Filename slapd.conf
*
* This file is the LDAP Server configuration file for OS/390.
***/
#referral ldap://ldap.itd.umich.edu
include /etc/ldap/slapd.at.system
include /etc/ldap/slapd.at.conf
include /etc/ldap/slapd.oc.system
include /etc/ldap/slapd.oc.conf
port 389
securePort 636
security none
sslKeyRingFile /etc/keyfile.kyr
sslKeyRingFilePW xxxxxx
sslCipherSpecs 12288
maxthreads 0
maxconnections 0
waitingthreads 0
timelimit 3600
sizelimit 500
The following adminDN and adminPW options should be updated with
appropriate values. Remove the ’#’ to uncomment these options.
adminDN "cn=LDAP Admin,ou=Austin,o=IBM,c=US"
adminPW xxxxxx
###
rdbm database definitions
###
database rdbm GLDBRDBM
The following options must be filled in with appropriate values
for your DB2 setup, prior to attempting to run with the DB2 backend.
servername STLEC1
databasename LDAPDB
dbuserid HILDING
tbspaceentry LDAPTBSP
tbspace32k LDAP32K
tbspace4k LDAP4K
dsnaoini HILDING.ICF.DSNAOINI
suffix "cn=localhost"
suffix "o=IBM_US,c=US"
index cn eq,sub
index ou eq,sub
index sn eq,sub
index telephoneNumber eq,sub
index title eq,sub
readOnly off
Installation and Configuration 147

name of the database as defined in SLAPD configuration file (see 6.3.3.4,
“Creating the LDAP Server Configuration File” on page 145).

grant execute on plan <planname> to LDAPSRV
grant select on sysibm.systables to LDAPSRV
grand dbadm on database <dbname> to LDAPSRV

6.3.3.6 Creating Entries in the SLAPD Database
Your LDAP directory has to be populated with the entries that you want to be
able to look up in the applications that are going to use the directory. For this
reason, you need to create an LDIF file and run the ldif2db utility program to
populate your LDAP directory. You can find a sample LDIF file, sample.ldif, in
/usr/lpp/ldap/examples/sample_server. Add an additional suffix in your
slapd.conf file, as shown in the example in Figure 28, where a suffix
<o=IBM_US,c=US> has been added. Do not remove the suffix
<cn=localhost>.

Keep in mind that, if your directory entries have information in them that is not
defined in the default directory schema, you have to update the default files
as described in “Directory Schema” of the OS/390 V2R7 Security Server
LDAP Server Administration and Usage Guide, SC24-5861.

6.3.3.7 Starting the LDAP Server
With all the configuration and DB2 work done, you are now ready to start the
LDAP server. You can either start it from UNIX Systems Services (USS) or by
using JCL. There are a number of things that have to be addressed, however,
and they are not pointed out all that clearly in the documentation. You may
want to use the following checklist when you start working with the LDAP
server:

• Environment variables

• PATH
• LIBPATH
• NLSPATH
• MANPATH
• _CEE_ENVFILE
• LDAP_BASEDN

• TCP/IP configuration

• RESOLVER_CONFIG

• Language specifications

• LANG
148 LDAP Implementation Cookbook

Environment variables
Especially if you are already running other USS applications, such as a Web
server, you have set up your specifications for your working environment
accordingly. With the LDAP server as an addition to your existing
environment, you have to add the new paths into the existing ones. If your
path for help text is specified as MANPATH=/usr/man/%L, you may start
experiencing results like the following:

man ls
No Manual entry for "ls"

There are various ways of fixing the preceding problem, but one of the
simplest is to change the environment variable to MANPATH=/usr/man/C. In
working with the LDAP server, the following environment variables were found
to be quite useful not only for running the LDAP server but also for running
tools like ldapsearch:

PATH=/bin:/usr/bin:/usr/sbin:/usr/lpp/ldap/sbin:.
LIBPATH=/lib:/usr/lib:.
NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lpp/ldap/lib/nls/msg/%L/%N
MANPATH=/usr/man/C
LANG=En_US.IBM-1047
_CEE_ENVFILE=/etc/ldap/slapd.envvars
LDAP_BASEDN=o=IBM_US,c=US
RESOLVER_CONFIG=//’TCPIP.INTRA.TCPPARMS(TCPDATA)’

The various PATH variables are specifying multiple paths with a colon
between one path and the next. Starting with OS/390 R7, the setting of the
LANG variable can also be C instead of En_US.IBM-1047.The LDAP_BASEDN
does the same thing as the suffix <o=IBM_US,c=US> in the LDAP
configuration file. The RESOLVER_CONFIG variable is just used to tell TCP/IP
where the profile information is to be found. The main use for these variables
is to make it simpler to run the various LDAP utility programs, such as
ldapadd, ldapmodify and ldapsearch.

Starting the server from HFS
Depending on your settings for PATH, as discussed above, you can start
slapd in one of the following ways:

/usr/sbin/slapd -f myslapd.conf

or

slapd -f /etc/ldap/myslapd.conf

The -f myslapd.conf parameter denotes the configuration file you previously
created.
Installation and Configuration 149

Running the server as a started task
There is a sample procedure for running the LDAP server as a started task in
GLDHLQ.SGLDSAMP(LDAPSRV), where GLDHLQ is the high-level qualifier
used when installing the LDAP code. Customize the LDAPSRV JCL and start
the job from console or SDSF. Also be sure to have STEPLIB setup to
reference GLDHLQ.SGLDLINK before starting the job.

When SLAPDhas been started and is ready, the message:

GLD0122I SLAPD is ready for requests

is displayed.

The SYSTCPD DD card is an addition that might be useful to help the LDAP
server resolve some TCP/IP name resolution tasks.

6.3.4 Unconfiguring and Uninstalling the Server
Because the LDAP server installation is a normal SMP/E function,
unconfiguring and uninstalling LDAP will use the same procedure as any
SMP/E uninstallation would do.

6.4 OS/400

In general, the LDAP DB2 server that runs on OS/400 supports the LDAP V2
protocol. The server supports referrals and is capable of replicating its
information to other LDAP-capable servers. Replication is done using the
LDAP protocol.

Similar to the LDAP server for OS/390, there is one difference between the
OS/400 and AIX implementations worth noting. Directory entry data is stored
in the DB2 backing store in so-called wire format. Thus, whatever information
is stored into the directory will be returned as it was entered. However, in
order to support attribute-based searching, character string data is converted
to code page 37, which contains the IA5 character set supported by LDAP
V2. During this conversion, any characters not representable by local code
page 37 are translated with some loss of information during the translation.
This will affect attribute-based searches for entries where the entry data
contains these characters.

The OS/400 directory server is currently based on LDAP V2 (time of writing).
It utilizes DB2/400 to store LDAP information, uses a new ACL (Access
Control List) design to protect LDAP entries, and uses the Operations
Navigator for administration.
150 LDAP Implementation Cookbook

The OS/400 LDAP utilities include shell utilities to search, add, delete, and
modify LDAP entries. Symbolic links that point to these are created so that
they can be easily used in the OS/400 QShell Interpreter (qsh). It also
includes interchange utilities to exchange data between the AS/400 and other
servers via LDIF (LDAP Data Interchange Format).

6.4.1 System and Software Requirements
The following are the system and software requirements for LDAP server on
AS/400:

• OS/400 V4R3 or later

• Option 32 of Operating System/400, OS/400 Directory Services, which
includes:

• OS/400 LDAP Directory Server
• OS/400 LDAP Client APIs & Utilities
• Publishing APIs and GUI
• Windows 9x/NT Client

• Option 30 of Operating System/400, the OS/400 QShell Interpreter

• 5769-JV1, AS/400 Developer Kit for Java to utilize Sun’s Java Naming and
Directory Interface (JNDI)

6.4.2 Installing the Server
Before you can configure the directory server, you must install the Directory
Services option of OS/400. Directory services may already be installed on
your AS/400. To install the Directory services option, take these steps:

1. Ensure you have both *ALLOBJ and *IOSYSCFG special authorities.

2. Insert the CD-ROM that contains OS/400.

3. Type GO LICPGMon the AS/400 command line, then press Enter .

4. Choose option 1 from the Work with Licensed Programs menu, then press
Enter .

5. Enter 1 in the Option field to the left of Option 32, OS/400 - Directory
Services, then press Enter .

6. In the Installation device field, enter the name of the CD-ROM drive where
you inserted the OS/400 CD-ROM.

7. Press Enter to proceed and complete the installation.
Installation and Configuration 151

6.4.3 Configuration
There is no command line interface for configuring the directory server. The
AS/400 Directory Services provides a wizard in the Operations Navigator to
assist you in configuring the LDAP directory server. Use this wizard when you
initially configure the directory server. You may also use the wizard to
reconfigure the directory server.

The Operations Navigator lets you configure the LDAP server on the AS/400
system. The configuration task is one of the network server tasks. You must
have both the *ALLOBJ and *IOSYSCFG special authorities to be able to run
the configuration wizard. To configure the LDAP server, click Network (A) -->
Servers (B) --> TCP/IP (C), as shown in Figure 29. Then, right-click on
Directory (D). If this is the first time configuration is being run, the pop-up
menu will appear as shown at the bottom in Figure 29. If this LDAP server
had been configured before, the LDAP Administration Pop-Up menu will
appear as shown in Figure 30.

Figure 29. Operations navigator LDAP administration

If this is the first time to configure the LDAP server on your AS/400, click
Configure (E in Figure 29) to launch the configuration wizard as shown in
152 LDAP Implementation Cookbook

Figure 31, which will guide you through the configuration task. If the LDAP
server was already configured, click Reconfigure (G in Figure 30) to change
the LDAP server’s configuration.

Figure 30. LDAP administration pop-up menu

To begin the configuration process using the configuration wizard, click on
Next (Figure 31).

When you use the wizard to reconfigure the directory server, you actually
start from scratch. The original configuration is deleted rather than
changed. You can modify the directory server configuration by right-clicking
Directory and selecting Properties . This does not delete the original
configuration.

Configuration vs. Reconfiguration
Installation and Configuration 153

Figure 31. LDAP configuration wizard - Welcome screen

Enter the AS/400 library for the relational database in the field as shown in
Figure 32. The library name must be specified using IFS naming. You should
specify a library that will only be used by the directory server. Click on Next to
proceed. If the library you specified does not exist, the wizard will ask you for
confirmation to create this library. If you have multiple ASPs (Auxiliary
Storage Pools) on your system, you will be prompted to select an ASP.
154 LDAP Implementation Cookbook

Figure 32. LDAP configuration wizard - Specify database library

Specify the distinguished name (DN) of the administrator and the password
for the directory server in the fields shown in Figure 33. The name string
uniquely locates the entry within your directory server directory. Type the
name and password values and click Next .

Figure 33. LDAP configuration wizard - Administrator name
Installation and Configuration 155

Enter the directory suffixes at the next screen; an example is shown in Figure
34. You must configure at least one suffix in addition to the <cn=localhost>
(for example, <O=IBM, C=US>). Type the directory suffix, then click Add to
add the entry to the directory server. After you have added all the entries you
need, click Next to continue.

Figure 34. LDAP configuration wizard - Choose directory suffixes

Using the check box shown in Figure 35 as an example, specify if you want
the LDAP server to start when TCP/IP starts. Make your selection and click
on Next to continue.
156 LDAP Implementation Cookbook

Figure 35. LDAP configuration wizard - Start server option

Review the configuration summary screen shown in Figure 36. Verify the
settings for the directory server. If needed, you can go back and correct
configuration mistakes by clicking Back . When all the information is correct,
click Finish to complete the configuration.

Figure 36. LDAP configuration wizard - Configuration summary
Installation and Configuration 157

This concludes the configuration of the IBM SecureWay Directory on AS/400.

After you have finished the configuration, you can start and stop the directory
server using the following commands. To start the LDAP server, type:

STRTCPSVR SERVER(*DIRSRV)

Similarly, to stop the LDAP server, type:

ENDTCPSVR SERVER(*DIRSRV)

During the first start, all needed files are automatically created in the
relational database library you specified during configuration.

6.4.4 Uninstalling the Server
If you no longer wish to run an LDAP directory server on your AS/400, you
can remove it by uninstalling the AS/400 Directory Services option of OS/400.

To do this, take these steps from a 5250 session to your AS/400:

1. Type GO LICPGM, then press Enter .

2. Choose option 12 from the Work with Licensed Programs menu, then
press Enter .

3. Enter 4 in the Option field to the left of Option 32, OS/400 - Directory
Services, then press Enter .

After you complete this procedure, the server will be uninstalled. However,
both the schema files and the library that contains the server's data remain
on the AS/400. This allows you to easily reinstall the AS/400 Directory
Services and to begin running the server again.

If you are sure that you will not want to run the LDAP directory server in the
future, you may delete these items. The schema files are located at
/QIBM/UserData/OS400/DirSrv and their names are UsrAt.txt and UsrOc.txt.
158 LDAP Implementation Cookbook

Chapter 7. LDAP Data and System Administration

In Chapter 4, “Managing an LDAP Directory” on page 77, management of an
LDAP directory from a high-level planning perspective was explained. This
chapter exploits in more detail the administration of an IBM SecureWay
Directory server system and related tasks. Administration of the IBM
SecureWay Directory is most conveniently done through the provided
Web-based Administrator Graphical User Interface (GUI). This chapter also
gives an overview of the utilities provided with the IBM SecureWay Directory
and the IBM SecureWay Directory Client SDK that can be run from a
command prompt to manage product specific data. Finally, the schema file(s)
management is also describes in this chapter.

7.1 The Directory Management Tool

The IBM SecureWay Directory Management Tool (DMT) is an easy-to-use,
Java-based graphical tool for directory administrators for browsing and
checking directory objects and to add and update such objects. It is included
in both the IBM SecureWay Directory and the IBM SecureWay Directory
Client SDK. The following figure shows the initial DMT window.

Figure 37. IBM SecureWay directory management tool
© Copyright IBM Corp. 1999 159

7.1.1 Startup and Configuration
The DMT can be started by running the dmt executable program
(x:\<ldap_dir>\bin\dmt.exe in Windows NT) or by selecting the Directory
Management Tool menu item under the IBM SecureWay Directory start
menu (Windows NT). The DMT uses a configuration file dmt.conf that stores
some basic information. A default, sample dmt.conf file, looks like this:

server1.url=ldap://localhost:389
server1.security.bindDN=
server1.security.password=
server1.security.ssl.keyclass=
server1.security.ssl.keyclass.password=

As can be seen, the dmt.conf file stores information about an LDAP server to
which it connects automatically upon startup. Any server specified in this
configuration file will show up as a tab at the top of the left side in the DMT
window (see Figure 37). This file can be edited manually, for example, to add
additional LDAP servers to which you want DMT to connect automatically in
order to manage its contents. The bindDN and password information is
optional; if not specified, DMT will bind to the server as anonymous, but you
can authenticate later through the tool. Additional servers can also be added
(or deleted) by clicking the respective button in the lower left corner of the
DMT window. This, however, will not update the dmt.conf configuration file.

Bear in mind, unless you authenticate as a user with appropriate privileges
(for example, as a directory administrator), that you have only anonymous
privileges when using the DMT. To authenticate, select Server , then Rebind
from the menu tree on the left-hand side. You will be prompted for a user DN
and a password.

The use of the DMT is rather intuitive and does not need much explanation.
We recommend that you use the DMT to familiarize yourself with the directory
structure (even if you have only the sample directory imported from the
sample.ldif file installed) and the many object classes and attributes defined
by default that are not mentioned elsewhere in this book. The example in the
following section illustrates the ease of use of the DMT.

Specifying a password in the configuration file exposes a significant
security risk. It is, therefore, a good practice not to specify a bindDN and
password in the configuration file and bind to the server through the GUI
instead.

Note
160 LDAP Implementation Cookbook

7.1.2 Example: Expanding the Schema
The following example adds two attributes to the ePerson object class: A job
description (jobDesc) and a job level (jobLevel) attribute. The former shall be
a case-insensitive string, the latter an integer. Such an example has been
discussed on page 32, and two possible solutions have been suggested. We
choose the second proposal by adding a separate auxiliary class (myPerson)
that contains the additional attributes (jobDesc and jobLevel). The following
shows what you have to do in order to accomplish this with the DMT.

First of all, you need to add the two attributes jobDesc and jobLevel. In the
DMT window, expand the Schema and Attributes menu tree on the left hand
side, then click on Add attribute . In the dialog that appears, fill in the
information for jobDesc as shown in Figure 38.

Figure 38. Adding an attribute

Optionally, you could define matching rules and properties for the DB2
database. We keep it simple and just define the attribute’s name and its
syntax to be a case-insensitive string.

After this, you would do the same for the jobLevel attribute where INTEGER
would need to be selected as the syntax.
LDAP Data and System Administration 161

Next, a new auxiliary object class, myPerson, needs to be added. Select
Schema -> Object classes -> Add object class from the menu tree on the
left. The dialog shown in Figure 39 shows that you are allowed to enter a
name (myPerson), a description, and a superior object class. Then, click on
the Optional attributes tab at the top and add jobDesc and jobLevel to the
list on the right (Figure 40). Then click OK to add the object class.

Figure 39. Define a new object class - Name and superior class
162 LDAP Implementation Cookbook

Figure 40. Define a new object class - Optional attributes

The new object class has now been added, and you can proceed and add
objects (people entries) to the directory using this object class. Select Tree ->
Browse tree in the menu tree on the left and then expand the directory tree
as necessary to select (highlight by single-click) the entry to which you want
to add a person (in our example, <ou=ITSO,ou=Austin,o=ibm,c=us> has
been chosen). Then, click the Add button at the top to add a new entry to
launch the following dialog (Figure 41):
LDAP Data and System Administration 163

Figure 41. Add a new person using the new object class

The new person in our example is John Smith and the Other entry type has to
be selected (Figure 41) because we use a non-standard entry type. Click on
OK to proceed to the next dialog that requires you to select the object
class(es) for this entry (Figure 42). We need to select the person structural
object class and then the ePerson and the new myPerson in the auxiliary
object classes list underneath (notice that this is a multi-select list). The
Current definition tab shows you all the attributes for the object for
information and verification. Click OK to move on to the attributes dialog
where the attribute values can be defined (Figure 43).
164 LDAP Implementation Cookbook

Figure 42. Select the object classes for the new entry

Make sure that the required attributes (cn and sn, inherited from the person
object class) are filled in and scroll down the list to see the new attributes
jobDesc and jobLevel (Figure 43). Click Create to create (add) the new entry.

Figure 43. Enter the attribute values for the new entry
LDAP Data and System Administration 165

After this entry has been added, it shows up in the Browse tree view of the
directory as shown highlighted in the following figure.

Figure 44. New person entry in the directory tree

This simple example shows how easily the directory schema can be
dynamically modified and applied to entries. It is, however, recommended to
use the standard schema whenever possible to avoid possible complications
when moving contents to or from other directories or when upgrading to
future releases as discussed in Chapter 2, “Schema and Namespace” on
page 31.

7.2 The Administrator Graphical User Interface

The Web-based Administrator Graphical User Interface (administration GUI)
is provided with the IBM SecureWay Directory V3.1 (on AIX and Windows NT
at the time of writing) to assist the administrator. This interface allows the
administrator to configure the directory server and the underlaying database
and to administer the tasks associated with maintaining the database. The
procedures for tasks are displayed step-by-step. Using the administration
GUI ensures that no mistakes are made during configuration and
management tasks by verifying that the correct options are selected and are
then formatted correctly. You can access the administration GUI using an
166 LDAP Implementation Cookbook

HTTP connection from a Web browser on any system to the Web server. This
interface allows the administrator to set up and maintain a database/directory
LDAP server from virtually any system on the network.

7.2.1 Launching the Administrator GUI
To get the administrator GUI, use an HTTP connection from a Web browser.
Type in the following Web address:
http://<web_server>:<port>/ldap

Where:

<web_server> is the name or IP address of your Web (LDAP) server, and
<port> is the port your server is using.

You are then prompted for the administrator’s distinguished name (DN) and
password. Use the same DN and password you defined when you configured
the LDAP server (see Chapter 6, “Installation and Configuration” on page
131), for example <cn=root,ou=ibm_us,c=us>. If you do not remember the full
name, you can find the aminDN at the top of the slapd.conf file located in <ldap
directory>/etc. For example, you can find the following line:

adminDN "cn=root,ou=ibm_us,c=us"

If login was successful, the administrator GUI opens in your browser.

7.2.2 Window Layout
The administration GUI’s general window layout (see Figure 45) consists of
three areas, which are:

• The assistance area
• The navigation frame
• The work area
LDAP Data and System Administration 167

Figure 45. Initial administration interface

The Navigation frame is the left frame in the window. It contains all objects
that you can select to work with the directory. They are:

• Introduction – Displays the welcome screen
• Server – Work with general server settings
• Suffixes – Work with (list, add, delete) the server’s suffixes
• Replicas – Work with replication setup
• Database – Work with database properties
• Directory/Access control – Browse the DIT, work with DNs
• Access groups – Work with access groups
• Access roles – Work with access roles
• Error log – Browse, clear the server’s error log
• Logoff – Logoff from the administration GUI

Only tasks available for the server are shown. If you are on a replica server,
for example, and you want to change access control for one object, the task
will not be shown because you must be on a master server to perform this
task. When you click on an object in the Navigation frame, the task options
are displayed in the work area to the right. Note that the small triangles (also
168 LDAP Implementation Cookbook

called twisties) on the left denote that this object has sub-objects that will be
shown as you click on the particular object.

The Assistance area is located on the top of the right frame of the window.
From this area, you can restart the server and get online help. It also displays
some status information, such as on which server you are working and what
you are currently doing, as for example, Working with server suffixes.

The Work area is the large area to the right of the Navigation frame. This is
where interaction occurs for the various functions.

7.3 Database Configuration

The first step you must perform as a directory administrator after installing the
IBM SecureWay Directory is to configure the database. Note that this might
have already been done during installation and basic configuration.

Your namespace and directory structure are supposed to be defined with the
type of data you are going to store in the directory. If you want to exercise the
LDAP administration without your own data, you can use the sample file
provided with the LDAP package. The filename is sample.ldif, and it can be
found in the examples subdirectory underneath the LDAP installation
directory (for example, C:\Program Files\IBM\LDAP on Windows NT).

Before configuring the database, you have to decide if you want to use your
own database or the default one proposed by the product. For test
environments and many installations of the LDAP directory, the default setup
will be adequate. However, some specific installation may need or want to
rearrange the data for performance and/or extensibility reasons. If you are in
doubt, we recommend that you study the White Paper that is available to get
a better understanding about how the LDAP directory is implemented and
how the LDAP directory tablespace is organized along with other pertinent
information. You can get this White Paper from the Web site:
http://www.ibm.com/software/network/directory/library/whitepapers/ldap_scaling.html

To configure the database, click on Configure database in the Introduction
work area to get the following window (in Figure 46, only the relevant portion
of the work area is shown). Select the type of database you want to use, then
click on the Next button.
LDAP Data and System Administration 169

Figure 46. Configure database

The following two sections explain the two options.

7.3.1 Default Database
The default name for the database is ldapdb2; the DB2 instance owner
created is also ldapdb2.

Click on the Use default database radio button, then click on Next> to
proceed to the next panel. If a database already existed on that system, you
will be given the chance to enter a file name for a backup file (in LDIF format)
before the database is erased and recreated. On the next panel, define the
DB2 location.

• Choose the hard disk location for Windows NT.

• For AIX, the default directory is /home/ldapdb2, which cannot be changed.
If your database resides at another location (other than /home/ldapdb2),
you should add a link to that directory. For example, if your database is at
/ldapdb2, issue the following command:

ln -s /ldapdb2 /home/ldapdb2

• Click on Finish to start the creation of the database.
170 LDAP Implementation Cookbook

7.3.2 Custom Database
If you want to use your own database, the minimum size should be
approximately 80 Mb. Select Use custom database (Figure 46) and click on
Next> , then follow the instructions (optionally, backup an existing database).
The following information is needed for setting up the database:

• Database name
• Database instance
• Database system administrator ID
• Database system administrator password

Click on Finish to start the configuration.

7.4 Defining a Suffix

Before entries can be added to an LDAP directory, a suffix must be defined
for that directory. A suffix specifies the distinguished name (DN) for the root of

It is recommended to back up any current database that might have existed
before creating the new one. The current database will be deleted.

Note

It is recommended to back up any current database that might have existed
before creating the new one. The current database will be deleted.

The database name ldapdb2 is reserved for the IBM SecureWay Directory;
do not use it for your own database name.

Note

DB2 is a powerful and flexible product. An experienced administrator may
want to tailor its performance and scalability characteristics to a specific
environment. To do that, DB2 offers many methods and techniques to
optimize database performance after significant database updates have
been done or as a regular maintenance practice.

DB2 database management is beyond the scope of this book, but you can
find information on tuning DB2 and how the LDAP directory utilizes DB2 as
the directory storage facility on the following Web pages:

http://www.ibm.com/software/data/db2/library

and
http://www.ibm.com/software/network/directory/library/whitepapers/ldap_scaling.html

DB2 Scalability and Performance
LDAP Data and System Administration 171

a directory in the local database. It is the highest entry stored in the directory
by a server. Each entry stored by the server ends with this suffix, and each
entry to be added to the directory must have a suffix that matches one of the
server’s suffix defined on server. An LDAP server can house multiple suffixes,
and, thus, you can add and delete suffixes to or from the directory:

To add a suffix to the LDAP directory, perform the following:

1. Click on Suffixes in the Navigation frame

2. Click on Add a suffix in the Work with servers suffixes work area (or in the
Navigation frame if you clicked on the twistie next to Suffixes)

3. Type the suffix DN in the text entry field, for example: o=ibm_uk,c=uk

4. Click on Add a new suffix .

5. Restart the server.

To delete a suffix from a directory:

1. Click on Delete suffixes .

2. Click on the box next to the suffix you want to delete.

3. Click on the Delete suffixes button.

4. Restart the server.

7.5 Database Population

To add entries to the directory, you can either use the DMT (see 7.1, “The
Directory Management Tool” on page 159) or you must provide the data in a
file in LDIF format. LDIF (LDAP Data Interchange Format) is a standard
format for representing LDAP entries in text form (see also 4.7.1, “The LDIF
File Format” on page 93). Also, a suffix (DN) must exist on the server (see
previous section), and all entries to be added must have a suffix that matches
this DN value.

Removing a suffix will disable access to all directory data underneath that
suffix. This does not physically remove the data from the directory. Access
can be restored to a deleted suffix by adding it again. The suffixes are
recorded in the slapd.conf file (though it is not recommended to manually
edit this file).

Note
172 LDAP Implementation Cookbook

7.5.1 Adding Data Entries
There are two ways to import an LDIF file, either through the graphical user
interface (GUI) or by using the appropriate command on the command line.
Both methods are described below.

7.5.1.1 Using the Graphical User Interface (GUI)
For the example below, the sample LDIF file shipped with the product was
used. Some editing is usually necessary to adapt it to the test environment,
for example, to define the correct suffix. In addition, an error was introduced
on purpose in the LDIF file to show the server’s behavior.

1. Click on the twistie next to Database in the Navigation frame and then on
Add entries in either the Navigation frame or the Working with the
backend database work area.

2. Specify an LDIF file. In this example, the sample.ldif file provided with the
product was used.

<ldap root directory>/examples/sample.ldif

This file has been modified manually for demonstration purposes:
<o=IBM_US> was changed to <o=ibm_uk>, <c=US> was replaced by
<c=uk>, and <ou=Austin> was changed to <ou=nhb>. The DN for Michael
Lord was changed to contain an error (<o=ibm_nl, c=nl>, which is an
invalid suffix). This is an excerpt from the altered LDIF file:

dn: o=ibm_uk, c=uk
objectclass: top
objectclass: organization
o: IBM_US

dn: ou=nhb, o=ibm_uk, c=uk
ou: Austin
objectclass: organizationalUnit
seealso: cn=Linda Carlesberg, ou=nhb, o=ibm_uk, c=uk

dn: ou=In Flight Systems, ou=nhb, o=ibm_uk, c=uk
ou: In Flight Systems
objectclass: organizationalUnit
description: main product:Course Maker
businessCategory: aircraft
seealso: cn=Maria Garcia, ou=In Flight Systems, ou=nhb, o=ibm_uk, c=uk

dn: ou=Home Entertainment, ou=nhb, o=ibm_uk, c=uk
ou: Home Entertainment
objectclass: organizationalUnit
description: main product:TV Connection
LDAP Data and System Administration 173

businessCategory: Home Entertainment

dn: cn=Michael Lord, ou=Widget Division, ou=nhb, o=ibm_nl, c=nl
objectclass: organizationalPerson
cn: Michael Lord
sn: Lord
telephonenumber: 00-44-999-5838
internationaliSDNNumber: 999-5838
postalcode: 4681

3. Enter the location of the file containing the entries in the text entry field
and click on Add entries to database . This loads the LDIF file into the
directory. If the import was not successful, an error indication is shown in
the status line at the top (in Figure 47, only a portion of the window is
shown).

Figure 47. Importing an LDIF file (with errors)

4. If the import was not successful, such as in this case, click on Error logs
in the Navigation frame. An error message, such as the one in Figure 48,
will be shown.

Figure 48. Import error message

In this case, the error was caused because the suffix defined in the
directory (and the LDIF file) is <o=ibm_uk,c=uk>, but the entry for
<cn=Michael Lord> contains <o=ibm_nl,c=nl>.
174 LDAP Implementation Cookbook

7.5.1.2 Using the Command Line Tool
As an alternative to the GUI, the ldif2db utility can be used to load entries
from an LDIF file into a directory. The database and suffix must exist, and the
file must be in LDIF format. The syntax is:

ldif2db -i <input file>

The ldif2db utility may be used to populate an empty directory or to load data
into a directory that already contains entries. You should always check the
Error log from the GUI (or by browsing the error file defined in the slapd.conf
configuration file). If you want to change the location of this file, click on
Server in the Navigation frame, then Properties in the Working with the
LDAP server work area, click on logging in the Server properties work area
and change the Error log path. The server needs to be restarted for this
change to take effect.

More about the ldif2db utility can be found in 7.8.2, “The LDIF2DB Utility” on
page 189.

7.5.2 Verifying Data Entries
Scanning the error log is a good way to verify whether or not an update has
been successful. Remember that an LDIF file may contain a large number of
entries, and errors may occur on just single entries of such a bulk load or
update. For this reason, you should always check the error log. Another way
to check the success of an import, though not suitable for a large number of
entries, is to list the contents of the directory to verify if an entry is or is not
present. You can use the DMT, the administration GUI, or a command line
utility for checking entries.

7.5.2.1 Using the DMT
Select the Tree -> Browse tree function from the menu tree on the left-hand
side of the DMT window (see Figure 37) and then work your way down the
directory tree in the work area to verify whether a certain entry (or entries) is
correctly imported.

7.5.2.2 Using the GUI
1. Click on Directories/Access control in the Navigation frame.

2. Click on Browse tree in the Working with the entries in the directory work
area.

3. Click on the check box next to the suffix you want to display.

4. Click on the check box next to the top directory you want to display. For
example, if the directory was populated with the LDIF file of the example
LDAP Data and System Administration 175

above and you went down through the branch <ou=nhb>, you could not
find an entry for Michael Lord because it was refused due to an error.

The update was successful when all entries required to be in the directory are
effectively listed by the tool.

7.5.2.3 Using the Command Line Tool
The ldapsearch (see also 7.8.5, “The LDAPSEARCH Utility” on page 192)
utility can be used to check certain entries in the directory. For example, this
could be done with the following command:

ldapsearch -b "o=ibm_us,c=us" cn=*

This command will perform a search of all common names (cn) defined under
the suffix <o=ibm_us,c=us>.

7.5.3 Updating Data Entries
Directory entries can be updated one-by-one with the DMT or multiple at a
time by importing an LDIF file with appropriate update statements either by
using the GUI or using the command line tool as described below. Remember
that an LDIF file can only contain new entries or updates to current entries; it
cannot contain both in the same file (see also 4.7.1, “The LDIF File Format”
on page 93).

7.5.3.1 Using the GUI
Follow these steps to load an LDIF file with updates in it:

1. Create an LDIF file containing the updates for the entries.

2. Click on the Database twistie in the Navigation frame and then on Add
entries .

3. Enter the full path of the LDIF file and click Add entries to database .
Watch for any error indication after the file has been imported.

4. Optionally, you may use the Browse tree function to check if the new
entries have successfully been changed.

5. Click the optimize link in the Working with the backend database work
area to perform a database optimization (only recommended when major
changes have been made). Be aware that, during this reorganization, the
database is not available, and the LDAP server needs to be restarted
afterwards.
176 LDAP Implementation Cookbook

7.5.3.2 Using the Command Line Tool
The ldif2db tool can be used to load entries through an LDIF file into a
directory. The syntax is:

ldif2db -i <input file>

You can check the Error log from the GUI or by browsing the error log file as
defined in the configuration file slapd.conf. More about the ldif2db tool can be
found in 7.8.2, “The LDIF2DB Utility” on page 189.

7.5.4 Back up the Database
You can back up the database either using the GUI or using a command line
tool. The steps are described below.

7.5.4.1 Using the GUI
1. Click on Database in the Navigation frame.

2. Click on Backup in the Working with the backend database in the work
area.

3. Type the fully qualified name of the file to be created in the text entry field.
The file will be in LDIF format.

4. Click on the Backup database button to start backing up the database.

7.5.4.2 Using the Command Line Tool
The db2ldif tool (see also 7.8.4, “The DB2LDIF Utility” on page 192) can be
used to dump entries from a directory to a text file in LDIF format. The syntax
is:

db2ldif -o <output file> [-s <subtree>]

Be aware that the LDIF format does not honor any ACL settings, and that all
data is available in readable text.

It is recommended that you optimize the database after significant
database updates.

Note

The alternative solution for backup is to use native DB2 utilities. To do that,
you need to be authenticated to the database. Please refer to the DB2
documentation for more information about database backup and restore.

Using NativeDB2 Backup
LDAP Data and System Administration 177

7.6 Replication

Replication can be used to improve performance by providing a service from
multiple machines in order to satisfy a search as quickly as possible.
Replication can also be used to improve the availability of a directory service
by having more than one server. If one of them is temporarily down, the
directory service continues to be available from another server. The IBM
SecureWay Directory replication is based on a master-slave replication
model.

There are two types of directories with respect to replication: Master and
replica. LDAP refers to the master as master server and to the replica as
replica server. For a particular directory structure, there can only be one
master server; all updates are made on the master server, and these updates
are subsequently propagated to the replica server(s). Every replica server’s
database contains an exact copy of the master server’s directory data. A
replica server can be promoted as master server if required (for example, if
the master server is out of service for an extended period of time) in order to
allow write operations to the directory during this time.

Changes can only be made to the master server. If a replica server receives a
request to update an entry, this request will be returned with a reference to
the master server using a referral (see the following section 7.7, “Referrals”
on page 184).

If you remove a replica server, an action must be done on the master server
to remove the replica server’s definition. Without that, the master server will
continue trying to update the missing replica server.

7.6.1 Configuration
There are two types of configuration. The first is when the database of the
master server is not yet populated, and the second is when you are to create
a new replica server for a directory that is already loaded with data. Once the
configuration is done, you have to set up the replication process. Like
configuring replication, you have two possible scenarios: A simple setup for
simple configuration, and a general setup when the master server has
already been populated with data.

Because replica servers handle the same directory context, you must make
sure that all replicas defined in the directory context have the same suffixes
as the master server, and also the schema definitions must be the same on
each replica and the master server.
178 LDAP Implementation Cookbook

In the following, the two replication setups, as mentioned above, are
explained.

7.6.1.1 Simple Configuration
This method is to be used when the master server does not contain any data.
After basic configuration of each individual server, one or more of them need
to be configured as replica servers. The replica servers must be known by the
master server; once the directory data is loaded to the master server, the
replica servers can be started, and then the master server propagates the
data.

The steps are the following (assuming a master and one replica server):

1. At first, install and configure both servers, master and replica, without
regarding which one is going to be the master or replica.

2. Configure a database on each of them according to the description in 7.3,
“Database Configuration” on page 169.

3. The configuration of the replica server must be done before the
initialization of the master server. After basic configuration, each server is,
by default, a master server. Thus, the designated replica servers must be
configured to become replica servers:

• Click on the twistie next to Server in the Navigation frame of the GUI,
then click on Master/replica configuration .

• Type the master DN (for example cn=replica1) and the password (twice
for verification) in the text entry fields.

The master DN is used by the replicas to communicate with the master
server. It can be any name, but this name must be the same on all
replicas in the directory context, and it must be the same as defined on
master server (see below).

• Type the master server’s hostname that replicas return to the client for
an update request on it in the Referral text entry field.

• Click on the Apply button to initiate the configuration change.

• Click on Suffixes in the Navigation frame and then on Add a suffix .
Add the suffix as required, but do not restart the server at this time (as
suggested by the GUI) because the master server needs to be
configured before starting the replica with suffixes information.

4. The master server can now be configured.

• Click on Replicas in the Navigation frame of the GUI, then click on
Add a replica .
LDAP Data and System Administration 179

• Enter a common name for the replica in the ’cn=’ text entry field. This
name must be unique in the directory context. For example, you could
use the hostname of a replica server.

• Enter the hostname of the replica server (fully qualified domain name if
the domain is not the same as master server) in the host name text
field.

• Verify the port number; it should be 389 for unsecured connections or
636 if using SSL. Also, if SSL is being used, set the encryption setting
to YES.

• Select the update interval immediate.

• Type the master DN (for example cn=replica1) and the password (with
verification) as defined in the replica configuration (see above) in the
text entry field.

• Click on Add replica button to initiate the configuration change.

The master server is now defined and has the knowledge of one or more
replica server(s). The current list of replicas known by the master server
can be checked as show at the next step.

5. Check the list of replica (optional): Click on Replicas in the Navigation
frame and then on List replicas . You get a panel with the information
about replicas previously set up as shown below in Figure 49.

Figure 49. List of replicas

6. Initial replication setup for simple configuration: You have now configured
a master server and a replica server in your directory context. Next, you
have to ensure that all data that is now imported to the master server is
properly replicated to the replica server.
180 LDAP Implementation Cookbook

• Load the initial directory data to the master server using either the GUI
or the command line utility ldif2db , but do not restart the master server
at this time.

• Start the replica server.

• Start the master server.

• The master server will now propagate the data that has been loaded to
the replica server. The data should be available on the replica server in
a short while.

Subsequently, if an update is made to the master server, the change will be
propagated automatically to the replica server.

7.6.1.2 General Configuration
The general configuration is used when you need to add a replica to an
existing directory context with a master server already operational with data
loaded. This general configuration can be used also to reload data onto a
replica that was out of service for some time.

The general process is to back up the data on the master server and to import
that data in the replica server. Most important is to ensure that the data
loaded into the replica is an exact copy of the operational directory data on
the master server. The following steps explain the process:

1. Configure the replica server as normal. Do the basic configuration and
configure the database as described earlier. You can also add the suffix as
defined on the master server that you want to replicate, but do not start the
replica server at this time.

2. Configure the master server. Define the replica on your master server, as
described for simple configuration above, and do not forget to enter the
master DN (and the password) identically on both servers. This step will
cause the master server to begin queuing any updates for replication for
any replica servers.

3. Stop any updates on the master server. Select the Read only permissions
in the database properties work area, then click Apply . It is not necessary
to restart the server as suggested by the GUI.

4. Back up the database. Click on the twistie next to Database, and then
click on Backup . You will then have to enter a name for the LDIF output
file. Alternatively, the command db2ldif -o <output file> could be used for
the same purpose. This creates an LDIF file that you need to import on the
replica server in the following step.
LDAP Data and System Administration 181

5. Using the file created in the last step, import the data to the replica server
using either the GUI or the ldif2db -i <input file> or bulkload commands.
The bulkload utility is typically used for large databases (see 7.8.3, “The
BULKLOAD Utility” on page 189).

6. Start the replica server with suffixes defined in accordance with those
defined on the master server.

7. Start the master server (if not already running) or select Read / Write
permissions in the database properties and restart the server.

This creates a replication setup where the replica server is initially
synchronized with the master, and all new updates done on master will
automatically be propagated to the replica server.

7.6.2 Promote a Replica as Master
A replica server can be promoted as a new master server. This can become
necessary if the current master server is out of service (scheduled or
unscheduled) for an extended period of time, while the directory service must
remain available for updates.

The following are the configuration steps necessary if you are going to
promote a replica as master server.

1. The current master server must be offline (at least the IBM SecureWay
Directory server must be stopped). If necessary, click on the twistie next
to Server, then click on Startup/Shutdown to get to the Shutdown button
to turn the directory server off.

2. On the replica server, click on Server in the Navigation frame, then click
on Master/replica configuration . The following panel appears (Figure
50).
182 LDAP Implementation Cookbook

Figure 50. Promote a replica server as master server

3. Select the radio button to the left of Configure this server to be a master
(not replica).

4. Click on Apply to initiate the configuration change.

This server is now configured as a master server.

The description above promoted a replica server to a new master server
while the original master server was offline. At some time, the original master
server may be ready to be put back to service. There are two possible
scenarios when the initial master server is to be put back into service.

• Keep the newly configured master server (that is, the former replica
server) as the master server, and configure the original master server as a
replica server.

• Stop the newly elected master server and reconfigure it as it was before,
and keep the initial master server as the master server.

In both cases, you have to take care of the updates made to the directory on
the temporary master server during this time. All changes made on it will not
be forwarded automatically to the server that has later been configured as
replica server. You must follow the general configuration and general setup,
as described above, to get the directories synchronized. In other words, you
LDAP Data and System Administration 183

will need to import a full backup of the master server to assure identical
directory data.

7.7 Referrals

Referrals provide a way of splitting a namespace into separate partitions as
introduced in 1.1.3, “Distributed Directories” on page 6. Scalability,
availability, and manageability of an LDAP environment may be improved if
the directory is logically split. It can even be distributed to different server
machines and locations.

In the following example (see Figure 51), the global directory of an
organization has been split to form three directories located at different
locations (circled in Figure 51). This may be done to address network
performance and manageability issues. Also, two master servers are
configured with replica servers.

Master servers A and B each have a replica server, E and D, respectively.
These replica servers use a referral statement to point to their respective
master servers for operations requested by clients that cannot be handled by
the replica servers, such as updates to directory data. The referral statement
is defined during the configuration of replica servers and is located in the
slapd.conf file (see previous section 7.6, “Replication” on page 178). This
kind of referral is called a referral directive, or Superior Reference (X.500).
With LDAPV3, the directive in the configuration file is MasterServer for a
replica server to point to a master server.

The referral directive is not only used to point to a master server for that
particular replica server but also to point to servers that have a portion of the
namespace or, if there is a hierarchy, to point to the uppermost server in the
hierarchy.
184 LDAP Implementation Cookbook

Figure 51. Referrals

Note that master server A (and its replica server E) does not actually contain
any data; it only points to either server B or C (Figure 51).

To add such a referral directive, follow these steps:

1. Click on Server in the Navigation frame, then on Properties .

2. Type the hostname in the referral text field.

3. Click on the Apply button and restart the server to reread the
configuration file.

The second element for LDAP referrals is called a referral object (subordinate
reference in X.500). This type of referral is generally used to point downward
in the DIT to other naming context. The requested DN is located in the server
but does not have all the information to answer the request and returns
referral information to the client instead. The referral returned will be with the

Master Server A
Suffixes:

o=ibm_us,c=us

Replica Server D

Suffixes:

referral ldap://<server B>

referral ldap://<server A>

Replica Server E
Suffixes:

o=ibm_us,c=us

o=ibm_uk,c=uk
o=ibm_us,c=us

o=ibm_fr,c=fr

Database with:

Database with:
dn: o=ibm_fr,c=fr

ref: ldap://<host A>/<dn>
objectclass: referral

objectclass: referral
ref: ldap://<host A>/<dn>

o=ibm_us,c=us
o=ibm_uk,c=uk

Master Server B

Database with:
dn: o=ibm_us,c=us

o=ibm_uk,c=uk

o=ibm_us,c=us

o=ibm_fr,c=fr

o=ibm_fr,c=fr

o=ibm_uk,c=uk

dn and ref for servers
B and C

Suffixes:

Master Server C

Suffixes:

referral ldap://<server B>

referral ldap://<server C>

dn: o=ibm_uk,c=uk
LDAP Data and System Administration 185

server reference and object as start point of the subtree containing
information.

In an organization, for example, three suffixes could be defined on three
servers. To form the complete DIT (Directory Information Tree), all three
servers need to be linked. This task is accomplished with referrals. In this
case, the referral is an entry of objectclass referral with ref as attribute. The
ref attribute is the LDAP Web site of the referred entry on another LDAP
server. The GUI or the command line utility ldif2db must be used to add such
entries to the directory data.

Here is an example of an input files in LDIF format containing two referrals:

dn: o=ibm_fr,c=fr
ref: ldap://server_C/o=ibm_fr,c=fr
objectclass: referral
dn: o=ibm_uk,c=uk
ref: ldap://server_B/o=ibm_uk,c=uk
objectclass: referral

Do not forget to add the new suffixes to the respective server(s) before
updating the database. Suffixes can be created by using the GUI under the
Suffixes item in the navigation frame. On replica servers, the same suffixes
must be added to get a correct replication (don’t forget to restart the server
after adding a suffix).

To verify whether referrals works in the scenario described above, the
ldapsearch utility could be used as in the following example (refer to Figure
51):

On an LDAP client, this command could be run:

ldapsearch -h <Server B> -b "o=ibm_fr,c=fr" cn=*

If the setup is correct, the utility will return all cn’s under root <o=ibm_fr,c=fr> ,
which are not physically stored on server B but on server C because the
referral points to server C. If the search concerns data on server B, one could
type the command:

ldapsearch -h <Server C> -b "o=ibm_us,c=us" cn=*

The utility would return all cn’s under <o=ibm_us,c=us> physically stored on
server B although the search was addressed to server C.
186 LDAP Implementation Cookbook

7.8 Command Line Utilities

Administration of the data in a directory is a sensitive point. Data
administration concerns data management with a directory structure and
content. The IBM SecureWay Directory server comes with a set of
management utilities to assist an administrator in managing the directory’s
contents.

There are command line utilities that are used to handle large amounts of
data, for example, to import thousands of entries in one single step. These
utilities include the following:

• ldif

• ldif2db

• bulkload

• db2ldif

Because they access data in the database directly, the tools listed above
must run on a directory server. Note that the ldif2db , bulkload , and the
db2ldif utilities support the conversion from a specified local character set
to/from UTF-8 (see also 4.3, “UTF-8 Support” on page 83).

Another set of utilities are more geared towards handling of single (or a few)
entries at a time. These include:

• ldapsearch

• ldapmodify

• ldapdelete

• ldapmodrdn

• ldapadd

These latter tools use LDAP to communicate to an LDAP server, and they
can, therefore, be run on a server or a client. They are, therefore, included in
the IBM SecureWay Directory Client SDK. Source code for these utilities is
provided, too, to allow application programmers to modify them as required or
as sample programs to learn about LDAP programming. A parameter allows
to specify whether LDAP Version 2 or Version 3 is to be used (the default is
Version 2).

A brief explanation of each of the command line utilities follows. Additional
information can also be found in the online documentation that is included
with the product.
LDAP Data and System Administration 187

7.8.1 The LDIF Utility
LDIF (or LDAP Data Interchange Format) is a format for representing LDAP
entries in text form (see also 4.7.1, “The LDIF File Format” on page 93). It is
widely used and accepted as a de-fact standard, although it is, at the time of
writing, only defined in an Internet Draft (see Appendix A, “Standards” on
page 269). LDIF is used by the ldapmodify , ldapadd , and ldapsearch command
line utilities, which are explained later in this chapter. It is also used as input
to the ldif2db command, and it is the output format created by the db2ldif

command. The ldif utility is a shell-accessible utility that converts arbitrary
data values to a single attribute statement in LDIF. It reads input values from
standard input and produces output in LDIF format.

The basic form for an entry in an LDIF file is as follow:

dn: <distinguished name>
objectClass: <object class>
objectClass: <object class>
<attrtype>: <attrvalue
<attrtype>: <attrvalue>

An LDIF file consists of a series of records separated by a blank line, and a
record is a directory entry with a mandatory DN and at least an objectClass if
the record is a new entry. If the record is for an update only, the DN is
required. Some attributes, required by an objectClass, must be defined.

Attribute values can be clear text, such as a name, or it can be Base64
encoded binary data, such as for an JPEG picture. The ldif utility analyzes
input data and senses the type of data for the correct output. The following
example shows how ldif converts a JPEG file into one single attribute
statement of an LIDF file:

ldif -b jpegPhoto < Photo.jpg
jpegPhoto:: AQFjZCAvdXNyci9scGRhcAoAY2QgL3ci9sZGFwCgBjZCBldGMKAGxzCgBjZCBia

W4KAGxzCgBjZCBjb25maWcKAABjZCAuLi9jb25WcKAGxzCgBjZCAuLi8KAGNkIHNiaW4KAABsc
...
W51cy4qCgAAY2QgL3Vzci9sZGFwL2V0YwoAY2Q3Vzci9sZGFwLwoAAGxzCgBjZCBiaW4KAGxzC
goAAGxkaWYgeHl6CgBscyAtbAoAAGxkaWYgLWIganBlZ1Bob3RDwuc2hfaGlzdG9yeQoA

The output created by ldif (shortened here in this example) is a Base64
encoded attribute line in LDIF that represents a JPEG photo. If the -b option
is not specified and the input line contains only printable ASCII characters,
then the generated output line(s) will not be Base64 encoded.
188 LDAP Implementation Cookbook

7.8.2 The LDIF2DB Utility
The ldif2db utility is used to load entries from a file in LDAP Directory
Interchange Format (LDIF) into a directory. The database must already exist
and so must the suffixes under which new entries are being added. The
ldif2db utility may be used to add entries to an empty directory database or to
a database that already contains entries.

The syntax is:

ldif2db -i <input file>

No additional parameters other than the filename of the LDIF input file are
necessary since all other information (such as the suffix) is contained in the
LDIF file.

7.8.3 The BULKLOAD Utility
Bulkload is used to load a large amount of data in LDIF format. The syntax is:

bulkload -i <input file> [-f <configuration file>]

The -f parameter may be used to specify an alternate slapd.conf
configuration file. The default is <LDAP root directory>/etc/slpad.conf. The
bulkload utility must not be executed while the server is running. A schema
checking process verifies that individual directory entries are valid based on
the object class definitions and attribute type definitions found in the
configuration files(s). This will add some more time to load data, but it is the
safest method to ensure that the data being loaded has the correct schema.
Schema checking is controlled by the SCHEMACHECK environment variable.
It can be set to YES, NO, or ONLY. The first two options control whether or
not schema checking is performed during data import. The last, ONLY,
specifies that no data shall be imported, but schema checking will be done
with the data.

7.8.3.1 Tips to Consider Prior to Doing a Bulkload
The following tips are extracted from a White Paper that can be found at:
http://www.ibm.com/software/network/directory/library/whitepapers/ldap_scaling.html:

• On AIX, if the LDIF file you are loading contains a large number of entries,
you may want to edit the /etc/security/limits and change the limits to
unlimited (-1). Note that when you change them, you need to re-login for
the change to take effect. The reason this must be done is that the
bulkload tool consists primarily of scripts that parse the LDIF data into
database ready files. In order to process large amounts of data, it is best
to set the limits to unlimited. If you have set the limits to unlimited, and you
LDAP Data and System Administration 189

still have problems using bulkload , the only other alternative is to break up
the LDIF file into smaller pieces.

• Make sure that you have the correct object class and attribute type
definitions set up for the LDIF data that you are loading. These definitions
can be viewed in the slapd.oc.conf and slapd.at.conf files. One approach
that may be used to verify there are no problems with the data and
definitions is to use the bulkload SCHEMACHECK=ONLY option first to
validate the data and, thereafter, use the SCHEMACHECK=NO to load
data into the directory.

• If you are adding a large amount of entries to your LDAP directory by
doing multiple bulkloads, you may want to remove any indexes that you
have defined in your database configuration. This will shorten the bulkload
time. However, you must remember to redefine the indexes before using
the LDAP directory. It is also important to note that when you change
indexes in the database configuration, it will take the LDAP directory
longer to start up. The reason for this additional time is due to dropping
and recreating indexes. This will only happen the first time after indexes
are changed.

You may consider backing up your existing database. This task can be done
with the DB2 command db2 backup db <dbname> to <file> or <tape> (please
see the DB2 documentation). Other DB2 command lines, such as db2 connect

to <your LDAP database> or db2 list database directory , may be executed to
verify if your database exists before loading any data.

7.8.3.2 Performing the Bulk Load
The following instructions assume that you have already created an LDAP
directory and want to quickly add additional data entries using an LDIF file.

Set up the environment for bulkload
There are three environment variables that can customize the bulkload for
your particular requirements:

export SCHEMA_CHECK={YES|NO|ONLY}

If this variable is not specified, the default is YES, which means that schema
checking will be done on the data prior to loading it into the directory. This will
add additional time to the bulkload, but it is the safest method to ensure that
data being loaded has the correct schema.

export LDAPIMPORT=<temp dir>

This variable specifies a temporary directory that should have about 2.5 times
the size of the LDIF file of free space. If this variable is not specified, the
190 LDAP Implementation Cookbook

default DB2 path will be used (/tmp/ldapimport on AIX). It is also important to
note that the ldapdb2 user must have write permission to this directory.

export DB2SORTTMP=/sortdir1,/sortdir2

This variable specifies one or more directories for temporary sorting files
during the import. They should be large enough so that no errors occur during
the import operation. If this variable is not specified, the default DB2 sort
directory will be used (/u/ldapdb2/sqllib/tmp on AIX).

Perform the bulkload
Run the following command to perform the bulkload:

bulkload -i <LDIF file> [-f config file]

7.8.3.3 The Bulkload Process
There are two major parts to the bulkload utility: Parsing the data, and loading
the data.

Parsing the data
The first is the parsing phase, which parses through the LDIF file and
prepares it to be loaded into the database. The path specified in the
LDAPIMPORT environment variable is used to temporarily store the data to
be loaded. If you would like to monitor progress on the parsing phase, you
can look at the files being created in the LDAPIMPORT directory specified.
There is one parsed file for every table that LDAP uses to store the directory
information. The LDIF file is parsed linearly, and a separate file is created for
each attribute. So, for example, if you had an LDIF file containing entries with
a surname attribute (for example, surname: Miller), there would be a file
created with the name surname in the LDAPIMPORT directory. Since the
LDIF file is parsed linearly, you could perform a tail -f (AIX only) on the
surname file in the LDAPIMPORT directory to find out the entry most recently
parsed. This can give you an idea of how much has been processed and how
much longer it may take to complete the parsing phase. If any errors occur
during this phase of the bulkload, you can easily correct the error and restart
the bulkload.

Loading the data
The second phase of the bulkload takes the parsed files and uses the db2
load command to load the data into the database. There is one parsed file for
every table that LDAP uses to store the directory information. The ldap_entry
table is the largest one, and is loaded first. This table will take about half of
the total bulkload time; so, do not panic if this is taking a relatively long time.
It is possible to monitor progress on the loading phase by typing the
appropriate command for DB2 on your system to list the contents of
LDAP Data and System Administration 191

containers defined for User Data Space (USERSPACE). The user data space
is used when you add entries to the directory. As long as there is recently
current activity in the containers, the load is making progress. Since DB2
evenly spreads the data across the tablespace containers, you really only
need to monitor one of the containers. Another good thing to do while the
load is occurring is to monitor the available free space left on the containers.
You do not want to run out of disk space while loading - as it is almost
impossible to recover from!

Since it is almost impossible to recover from a failed partial load, it is a good
idea to use the DB2 backup command fairly frequently when incrementally
loading your directory.

7.8.4 The DB2LDIF Utility
This utility is used to dump entries from an LDAP directory into a text file in
LDIF format. The syntax of the utility is:

db2ldif -o <output file> [-s subtree]

The -o <output file> option specifies the output file to contain the directory
entries in LDIF. All entries from the specified subtree are written in LDIF to the
output file. The file is created if it does not already exist; otherwise, it will be
overwritten.

The -s subtree option identifies the top entry of the subtree that is to be
dumped to the LDIF output file. If this option is not specified, all directory
entries will be dumped to the output file based on the suffixes specified in the
configuration file. The following example would extract all entries under
<o=ibm,c=us> to a file named output.ldif :

db2ldif -o output.ldif -s "o=IBM,c=us"

7.8.5 The LDAPSEARCH Ut ility
The ldapsearch utility is a command line utility built around the ldap_search()

API. The utility opens a connection to an LDAP server, binds to the server,
and performs a search using a specified search filter. If the request finds one
or more entries, the requested attributes are retrieved, and the entries and
values are printed to standard output. If no attributes are specified, all
attributes associated with each returned entry are displayed.

The syntax is:

ldapsearch [options] filter [attributes]

The significant parameters for the ldapsearch tool are:
192 LDAP Implementation Cookbook

-b searchbase Use searchbase as the starting point for the search instead
of the default. If -b is not specified, this utility will examine the
LDAP_BASEDN environment variable for a searchbase definition. If
neither is set, the default base is set to "".

-V Specifies the LDAP version to be used by ldapsearch . Specify -V 3 to run
as an LDAP V3 application. This is implemented by using ldap_init()

and ldap_simple_bind_s() API calls instead of the ldap_open() and
ldap_bind_s() . Specify -V 2 to run as an LDAP V2 application, which is
the default mode.

-n Shows what would be done, but it does not actually perform the search.
This is useful for debugging in conjunction with the -v flag.

-v Runs in verbose mode with many diagnostics written to standard output.

-t Writes retrieved values to a set of temporary files. This is useful for
dealing with non-ASCII values, such as jpegPhoto or audio data.

-A Retrieves attributes only (no values). This is useful when you just want
to see if an attribute is present in an entry, and you are not actually
interested in the specific values.

-B Does not suppress display of non-ASCII values. This is useful when
dealing with values that appear in alternate characters sets, such as
ISO-8859.1. This option is implied by -L (see below).

-L Displays search results in LDIF format. This option also turns on the -B
option and causes the -F option to be ignored.

-R Specifies that referrals are not to be automatically followed.

-d debuglevel Sets the LDAP debug level to debuglevel.

-F sep Use sep as the field separator between attribute names and values.
The default separator is ’=’, unless the -L flag has been specified, in
which case, this option is ignored.

-f file Reads a series of lines from file, performing one LDAP search for
each line. If file is a single ’-’ (dash) character, then the lines are read
from standard input.

-D binddn Use binddn to bind to the LDAP directory. Use of binddn should
be a string-represented DN, such as cn=root.

-w bindpasswd Uses bindpasswd as the password for simple
authentication.

-h ldaphost Specifies an alternate host on which the LDAP server is running.
The default is to use the local host on which the command is run.
LDAP Data and System Administration 193

-p ldapport Specifies an alternate TCP port where the LDAP server is
listening. The default LDAP port is 389. If not specified, and -Z is
specified, the default LDAP SSL port 636 is used.

-Z Uses a secure SSL connection to communicate with the LDAP server.

-K keyfile Specifies the name of the SSL key database file (with a .kdb
extension). If a key database filename is not specified, this utility will
look for the presence of the SSL_KEYRING environment variable with
an associated filename. Otherwise, no key database file will be used for
server authentication, and default trusted certification authority roots will
be used. The key database file typically contains one or more
certificates of certification authorities (CAs) that are trusted by the
client. These types of X.509 certificates are also known as trusted roots.
This parameter is ignored if -Z is not specified.

-P keyfilepw Specifies the key database password. This password is
required to access the encrypted information in the key database file.
The encrypted information includes the set of trusted root certificates
and, optionally, a private key with an associated client X.509 certificate.
This parameter is ignored if -Z is not specified.

-N certificatename Specifies the label associated with the client certificate
in the key database. Note that if the LDAP server is configured to
perform server authentication only, a client certificate is not required. If
the LDAP server is configured to perform client and server
authentication, a client certificate is required. This parameter is not
required if a default certificate/private key pair has been designated as
the default. Similarly, certificatename is not required if there is a single
certificate/private key pair in the designated key database. This
parameter is ignored if -Z is not specified.

-s scope Specifies the scope of the search. The use of scope should be
one of base, one, or sub to specify a base object, one-level, or subtree
search. The default is sub.

-a deref Specifies how aliases dereferencing is done. The use of deref
should be one of never, always, search, or find to specify that aliases
are never dereferenced, always dereferenced, dereferenced when
searching, or dereferenced only when locating the base object for the
search. The default is to never dereference aliases.

-l timelimit Waits at most timelimit seconds for a search to complete.

-z sizelimit Limits the results of the search to most sizelimit entries. This
makes it possible to place an upper bound on the number of entries that
are returned for a search operation.
194 LDAP Implementation Cookbook

The search filter, in may cases, will either be a simple attribute search (such
as cn=Smith) or for all attributes (cn=*). Search filters, however, can be fairly
complex, and there is a separate RFC, RFC 2254, that you should refer to if
you need all the details. The following is a brief description of search filters.

A search filter defines criteria that an entry must match to be returned from a
search. The basic component of a search filter is an attribute value assertion
of the form:

attribute operator value

For example, to search for a person named John Smith, the search filter
would be cn=John Smith. In this case, cn is the attribute; = is the operator,
and John Smith is the value. This search filter matches entries with the
common name John Smith. Table 7 lists the operators for search filters.

Table 7. Search filter operators

The “*” character matches any substring and can be used with the = operator.
For example, cn=J*Smi* would match John Smith and Jan Smitty.

Search filters can be combined with Boolean operators to form more complex
search filters. The syntax for combining search filters is:

("&" or "|" (filter1) (filter2) (filter3) ...)
("!" (filter))

Operator Description Example

= Returns entries whose attribute is
equal to the value.

cn=John Smith finds the entry
with the common name John
Smith.

>= Returns entries whose attribute is
greater than or equal to the value.

sn>=smith finds all entries from
smith to z*.

<= Returns entries whose attribute is
less than or equal to the value.

sn<=smith finds all entries from
a* to smith.

=* Returns entries that have a value
set for that attribute.

sn=* finds all entries that have the
sn attribute.

~= Returns entries whose attribute
value approximately matches the
specified value. Typically, this is an
algorithm that matches words that
sound alike.

sn~= smit might find the entry
“sn=smith ”.
LDAP Data and System Administration 195

The Boolean operators are listed in the following table, Table 8.

Table 8. Boolean operators

For example, (|(sn=Smith)(sn=Miller)) matches entries with the surname
Smith or the surname Miller. The Boolean operators can also be nested as in
(| (sn=Smith) (&(ou=Austin)(sn=Miller))) , which matches any entry with the
surname Smith or with the surname Miller that also has the organizational
unit attribute Austin.

Here is an example search:

ldapsearch -b "o=ibm_fr,c=fr" cn="Robert Dean" cn telephonenumber

This will perform an anonymous subtree search on <o=ibm_fr,c=fr> for
entries with a commonName (cn) of Robert Dean. The commonName (cn)
and telephoneNumber values are retrieved and printed to standard output for
any entries with commonName of Robert Dean as in this example:

cn=Robert Dean, ou=In Flight Systems, ou=LGE, o=ibm_fr, c=fr
cn=Robert Dean
telephonenumber=334-855-5703

Another example is to search a type of ACL (the following represents a single
command line):

ldapsearch -v -b "ou=Widget Division,ou=nhb,o=ibm_uk,c=uk" cn=* cn
ownerSource

This will perform a subtree search from the base specified by the -b
parameter. All cns will be retrieved with their attributes values for cn and
ownersource:

cn=Brenda England,ou=Widget Division,ou=nhb,o=ibm_uk,c=uk
cn=Brenda England
ownersource=OU=WIDGET DIVISION,OU=NHB,O=IBM_UK,C=UK

cn=David Delbert,ou=Widget Division,ou=nhb,o=ibm_uk,c=uk
cn=David Delbert
ownersource=OU=WIDGET DIVISION,OU=NHB,O=IBM_UK,C=UK

Boolean Operator Description

& Returns entries matching all specified filter criteria.

| Returns entries matching one or more of the filter criteria.

! Returns entries for which the filter is not true. This operator can
only be applied to a single filter. (!(filter)) is valid, but
(!(filter1)(filter2)) is not.
196 LDAP Implementation Cookbook

7.8.6 The LDAPMODIFY and LDAPADD Utilities
The ldapmodify utility is a command line utility built around the ldap_modify()

API. The utility opens a connection to an LDAP server, binds to the server,
and modifies an entry. The entry information is read from standard input or
from a file. The ldapadd utility is implemented as a renamed version of
ldapmodify . The ldapadd works the same way as the ldapmodify with the -a flag
set.

The syntax of the utility is:

ldapmodify [options] [-f <ldif input file>]

The options are:

-a Adds new entries. The default for ldapmodify is to modify existing
entries. If invoked as ldapadd , this flag is always set.

-b Assumes that any values that start with a ’/' are binary values, and that
the actual value is in a file whose path is specified in the place where
values normally appear.

-c Continuous operation mode. Errors are reported, but ldapmodify will
continue with modifications. The default is to exit after encountering an
error.

-r Replaces existing values by default.

-n Shows what would be done, but does not actually modify entries. It is
useful for debugging in conjunction with -v.

-v Uses verbose mode with many diagnostics written to standard output.

-F Forces application of all changes regardless of the contents of input
lines that begin with replica: (by default, replica: lines are compared
against the LDAP server host and port in use to decide if a replog record
should actually be applied).

-R Specifies that referrals are not to be automatically followed.

-d debuglevel Sets the LDAP debug level to debuglevel.

-D binddn Uses binddn to bind to the LDAP directory. The use of binddn
should be a string-represented DN, for example, cn=root.

-w passwd Uses passwd as the password for simple authentication.

-h ldaphost Specifies an alternate host on which the LDAP server is running.
The default is to use the local host on which the command is run.
LDAP Data and System Administration 197

-p ldapport Specifies an alternate TCP port where the LDAP server is
listening. The default LDAP port is 389. If not specified, and -Z is
specified, the default LDAP SSL port 636 is used.

-f file Reads the entry modification information from an LDIF file instead of
from standard input. If an LDIF file is not specified, you must use
standard input to specify the update records in LDIF format.

-Z Uses a secure SSL connection to communicate with the LDAP server.
The -Z option is not supported by non-SSL versions of this tool.

-K keyfile Specifies the name of the SSL keyring file. If a keyring filename is
not specified, this utility will look for the presence of the SSL_KEYRING
environment variable with an associated filename. Otherwise, no
keyring file will be used for server authentication, and default trusted
certification authority roots will be used. The keyring file typically
contains one or more certificates of certification authorities (CAs) that
are trusted by the client. These types of X.509 certificates are also
known as trusted roots. This parameter is ignored if -Z is not specified.

-P keyfilepw Specifies the keyring password. This password is required to
access the encrypted information in the keyring file (including the
private key). This parameter is ignored if -Z is not specified.

-N certificatename Specifies the label associated with the client certificate
in the keyring file. Note that if the LDAP server is configured to perform
server authentication, a client certificate is not required. If the LDAP
server is configured to perform client and server authentication, a client
certificate is required. This parameter is not required if a default
certificate/private key pair has been designated as the default. Similarly,
certificatename is not required if there is a single certificate/private key
pair in the designated keyring file. This parameter is ignored if -Z is not
specified.

Here is an example. Assuming you have to change some fields for a specific
user, first get, with an ldapsearch command, all attributes associated with the
cn you want to update:

ldapsearch -b "o=ibm_us,c=us" cn="Robert Dean" >/tmp/change_dean

Then, change the content of the output file with new information:

cn=Robert Dean, ou=In Flight Systems, ou=Austin o=ibm_us, c=us
changetype: modify
replace : telephonenumber
telephonenumber: 334-9211-4444

or:
198 LDAP Implementation Cookbook

cn=Robert Dean, ou=In Flight Systems, ou=Austin o=ibm_us, c=us
changetype: modify
add : title
title: Grand chef

or:

cn=Robert Dean, ou=In Flight Systems, ou=Austin o=ibm_us, c=us
changetype: modify
delete : facsimiletelephonenumber

Finally, run the command:

ldapmodify -D "cn=root" -w <passwd> -v -r -f /tmp/change_dean

This command, with a different content of the /tmp/change_dean file, will
replace the value of the telephonenumber attribute, add a title attribute with a
value of Grand Chef, or completely remove the facsimiletelephonenumber

attribute from the directory entry.

An alternative syntax is supported for compatibility with older versions of
ldapmodify . An attribute can be preceded by the ’-’ sign to remove it and the
’+’ sign to add the attribute with value. If you wanted to change an attribute
value, you have to specify the line with a new value.

For example, the content of the LDIF input file is:

cn=Robert Dean, ou=In Flight Systems, ou=Austin, o=ibm_us, c=us
-facsimiletelephonenumber

This deletes the attribute facsimiletelephonenumber , and the following example
changes the value for the telephonenumber attribute.

cn=Robert Dean, ou=In Flight Systems, ou=Austin o=ibm_us, c=us
telephonenumber= 334-9211-4444

Before modifying an entry, the option -n can be used with option -v to verify if
the actions requested are those expected, no change will take place. You
have to repeat the command without -n to apply the modification. The -D and
-w options are to authenticate with the LDAP directory with a DN and
password for single authentication. If -w is not given, the bind fails with the
following error:

ldap_open(localhost, 389)
ldap_bind: Invalid credentials

The success of a change can optionally be verified, for example, by using the
administration GUI.
LDAP Data and System Administration 199

• Click on Directory/Access control in the Navigation frame and then on
Browse tree .

• Click on the appropriate + sign to expand entries.

• Search the cn you want to verify and click on it to open a new window.

• Click on Browse entry in the Navigation frame of the new window to
display all attributes associated with the cn.

Alternatively, you could verify the change with the ldapsearch utility.

7.8.7 The LDAPDELETE Utility
The ldapdelete utility is built around the ldap_delete() API. The utility opens a
connection to an LDAP server, binds to the server, and deletes one or more
entries. The distinguished names (DNs) of the entries to delete are read from
standard input or from a file.

The syntax is:

ldapdelete [options] [-f <ldif input file>]

The options are:

-n Shows what would be done, but no entries are actually deleted. It is
useful for debugging in conjunction with the -v option.

-b searchbase Uses searchbase as the starting point for the search instead
of the default. If -b is omitted, the ldapdelete utility will examine the
LDAP_BASEDN environment variable for a searchbase definition.

-v Uses verbose mode with many diagnostic messages written to standard
output.

-c Continuous operation mode. Errors are reported, but ldapdelete will
continue with deletions. The default is to exit after encountering an
error.

-R Specifies that referrals are not to be automatically followed.

-d debuglevel Sets the LDAP debug level to debuglevel.

-f file Reads a series of lines from file, performing one LDAP delete for each
line.

-D binddn Uses binddn to bind to the LDAP directory. The use of binddn
should be a string-represented DN.

-w passwd Uses password as the password for simple authentication.
200 LDAP Implementation Cookbook

-h ldaphost Specifies an alternate host on which the LDAP server is running.
The default is to use the local host on which the command is run.

-p ldapport Specifies an alternate TCP port where the LDAP server is
listening. The default LDAP port is 389. If not specified, and -Z is
specified, the default LDAP SSL port 636 is used.

-Z Use a secure SSL connection to communicate with the LDAP server.
The -Z option is not supported by non-SSL versions of this tool.

-K keyfile Specifies the name of the SSL keyring file. If a keyring filename is
not specified, this utility will look for the presence of the SSL_KEYRING
environment variable with an associated filename. Otherwise, no
keyring file will be used for server authentication, and default trusted
certification authority roots will be used. The keyring file typically
contains one or more certificates of certification authorities (CAs) that
are trusted by the client. These types of X.509 certificates are also
known as trusted roots. This parameter is ignored if -Z is not specified.

-P keyfilepw Specifies the keyring password. This password is required to
access the encrypted information in the keyring file (including the
private key). This parameter is ignored if -Z is not specified.

-N certificatename Specifies the label associated with the client certificate
in the keyring file. Note that if the LDAP server is configured to perform
server authentication, a client certificate is not required. If the LDAP
server is configured to perform client and server authentication, a client
certificate is required. This parameter is not required if a default
certificate/private key pair has been designated as the default. Similarly,
certificatename is not required if there is a single certificate/private key
pair in the designated keyring file. This parameter is ignored if -Z is not
specified.

-dn Specifies one or more dn arguments. Each dn should be a
string-represented DN.

Distinguished names (DNs) of entries to be deleted are read from standard
input unless the -f <filename> was specified. It is recommended to first use
the options -n and -v to be sure that the entry to be deleted is the right one as
in the following example:

ldapdelete -D "cn=root" -w pwd -n -v "cn=Harri Stranden, o=ibm_us, c=us"
!deleting entry cn=Harri Stranden, o=ibm_us, c=us

ldapdelete -D "cn=root" -w pwd -v "cn=Harri Stranden, o=ibm_us, c=us"
ldap_open(localhost, 389)
deleting entry cn=Harri Stranden, o=ibm_us, c=us
entry removed
LDAP Data and System Administration 201

This also works when the DNs to be deleted are read from a file (one DN to
be deleted per each line).

ldapdelete -D "cn=root" -w pwd -n -v -f /tmp/delete.cn
!deleting entry cn=Permana Widhiasta, ou=Austin, o=ibm_us, c=us
!deleting entry cn=Michel Melot, ou=Austin, o=ibm_us, c=us

ldapdelete -D "cn=root" -w pwd -v -f /tmp/delete.cn
ldap_open(localhost, 389)
deleting entry cn=Permana Widhiasta, ou=Austin, o=ibm_us, c=us
entry removed
deleting entry cn=Michel Melot, ou=Austin, o=ibm_us, c=us
entry removed

7.8.8 The LDAPMODRDN Utility
The ldapmodrdn utility is built around the ldap_modrdn() API. The utility opens a
connection to an LDAP server, binds to the server, and modifies the relative
distinguished name (RDN) of entries. The entry information is read from
standard input or from a file.

The syntax is:

ldapmodrdn [options] [-f <ldif input file>]

The options are:

-r Removes old RDN values from the entry. Default is to keep old values.

-n Shows what would be done but does not actually change entries. This is
useful for debugging in conjunction with the -v option.

-v Uses verbose mode with many diagnostic messages written to standard
output.

-c Continuous operation mode. Errors are reported, but ldapmodify will
continue with modifications. The default is to exit after encountering an
error.

-R Specifies that referrals are not to be automatically followed.

-d debuglevel Sets the LDAP debugging level to debuglevel.

-D binddn Uses binddn to bind to the LDAP directory. The use of binddn
should be a string-represented DN, such as cn=root.

-w passwd Uses password as the password for simple authentication.

-h ldaphost Specifies an alternate host on which the LDAP server is running.
The default is to use the local host on which the command is run.
202 LDAP Implementation Cookbook

-p ldapport Specifies an alternate TCP port where the LDAP server is
listening. The default LDAP port is 389. If not specified, and -Z is
specified, the default LDAP SSL port 636 is used.

-Z Uses a secure SSL connection to communicate with the LDAP server.
The -Z option is not supported by non-SSL versions of this tool.

-K keyfile Specifies the name of the SSL keyring file. If a keyring filename is
not specified, this utility will look for the presence of the SSL_KEYRING
environment variable with an associated filename. Otherwise, no
keyring file will be used for server authentication, and default trusted
certification authority roots will be used. The keyring file typically
contains one or more certificates of certification authorities (CAs) that
are trusted by the client. These types of X.509 certificates are also
known as trusted roots. This parameter is ignored if -Z is not specified.

-P keyfilepw Specifies the keyring password. This password is required to
access the encrypted information in the keyring file (including the
private key). This parameter is ignored if -Z is not specified.

-N certificatename Specifies the label associated with the client certificate
in the keyring file. Note that if the LDAP server is configured to perform
server authentication, a client certificate is not required. If the LDAP
server is configured to perform client and server authentication, a client
certificate is required. This parameter is not required if a default
certificate/private key pair has been designated as the default. Similarly,
certificatename is not required if there is a single certificate/private key
pair in the designated keyring file. This parameter is ignored if -Z is not
specified.

-f file Reads the entry modification information from file instead of from
standard input or the command line (by specifying rdn and newrdn).

For example, assuming the file /tmp/rdn.dean contains the following:

cn=Robert Dean,ou=In Flight Systems,ou=Austin,o=IBM_US,c=US
cn=Mark Bold

The following ldapmodrdn command with the option -r to remove the old RDN
would then change the RDN.

ldapmodrdn -D "cn=root" -w its0 -r -v -f /tmp/rdn.dean>
ldap_open(localhost, 389)
modrdn cn=Robert Dean,ou=In Flight Systems,ou=Austin,o=IBM_US,c=US:
cn=Mark Bold
removing old RDN
modrdn complete
LDAP Data and System Administration 203

7.9 Security Setup

One of the most important aspects of directory administration is determining
the security policies. The security policy describes who is allowed to view and
manipulate directory information.

Data within the directory will have varying levels of sensitivity. It is important
that the more sensitive information be protected from unauthorized users. It is
equally essential that administration not be limited to a single person unless
absolutely necessary.

To facilitate installation and use, these issues should be addressed and
resolved before introduction of a production system.

For LDAP projects, it is imperative that the security policy is understood and
used by all applications. As an example, for objects and attributes that are
shared (used) by more than one application, the security policy must carefully
define who may create an object entry, modify, and delete the entry to avoid
conflicts and broken pointers. To manage these rules, you have to use the
LDAP Access Control List (ACL) concept.

The purpose of LDAP ACLs is to control information for a given object, and
this control can be extended to all descendants of the object. If more than one
users have control on this object, these users can be gathered in an access
group, also some users can be members of a role. An access role is similar to
an access group, but the access role has an implicit set of permissions on an
object (see also 5.6, “Access Control” on page 120). This section presents
how access groups and access roles are created and how to set ACLs for an
object.

7.9.1 Creating and Working with Access Groups
Creating access control groups with an object class of AccessGroup is useful
to assign a limited number of users the same authorizations. The main
advantage of creating an access group is to minimize the ACLs
administration because you do not have to manage each user’s individual
access rights. Access groups can be managed through the DMT (Directory
Management Tool) or using the administrator GUI.

Creating and working with access groups can most easily be done using the
DMT. To add an access group, perform the following:

1. From within the DMT window, browse the directory (use Tree -> Browse
tree from the menu tree) and expand the directory tree on the right as
204 LDAP Implementation Cookbook

necessary to select the entry DN to which you want to add an access
group.

2. Click the Add button above the directory tree. A dialog opens that allows
you to enter the RDN and an entry type for the new entry.

3. Type the RDN for the new access group (for example cn=Dept Acc Group)
and click the Access group radio button. Then continue with OK .

4. On the upcoming dialog, enter a group name (for example Dept Acc
Group) and the DN of one or more members. A description is optional.

5. Enter any other information as appropriate in the fields that appear after
clicking on the Other tab.

6. Click Create to create the access group. The newly created access group
will immediately be visible in the directory tree.

When using the administrator GUI rather than the DMT, follow these steps to
create an access group:

1. Click on Access groups in the Navigation frame and then on Create a
new group .

2. The upcoming panel offers you the choice of creating a completely new
group or creating a group with the same members as an already existing
group. Choose the option you need and click on Next> .

3. Select a suffix from the list proposed by the LDAP server.

4. Type a group DN in the Relative group DN: text field. An example could be
’cn=itso’. This DN will be automatically added to the suffix.

5. Type a group common name (CN) for the group in the Common name: text
field. An example could be ’itso’.

6. Type a list of members that you initially want to be added to the access
group in the Enter member names, one per line: text field.

7. Click on the Finish button after you have finished entering the information
to create the group.

An access group will be created with a list of members as specified. Note that
you cannot add a group without specifying at least one member.

To work with an access group, click on Access groups in the Navigation
frame, and then select Work with group . Select the appropriate suffix and
enter the group’s RDN, then click Work with access group . A new browser
window opens that lets you list, add, and delete members of that group. It
also provides functions for deleting the group and to manage ACLs for that
group (see 7.9.3, “Ownership and Access Control” on page 206).
LDAP Data and System Administration 205

By default, this new entry is created with object Class AccessGroup and has
no ACL defined on it; the owner is inherited from the creator.

Once the access group has been created, you can return to the directory
structure and assign this group to a specific entry. When a DN is removed
from the directory, it is also removed from all access groups, access roles,
ACL entries, and entry owners.

7.9.2 Creating and Working with Access Roles
Role-based authorization is a conceptual complement to the group-based
authorization and its technical implementation, in fact, it is very similar. As a
member of a role, you have the authority to do what is needed for the role in
order to accomplish a job. Unlike a group, a role comes with an implicit set of
permissions. There is not a built-in assumption about what permissions are
gained (or lost) by being a member of a group.

Roles are similar to groups in that they are represented in the directory by an
object. As such, roles contain a list of DNs. Roles that are to be used in
access control must have an object class of AccessRole. The AccessRole
objectclass is a subclass of the GroupOfNames object class.

Working with access roles is very similar to working with access groups (see
above).

7.9.3 Ownership and Access Control
Access to LDAP directory objects and attributes is defined by Access Control
Lists (ACLs). The set of attributes that are related to access control are
manageable through the administrator GUI.

AclEntry A multi-valued attribute that describes access to attributes
of the associated LDAP object as well as permissions on
the object itself.

AclPropagate A true or false flag that indicates if the ACL should be
propagated down the directory hierarchy.

AclSource A non-user modifiable attribute that identifies the directory
object with which the ACL information is associated.

EntryOwner The owner of this particular directory object. The
EntryOwner receives complete access to all attributes of
the object. By making someone an entry owner, that
person becomes an administrator for that entry. The entry
owner is defined to be an ACL subject that has all rights
206 LDAP Implementation Cookbook

on the object and descendant if AclPropagate is set to
yes.

OwnerPropagate A true or false flag that indicates if the object owner
should be propagated down the directory hierarchy.

OwnerSource A non-user modifiable attribute that identifies the directory
object with which the owner information is associated.

In general, an ACL is effective, and access is granted if the bindDN matches
an access-id specified as an entryOwner or as administrator. If a bindDN
matches an access-id specified within the aclEntry, the corresponding access
rights apply. If the bindDN does not match any access-id, the granted rights
correspond to the DN’s group and role membership. If a match cannot be
found, the requestor is granted anonymous rights.

7.9.3.1 Creating and Editing Ownerships
Ownerships and ACLs can be managed through command line utilities, the
DMT, and through the administrator GUI. The following example uses the
administrator GUI. To set the ownership of an object, proceed as follow:

1. Select the entry that is the root of the subtree you want to control with an
ACL.

• Click on Directory/Access control in the Navigation frame.

• Click on Browse tree in the Working with entries in the directory work
area.

• Expand the tree as necessary and click on the object you want to
manage.

This opens a separate browser window where you can view entry
attributes, manage access control, and search the entry's subtree.

2. In this new browser window, click on Access control and then on
Owners . From the new work area Work with the access control owners of
this entry, you can define the OwnerPropagate (by clicking the appropriate
checkbox) and the OwnerSource attributes for this entry. If this is a new
entry, you can only create the new entry’s ownership by clicking on Create
entry ownership . This brings up a panel as shown in Figure 52.
Subsequent invocations of this function also lets you edit, delete, and
remove ownership of an object.

When adding additional owners after the initial ownership has been
created, click on Add, and the new dialog lets you select from one of the
following types of owners:

• Local groups
LDAP Data and System Administration 207

• Local roles
• Local user
• Foreign user

Click the appropriate radio button, and the upcoming dialog requires you
to select or enter the DN for the new owner. After finishing, click Finish to
add the ownership. Proceed accordingly for editing, deleting, or removing
object ownership. Note that you can have multiple owners for an object.

Figure 52. Create ownership

7.9.3.2 Managing ACLs
As with ownerships, ACLs can be managed using the command line utilities,
the DMT, or the administrator GUI. The description below applies to the
administrator GUI.

To define ACLs on an entry, click on Access control list in the Work with
access control for this entry work area, and you will get a panel as shown in
Figure 53.
208 LDAP Implementation Cookbook

Figure 53. ACL control list entry

The default Access Control Group <cn=ANYBODY> (see Figure 53) is
considered to be the group for all unauthenticated users. This group cannot
be removed from the directory, and, by default, this group has read, search,
and compare permissions to attributes within the normal class. If you remove
<cn=anybody> from an ACL, all access will be suppressed for all users
except for those defined under the modified entry.

Use the appropriate function (Add, Edit, Delete, or Remove all) from the
functions list of the Work with the access control list for this entry work area
(Figure 53). The subsequent dialogs guide you through the necessary steps.
As with ownerships, an ACL object can be:

• local group
• local role
• local user
• foreign user

The instructions above used the administrator GUI to manage ACLs. As
mentioned above, the DMT could be used for the same purpose, too (it might
even be more intuitive to use). The following two figures, Figure 54 and Figure
55, show such an example using the DMT where a new ACL has been
created and modified for <ou=ITSO,ou=Austin,o=ibm,c=us>. Figure 54 shows
an additional group that has been added to the ACL with some more
permissions than the Anybody group. Note that in the top portion of the
LDAP Data and System Administration 209

window it says Source DN: OU=ITSO,OU=AUSTIN,O=IBM,C=US. This is an
indication that a specific ACL has been created for this DN; otherwise, it
would only say Source DN: default.

Figure 54. ACL with additional group

Figure 55 below shows an additional owner (John Smith) for the same ACL,
which grants this DN all rights. The entry and ACL were created as cn=root,
which is listed as well. Note that it is also possible to add a group or even a
role as an ACL owner.

Figure 55. Additional ACL owner
210 LDAP Implementation Cookbook

The ACLs setting can be checked using, for example, the ldapsearch utility as
shown in the following example:

ldapsearch -b "ou=widget division,ou=austin,o=ibm_us,c=us" cn=* cn
aclentry entryowner
The utility will return a list of all cn’s known under the specified base by
the command, with their aclEntry and enrtyowner attributes.
cn=Arthur Edwards, ou=Widget Division, ou=Austin, o=IBM_US, c=US
cn=Arthur Edwards
entryowner=access-id:CN=DAVID CAMPBELL,OU=WIDGET
DIVISION,OU=NHB,O=IBM_UK,C=UK
entryowner=access-id:CN=ROOT,OU=IBM_US,C=US
aclentry=access-id:CN=DAVID CAMPBELL,OU=WIDGET
DIVISION,OU=NHB,O=IBM_UK,C=UK:obj
ect:ad:normal:rwsc:sensitive:rwsc:critical:rwsc
aclentry=group:CN=ANYBODY:normal:rsc

cn=Curtis Edwards Jr, ou=Widget Division, ou=Austin, o=IBM_US, c=US
cn=Curtis Edwards Jr
entryowner=access-id:CN=DAVID CAMPBELL,OU=WIDGET
DIVISION,OU=NHB,O=IBM_UK,C=UK
entryowner=access-id:CN=ROOT,OU=IBM_US,C=US
aclentry=access-id:CN=DAVID CAMPBELL,OU=WIDGET
DIVISION,OU=NHB,O=IBM_UK,C=UK:obj
ect:ad:normal:rwsc:sensitive:rwsc:critical:rwsc
aclentry=group:CN=ANYBODY:normal:rsc

The LDIF output will also give you the following results for the modified entry:

dn: ou=Widget Division, ou=Austin, o=IBM_US, c=US
ou: Widget Division
objectclass: organizationalUnit
description: main product:Orange Widget Delux
businesscategory: home entertainment
ownerpropagate: TRUE
aclpropagate: TRUE
ownersource: OU=WIDGET DIVISION,OU=AUSTIN,O=IBM_US,C=US
aclsource: OU=WIDGET DIVISION,OU=AUSTIN,O=IBM_US,C=US
entryowner: access-id:CN=DAVID CAMPBELL,OU=WIDGET
DIVISION,OU=NHB,O=IBM_UK,C=UK
entryowner: access-id:CN=ROOT,OU=IBM_US,C=US
aclentry: access-id:CN=DAVID CAMPBELL,OU=WIDGET
DIVISION,OU=NHB,O=IBM_UK,C=UK:ob
ject:ad:normal:rwsc:sensitive:rwsc:critical:rwsc
aclentry: group:CN=ANYBODY:normal:rsc

And, for an entry that is a child of the previous entry (assuming ACL
propagation was set on), the output is:
LDAP Data and System Administration 211

dn: cn=Mary Burnnet, ou=Widget Division, ou=Austin, o=IBM_US, c=US
objectclass: organizationalPerson
cn: Mary Burnnet
sn: Burnnet
telephonenumber: 1-812-855-5923
internationalisdnnumber: 755-5923
facsimiletelephonenumber: 1-812-855-5923
title: ISO Deputy, Qual. Tech
postalcode: 1515
seealso: cn=Linda Carlesberg, ou=Austin, o=IBM_US, c=US
aclsource: OU=WIDGET DIVISION,OU=AUSTIN,O=IBM_US,C=US
ownersource: OU=WIDGET DIVISION,OU=AUSTIN,O=IBM_US,C=US
aclpropagate: TRUE
ownerpropagate: TRUE
entryowner: access-id:CN=DAVID CAMPBELL,OU=WIDGET
DIVISION,OU=NHB,O=IBM_UK,C=UK
entryowner: access-id:CN=ROOT,OU=IBM_US,C=US
aclentry: access-id:CN=DAVID CAMPBELL,OU=WIDGET
DIVISION,OU=NHB,O=IBM_UK,C=UK:ob
ject:ad:normal:rwsc:sensitive:rwsc:critical:rwsc
aclentry: group:CN=ANYBODY:normal:rsc

7.9.3.3 Attributes Access Classes
Attributes requiring similar permission for access are grouped together in
classes. The three user modifiable attribute classes are:

• Normal
• Sensitive
• Critical

The administrator GUI lists them separately (see Figure 53) and provides
check boxes for you to select ACL attribute values when editing ACLs for each
attribute class separately.

If you prefer to use the command line utilities ldapadd or ldapmodify (with ACL
information supplied in an LDIF file), keep the following considerations in
mind:

• The aclSource and ownerSource attribute values are maintained by the
server and cannot be modified by a user. If you try to set these values, you
will receive an insufficient access error message.

• When running db2ldif , all ACL information for each node is included in the
LDIF output. When this information is imported back into the database
using ldif2db , the aclSource and ownerSource are used to determine if
the ACL is inherited or explicit.
212 LDAP Implementation Cookbook

• You can use the ldapmodify command with either the add or replace
options when setting an ACL (owner) if the ACL (owner) is inherited. If the
ACL (owner) already exists, the replace option must be used.

• If an ACL (owner) is inherited, and the aclPropagate (ownerPropagate) is
changed, the aclEntry (entryOwner) must also be specified.

• You cannot use the ldapmodify command’s delete option for an inherited
ACL (owner).

• The ldapmodify utility cannot be used to make changes, such as replacing
aclPropagate and deleting the aclEntry, in the same operation. The ACL
attributes on the object must remain in a legal state.

• When you use the ldapmodify add or modify option on an existing aclEntry,
the new specification for the aclEntry becomes the new value. All previous
values are deleted for that aclEntry object attribute. If your intent is to add
additional information to an existing aclEntry, you must specify the entire
existing entry in the operation.

• When you delete a user, that user is removed from all entries for aclEntry.
accessGroups, and entryOwner positions. If you use the deleted DN to
create another user, the new user will not have the same permissions as
the previous user of the DN.

All ACLs attributes can be managed using LDIF notation. You can use
ldapmodify with an LDIF file as input with these controls to change rights for a
DN or to add a new subject.

• changetype: modify and replace: aclentry

• add: aclentry

The ldif2db utility can be used for similar tasks. You can find the syntax in
5.6, “Access Control” on page 120, as well as more information about ACLs.

7.10 Schema Data Management

A directory schema is a set of object class and attribute type definitions. The
LDAP server uses this information to assure that the data stored in the
directory is in accordance with these rules or to determine if and how an
existing entry can be modified. The schema definitions are stored in files
separate from the directory data that is stored in the underlaying relational
database. Schema file management must be done carefully to get a reliable
functionality of LDAP without corrupted data. This section explains the
rootDSE and the files that are used by the IBM SecureWay Directory to store
configuration and schema information.
LDAP Data and System Administration 213

7.10.1 The rootDSE
Although not directly related to the schema, it might be worth knowing that
the IBM SecureWay Directory server (just as any other LDAP server) stores
some information about itself. This is represented as a group of attributes
located in the so-called rootDSE. These attributes are read-only, and they
show up in the DMT as server properties, or they can be retrieved, for
example, by performing a search of the root with a filter, such as
objectclass=*. The server will return an entry with the following attributes:

• namingcontexts
• subschemasubentry
• altserver
• supportedextension
• supportedcontrol
• secureport
• supportedsaslmechanisms
• supportedldapversion
• referrals
• ibmdirectoryversion

The following is a description of the above attributes:

namingcontexts The values of this attribute correspond to naming contexts
that this server masters or shadows. If the server does not master or
shadow any information (for example, if it is an LDAP gateway to a
public X.500 directory), this attribute will be absent. If the server
believes it contains the entire directory, the attribute will have a
single value, and that value will be the empty string (indicating the
null DN of the root). This attribute will allow a client to choose
suitable base objects for searching when it has contacted a server.
It is the list of highest level suffixes defined for that server. For
example, given the following two suffixes:
o=ibm_us,c=us

ou=Austin,o=ibm_us,c=us

Only the first one will be included in the list of the namingcontexts.

subschemasubentry The value of this attribute is the name of a subschema
entry in which the server makes available attributes specifying the
schema. The common setup is cn=schema.

altserver The values of this attribute are Web sites of other servers that
may be contacted when this server becomes unavailable. If the
server does not know of any other servers that could be used, this
attribute will be absent.
214 LDAP Implementation Cookbook

supportedextension The values of this attribute are object identifiers
(OIDs) identifying the supported extended operations that the server
supports. If the server does not support any extensions, this
attribute will be absent.

supportedcontrol The values of this attribute are object identifiers (OIDs)
identifying controls that the server supports. If the server does not
support any controls, this attribute will be absent.

secureport The value of this attribute is the port being used for secure
connections, which is 636 for SSL.

supportedsaslmechanisms The values of this attribute are the names of
supported SASL mechanisms that the server supports. If the server
does not support any mechanisms, this attribute will be absent. The
IBM SecureWay Directory supports CDRAM-MD5 (see 5.2.1,
“Overview of Simple Authentication and Security Layer (SASL)” on
page 105).

supportedldapversion The values of this attribute are the versions of the
LDAP protocol that the server implements. The supported LDAP
versions of the IBM SecureWay Directory are 2 and 3.

referrals The values of this attribute are the URLs of other LDAP servers
defined in referral objects in the local server.

ibmdirectoryversion The value represents the version of the IBM
SecureWay Directory, which is currently 3.1.

Here is an example using the ldapsearch utility from the command line to
query the rootDSE:

ldapsearch -h ldap.itsc.austin.ibm.com -b "" -s base 'objectclass=*'

The server will return an entry as such:

namingcontexts=o=ibm_us,c=us
namingcontexts=o=ibm_nl,c=nl
namingcontexts=cn=localhost
subschemasubentry=cn=schema
altserver=ldap://ldap1.itsc.austin.ibm.com:389
supportedsaslmechanisms=kerberos_v4
supportedldapversion=2
supportedldapversion=3
referral=ldap://ldap2.itsc.austin.ibm.com

You can also get the same information by pointing your Web browser to an
LDAP Web site:

ldap://<your_server>[:<port>]/
LDAP Data and System Administration 215

This will show these attributes in the browser’s text area (provided your
browser supports LDAP URLs).

7.10.2 Schema Files
In the previous release of the LDAP server, the IBM eNetwork LDAP Server
that was based on LDAP Version 2, four files were present that stored the
schema definitions. On AIX, for example, these are:

/etc/slapd.at.conf
/etc/slapd.at.system
/etc/slapd.oc.conf
/etc/slapd.oc.system

Two of these files are for object definitions (slapd.oc.*), the two others are for
attribute definitions (slapd.at.*). The slapd.oc.system file contains object
classes that the directory server requires, and it must not be modified.
Therefore, administrators should not modify this file. The slapd.at.system file
contains attributes that the directory server requires (for example, for
operational and access control attributes), and it must not be modified.
Administrators should not modify this file.

In Version 2.1 of the IBM eNetwork LDAP Server, administrators needed to
edit these files in order to alter existing, or add new, schema definitions.

The IBM SecureWay Directory Server Version 3.1, supporting LDAP Version
3, uses more files that store schema definitions (refer to 2.5, “The IBM
Schema” on page 41 for information about the standard schema). These files
use a different syntax, and administrators should not edit them directly. These
files are referenced to by the configuration directive includeSchema in the
slapd.conf configuration file, such as:

includeSchema /etc/V3.system.at
includeSchema /etc/V3.ibm.at
includeSchema /etc/V3.user.at

These three files, containing V3 system attributes type definitions, V3
IBM-specific attribute type definitions, and V3 user attribute type definitions,
define attributes with more details than with V2. OID. Matching rules and
syntax are added in these definitions. The IBM-specific attribute type
definitions file (V3.ibm.at) may be superfluous in your directory context; the
inclusion of this schema can be commented out by adding a hash (’#’) at the
beginning of the line.
216 LDAP Implementation Cookbook

The following three files contain V3 system object class definitions, V3
IBM-specific attribute object class definitions, and V3 user object class
definitions:

includeSchema /etc/V3.system.oc
includeSchema /etc/V3.ibm.oc
includeSchema /etc/V3.user.oc

As with the attribute type definition files, the object class definition files
contain more information than was present with LDAP Version 2: The OID
and a set of required (MUST) and optional (MAY) attribute types. If the
IBM-specific object class definitions (V3.ibm.oc) are not used in your
directory context, this schema can be disabled by adding a hash (’#’) at the
beginning of the line.

The following inclusion (and file) is to specify the V3 default syntax
definitions:

includeSchema /etc/V3.ldapsyntaxes

This inclusion (and file) specifies the V3 default matching rule definitions:

includeSchema /etc/V3.matchingrules

The following includeSchema statement (and file) is for schema changes or
new schema information. This statement must be the last includeSchema

statement in slapd.conf file. The file is, by default, empty.

includeSchema /etc/V3.modifiedschema

The slapd.conf configuration file contains another directive:

schemacheck V3_lenient

The schemacheck directive is used to specify the schema checking rules for
add or modify operations. It can be set to V2, V3, V3_lenient, or none. V2
keeps schema rules defined with Version 2; V3 performs V3 checking. If
V3_lenient is specified, not all parent object classes are needed, just the
immediate object class is needed when adding entries. If none is specified,
no schema checking will be performed, which is generally not recommended.

7.10.3 Back up and Restore Schema Information
Although the schema information can be queried using LDAP searches, it is
not actually stored in the database but rather in separate files as explained
above. For this reason, a backup and restore procedure for the directory
server must include these files in addition to the directory data.
LDAP Data and System Administration 217

7.11 Locating LDAP Servers Using DNS

Different ways are available for an LDAP client to discover the existence and
names (or IP addresses) of LDAP servers. Programming functions through
the C or JNDI APIs can be used to specify server names (see, for example,
Chapter 8, “Developing Directory-Enabled Applications” on page 223). This is
useful when the clients have some way to store the server’s names (or IP
addresses) locally, such as in a configuration file. This is an administrative
burden if references to several LDAP servers are to be stored and maintained
on a large number of clients. A simplification can be achieved when all clients
only know one single LDAP master server. LDAP referrals on this master
server can then be used to point requests to other LDAP servers. This master
server must be configured to contain all suffixes available for the entire DIT
and all referral objects with their ref attributes to point to the server with data
requested.

Another approach is to use the Domain Name System (DNS), which gives
you more flexibility as you do not need to configure each client, and it
provides a central administration point to locate a suitable LDAP directory
server.

DNS has become the standard lookup mechanism on the Internet and
intranets for retrieving host addresses and other information. DNS servers
need appropriate TXT, SRV, and CNAME records to handle LDAP servers.
Also, DNS name servers need to use a version of BIND that supports the TXT
and SRV record formats (greater than 4.8.3). API calls are provided for client
application development that support DNS look-ups for LDAP servers. This
API builds a list of LDAP servers with the first classed as the preferred or
default server.

7.11.1 TXT Records
The TXT records associated with a server (or preceding address records) are
used to store LDAP-specific server information. Four forms of TXT records
are supported for an LDAP server entry:

service Provides an LDAP URL, which specifies host name, port, base
DN, and security type (ldap for non-secure / ldaps for secure).

ldaptype Identifies replica server or master server.

ldapvendor Identifies server vendor (optional).

ldapinfo Provides any additional information, such as server contact,
physical location, and so on (optional).
218 LDAP Implementation Cookbook

This is an example of a DNS record for an LDAP server with hostname ldap in
the current domain:

ldap A 11.22.33.44
TXT "service:ldap://ldap.us.ibm.com:389/o=ibm,c=us"
TXT "ldaptype:master"
TXT "ldapvendor:IBM"
TXT "ldapinfo: location Building 123 Austin"

7.11.2 SRV Records
SRV records allow an administrator to use several servers for a single
domain to move services from host to host without disruption and to
designate certain hosts as primary and other as alternate servers. The SRV
records are optional except in cases where you have a server that supports
SSL and non-SSL ports.

The SRV record has the following form:

service.proto.[name] [ttl] [class] SRV priority weight port target

[] denotes optional settings, the other fields are:

service Name of the desired service.

proto Protocol, tcp, or udp.

name Domain name associated with the record. If not specified, the
default domain is assumed.

ttl Time-to-live, standard DNS meaning.

class Standard DNS meaning.

priority Target host with lowest number priority should be attempted first.

weight Load balancing mechanism when multiple hosts have the same
priority. The chance contacting one of the hosts should be
proportional to its weight and set to 0 if load balancing is not
necessary.

port Port on the target port for the service. This value is ignored if the
target host has a defined TXT record.

target Target host name.

For example:

ldap.itso.tcp SRV 0 0 0 earth
SRV 0 0 0 earth_sec
SRV 1 1 0 venus
SRV 1 2 0 pluto
LDAP Data and System Administration 219

earth A 11.22.33.1
TXT "service:ldap://earth.itsc.ibm.com:389/o=ibm,c=us"
TXT "ldaptype:master"

earth_sec A 11.22.33.1
TXT "service:ldaps://earth.itsc.ibm.com:686/o= ibm,c=us"

TXT "ldaptype:master"
venus A 11.22.33.3

TXT "service:ldap://venus.itsc.ibm.com:389/o=ibm,c=us"
TXT "ldaptype:replica"

pluto A 11.22.33.4
TXT "service:ldap://pluto:389/o=ibm,c=us"
TXT "ldaptype:replica"

In this example, a DNS search for ldap.itso with type=SRV would return four
SRV records for three hosts. A SRV record is needed for each port/suffix
combination supported by a server. In the example above, earth.itsc.ibm.com
uses two ports, the standard port (389) and the SSL port (686). Thus, there
are two SRV records and two TXT records for the same host and IP address.

7.11.3 CNAME Records
CNAME (canonical name) records allow you to define alias names for
servers. Using a CNAME record, you could specify an alias, for example,
LDAP in each domain that points to the real hostname of the LDAP server.
The following example defines LDAP as being an alias for
server3.itsc.austin.ibm.com:

LDAP CNAME server3.itsc.austin.ibm.com

LDAP clients in such a case could then just refer to the host LDAP in their
own domain and get the correct address of whatever the LDAP server might
be. Note that this is a standard DNS feature that does not need any special
API calls on the client side.

7.11.4 APIs Provided for DNS Support
To make use of the DNS capabilities as described above, the following C
language API calls are provided for client applications:

ldap_server_locate() Used to locate LDAP servers.

ldap_server_free_list() Used to free all storage associated with a linked list
of server info structures.

ldap_server_conf_save() Used to store server information into the
configuration file.
220 LDAP Implementation Cookbook

For JNDI (see 8.1, “Java Naming and Directory Interface (JNDI)” on page
223), the LDAPDNS class is available that provides the methods needed.

For more information on these API calls, we refer you to the online LDAP
Programming Reference that comes with the product.
LDAP Data and System Administration 221

222 LDAP Implementation Cookbook

Chapter 8. Developing Directory-Enabled Applications

Directory exploitation is not exhausted after an organization’s employees are
stored in that directory where shrink-wrapped applications, such as Web
browsers and e-mail clients, can look up e-mail addresses and telephone
numbers. Directories can be used to store a much broader range of
information, but it only makes sense as long as there are users for this
information. The term users then not only applies to human individuals but
also for applications and middleware software platforms that store and
retrieve common information in a centralized directory. This is exactly the
basic design idea behind LDAP; remember that LDAP defines a protocol that
applications must use to communicate with a directory server. Applications
use a common interface to that protocol. Two interfaces, also called
Application Programming Interface (API), are provided with the IBM
SecureWay Directory Client SDK for application developers: The Java
Naming and Directory Interface (JNDI) and the C language API.

This chapter discusses the JNDI and C language APIs that enable clients, or
more general applications, to access information stored in LDAP directories.

Please also refer to the online documentation that comes with the product,
namely, the JNDI Programming Guide and the C Programming Reference.
They can be found in the appropriate subdirectory of the IBM SecureWay
Directory installation file tree (see Chapter 6, “Installation and Configuration”
on page 131).

8.1 Java Naming and Directory Interface (JNDI)

JNDI, defined by Sun Microsystems, Inc., provides naming and directory
functionality to Java programs. JNDI is an API independent of any specific
directory service implementation. It enables seamless access to directory
objects through multiple naming facilities.

The definition prevents, by design, the appearance of any implementation
specific artifacts in the API. The unified API is designed to cover the common
case. Providing this unified interface does not imply that access of unique
features of a particular service, such as LDAP, is precluded, additional
classes can be added to access service-unique features. JNDI can be used
by a wide range of Java programs running on servers and traditional clients.
JNDI can also accommodate a thin client by specifying a service provider that
provides a proxy-style protocol where access to specific naming and directory
services is relegated to a server. Security is dealt with by individual service
providers; however, security related problems can be returned to the client.
© Copyright IBM Corp. 1999 223

8.1.1 Introduction
IBM provides an implementation of the JNDI where the service provider is
LDAP backed by the IBM SecureWay Directory, which uses DB2 as the data
store.

An application developer has two choices for accessing LDAP from a Java
application. The Java LDAP API, sometimes called JDAP, is an LDAP class
library defined in the Internet Draft The Java LDAP Application Program
Interface (see Appendix A, “Standards” on page 269 for more details). For
example, Netscape has implemented a Java API Software Development Kit
(SDK) based on this draft. Sun Microsystems has developed the Java Naming
and Directory Interface (JNDI) as part of its Java Enterprise API set, which
also includes Enterprise Java Beans (EJB) and Java Database Connectivity
(JDBC). JNDI is being supported by many vendors including IBM,
Hewlett-Packard, and Novell.

Both, the Java API and the JNDI, support only a synchronous programming
interface, though there can be multiple outstanding search enumerations
occurring concurrently with other operations. However, a multithreaded Java
application can continue processing while one thread is waiting on a
synchronous LDAP call. The Java API closely follows the LDAP C API, while
JNDI provides a generalized naming and directory interface. JNDI can access
other directory services besides LDAP, such as the Network Information
System (NIS), Novell Directory Services (NDS), and the Internet Domain
Name System (DNS). Because of the wide acceptance of Sun’s Java
Enterprise API, JNDI is commonly discussed as the Java interface to LDAP.

A naming service organizes and names objects. It provides an association
known as a binding between a name and an object. The binding between a
name and an object should not be confused with the connection between a
client and a server, which is sometimes also called a binding. For example, a
file system names and organizes files. The files are the objects that are
bound to the names. Given a file name, the file itself can be retrieved. This
model behind JNDI is independent of any name service for network
components and services (such as LDAP, DNS, or Active Directory).

A directory service can be considered to be a specific type of naming service
in which objects bound to names are directory entries. Directory entries are
made up of attributes that store values describing the entity represented by
the directory entry. The types of directory entries and attributes that can be
stored are described by schema.

As discussed above, JNDI provides a generalized naming and directory
service interface. For example, JNDI could be used to retrieve files from a file
224 LDAP Implementation Cookbook

system. In this case, a file system acting as a naming service could return the
file that is bound to a particular file name. JNDI could also be used to access
an LDAP directory, performing searches, and retrieving attributes.

JNDI represents an API that applications use to access a naming and
directory service. The naming and directory service could be provided by any
of a variety of such services, such as LDAP, NDS, or a file system. JNDI
provides a Service Provider Interface (SPI) that enables access to the
particular underlying directory service. The SPI is usually written by the
vendor of the underlying naming and directory service and is supplied as a
Java class library. This allows arbitrary services providers to be plugged into
the JNDI Framework (see Figure 56).

Figure 56. JNDI API and SPI interfaces

JNDI provides classes that implement a naming interface for applications,
such as the file system example, that only look up names and access objects
bound to names. JNDI also provides a directory interface that extends the
naming interface. The directory interface adds functionality to access
attributes and schema.

JNDI naming depends on syntactic rules or the naming convention of the
underlying directory service. In JNDI terminology, a name is made up of
individual components, called atomic names, that correspond to RDNs in
LDAP. A sequence of atomic names is a compound name. JNDI naming
depends on syntactic rules or the naming convention of the underlying
directory service. An LDAP DN, for example, is a compound name. Since the
underlying naming and directory services can have different name syntaxes,
the SPI provides an implementation of a NameParser that can break a name

Java Application

JNDI API

JNDI SPI

NDS LDAP ...
File

System
Developing Directory-Enabled Applications 225

into its component parts. For example, LDAP RDNs are separated by
commas; DNS names are separated by periods, and so on. Composite
names are compound names that span different name spaces. For example,
an LDAP URL can contain both a DNS and an LDAP name as, for instance, in
ldap://ldap.mycompany.com/cn=John%20Smith,o=ibm,c=us .

8.1.2 Directory Context and Schema Context
Names are interpreted within a context. A context can be thought of as a
particular node in the Directory Information Tree (DIT). If the current context
is <o=ibm,c=us>, then the atomic name <ou=Austin> refers to the child node
in the DIT with the DN <ou=Austin,o=ibm,c=us>. The node
<ou=Austin,o=ibm,c=us> is also called a subcontext of <o=ibm,c=us>. A
name space is traversed from context to subcontext, such as a file system is
traversed from directory to the directory subtree as depicted in Figure 57.

Figure 57. DirContext for different directory services

The DirContext interface extends the context interface by adding operations
specific to a directory service, such as accessing attributes and searching. An
application must establish an initial directory context as a starting point from
which to do searches or traverse the DIT. The initial directory context is
usually the name of an LDAP server.

Attributes

DirContext1 DirContext2 DirContext3

JNDI Enabled Application

LDAP Directory DNS Domain NIS Domain
226 LDAP Implementation Cookbook

LDAP V3 defines nine basic operations:

1. Bind
2. Unbind
3. Search
4. Delete
5. Modify
6. ModifyRDN
7. Add
8. Abandon
9. Extended

The IBM JNDI provides all of these operations of LDAP Version 3, except for
abandon and extended operations, and controls either way through the
DirContext Interface or through IBM specific extensions. Searches use a
search filter as defined in The String Representation of LDAP Search Filters,
RFC 2254. A SearchControls object passed to the search method can be set
to control search characteristics such as the scope of the search, the number
of entries returned, the time limit, and so on. Also, the entire schema name
space can be browsed, and object and attribute schema definitions can be
retrieved.

The IBM SecureWay Directory server can publish its schemas, and the IBM
JNDI provides schema context to retrieve, view, and modify the server’s
schema. The context returned has the same hierarchical structure as a
regular directory (schema tree) as shown in Figure 58 on page 228.
Developing Directory-Enabled Applications 227

Figure 58. Schema context

When a directory context is established, it is passed through an environment
that contains preferences and controls on how the directory service is
accessed. The environment specifies the SPI to use, security level for binding
to the server, and so on.

The environment is a hash table or properties list of key/value pairs. The
environment settings could be coded in the application, retrieved from the
system properties, or retrieved from a file. Table 9 lists some of the important
environment properties. Different SPIs may support other environment
properties and interpret or support values differently.

Table 9. JNDI directory context environment properties

Environment Property Use

java.naming.factory.initial Specifies the SPI.

java.naming.provider.url LDAP URL that specifies the LDAP server.

java.naming.ldap.version Specifies if server supports LDAP Version 2 or
3.

Server Schema
Information

JNDI Enabled Application

DirContext1 Schema Context

LDAP
Directory Schema Tree
228 LDAP Implementation Cookbook

8.1.3 Java Object Serialization
The IBM JNDI classes support storage and retrieval of serialized java objects.
This allows directories to be repositories for pre-initialized applets or beans,
and this is possible outside the environment in which they are created, as
shown in Figure 59 on page 229, which illustrates this feature.

Totally self-contained applets or beans can be downloaded from the directory.
Advanced serialization features, such as externalizable interface and object
input validation, are not supported.

Figure 59. Java object serialization

java.naming.ldap.noBind Specifies whether the client should bind to the
server.

java.naming.referral Specifies if referrals should be followed,
ignored, or throw an exception.

java.naming.security.principal Identity of user to authenticate.

java.naming.security.credentials Password or other security credential.

java.naming.security.sasl Class name of the SASL plug-in used to bind.

Environment Property Use

Serialized

Serialized

Serialized

Uses

Creates

Uses

LDAP
Directory

Button

Button

Button

Button

Java Button

Button
Developing Directory-Enabled Applications 229

8.1.4 JNDI and Security
JNDI does not specify a security interface or require any security model. The
providers will define what security models they support. JNDI conveys any
security information from an application to provider via a context’s
environment.

LDAP V3 allows a server to return data without binding. A clients can bind as
an anonymous user with normally restricted search capabilities. The JNDI
property that controls this behavior is java.naming.ldap.noBind :

env.put("java.naming.ldap.noBind","true")

No-bind operations are much faster, since no authentication handshake is
performed between client and server, but not all the servers may support
them. These operations are ideal for quick searches of non-sensitive
information.

IBMs JNDI SPI supports two authentication models:

• Simple

• Simple Authentication and Security Layer (SASL)

When using a simple authentication, the password flows in clear text; the
environment properties java.naming.security.principal and
java.naming.security.credentials convey the bind DN and the password,
respectively. If both properties are not specified, bind is anonymous:

env.put("java.naming.security.principal","cn=user,dc=ibm,dc=com");
env.put(Context.SECURITY_CREDENTIALS,"password");

IBMs JNDI also supports the authentication models named SASL (Simple
Authentication and Security Layer), which is available in LDAP V3 mode.
SASL is activated via plug-in classes, but not all servers may support SASL.

The java.naming.security.sasl property is used to identify the SASL
mechanism to be used. SASL is a high-level security framework that allows
different security mechanisms to be used and others to be plugged in (Figure
60, see also 5.2.1, “Overview of Simple Authentication and Security Layer
(SASL)” on page 105).
230 LDAP Implementation Cookbook

Figure 60. SASL plugins

IBMs JNDI supports two mechanism, which are:

1. The CRAM-MD5 SASL (com.ibm.ldap.LDAPSaslCRAM_MD5), which
sends the DN and a hash of the password (shared secret) to the server for
authentication using a challenge-response protocol.

2. SASL external (com.ibm.ldap.LDAPSaslExternal), which attempts to bind
an underlying security protocol already negotiated, such as SSL (Secure
Sockets Layer) client authentication. In most cases, the DN and password
should be left uninitialized (Figure 61).

creates client plugin and
corresponding server plugin

JNDI Application

install

Client

install
Client

Server

User’s

User’s
IBM Secureway

External
Plugin

CRAM-MD5
Plugin

Client
Plugin

Server
Plugin

CRAM-MD5
Plugin

Directory Server

Directory Client
Developing Directory-Enabled Applications 231

Figure 61. External SASL

IBMs JNDI SPI supports Secure Sockets Layer (SSL) for privacy. Currently,
only SSLight is supported, other SSL packages are not supported at this
time. It requires the IBM Global Security Kit (IBM GSKit) package for SSL
(see also 5.3, “SSL Utilities” on page 108).

SSlight requires a keyring class file containing trusted signer certificates. This
class may or may not contain a user private key to support client
authentication (SASL External). The keyring file may, or should be, password
protected if a private key is contained in it. The IBM GSKit contains a utility
called ikmgui for managing and generating keyring files.

There are three special environment properties that have already been
defined to configure the SSLight, which are:

1. The java.naming.security.ssl.keyring property
(LDAPCtx.SECURITY_SSL_KEYRING), which is the fully qualified name
of the above mentioned keyring class. If not specified, the default keyring
class ldapkey will attempt to be loaded from classpath.

CERT

CERT

JNDI
Client

LDAP
Server

JNDI
Client

Certificate

cn=user,dc=ibm,dc=com

LDAP
Server

JNDI
Client

1. SSL Client and Server Authentication

2. Client Sends SASL EXTERNAL Bind Request

3. Server Gets Bind DN from Client Cert

4. Server Sends OK Bind Response

LDAP
ServerEXTERNAL

EXTERNAL
232 LDAP Implementation Cookbook

2. The java.naming.security.ssl.authentication property
(LDAPCtx.SECURITY_SSL_AUTHENTICATION), which is the keyring
password.

3. The java.naming.security.ssl.ciphers property
(LDAPCtx.SECURITY_SSL_CIPHERS), which optionally lists the SSL
ciphers. If not specified, the default set of ciphers are used.

8.1.5 JNDI Example Program
The following Java program uses JNDI to perform a search and print the
attribute values of the directory entries found. It is a simple program that
illustrates the basic ideas of:

• Setting up an environment and establishing an initial directory context.

• Setting up a search filter and search controls.

• Stepping through the returned entries and printing the values of the
attributes.

The program is as such:

/*
* Example JNDI program that performs an LDAP search
* and parses and prints the results.

*/

import javax.naming.*;
import javax.naming.directory.*;
import java.util.Properties;
import java.util.Enumeration;

class Search {

public static void main(String[] args) {

try {
/* Create an environment for the initial directory context.

The properties specify the LDAP provider, the LDAP server,
the LDAP version, and no security (anonymous bind). */

Properties env = new Properties();
env.put("java.naming.factory.initial", "com.ibm.jndi.LDAPCtxFactory");
env.put("java.naming.factory.url.pkgs", "com.ibm.jndi");
env.put("java.naming.provider.url",

"ldap://saturn.itso.austin.ibm.com");

/* Create the initial directory context. */
Developing Directory-Enabled Applications 233

DirContext ctx = new InitialDirContext(env);

/* Set up and perform the search. Find all people in IBM in the
United States whose common name starts with Sue or Johan. */

String base = "o=IBM,c=US";
String filter = "(|(cn=Sue*)(cn=Johan*))";
SearchControls constraints = new SearchControls();
constraints.setSearchScope(SearchControls.SUBTREE_SCOPE);
NamingEnumeration results = ctx.search(base,filter,constraints);
/* Print the search results. */
if (!results.hasMore()) {

System.out.println("Nothing found.");
} else {

/* For each entry found. */
while (results.hasMore()) {

SearchResult sr = (SearchResult) results.next();
System.out.println(sr.getName());
Attributes attrs = sr.getAttributes();
if (attrs == null) {

System.out.println("No attributes");
} else {

/* For each attribute of the entry. */
for (NamingEnumeration ae = attrs.getAll(); ae.hasMore();) {

Attribute attr = (Attribute) ae.next();
String id = attr.getID();
/* For each value of the attribute. */
for (Enumeration vals = attr.getAll(); vals.hasMoreElements();

System.out.println(" "+id + " : " + v als.nextElement()));
}

}
}

}
} catch (NamingException e) {

/* Handle any name/directory exceptions. */
System.err.println("Search failed: " + e.getMessage());

} catch (Exception e) {
/* Handle any other types of exceptions. */
System.err.println("Non-naming error: " + e.getMessage());

}
}
}

The output of the program, executed against a sample directory is as follows:

cn=John Smith, ou=Austin, o=IBM, c=US
sn: Smith
title: ISO Deputy, Qual. Tech
234 LDAP Implementation Cookbook

postalcode: 1515
objectclass: organizationalPerson
objectclass: person
objectclass: top
facsimiletelephonenumber: 1-812-855-5923
telephonenumber: 1-512-838-6004
internationalisdnnumber: 755-5923
cn: John Smith

cn=Sue Kramer, ou=Austin, o=IBM, c=US
sn: Kramer
title: ISO Deputy, Qual. Tech
postalcode: 1515
objectclass: organizationalPerson
objectclass: top
facsimiletelephonenumber: 1-812-855-5923
internationalisdnnumber: 755-5923
telephonenumber: 1-812-855-5923
cn: Sue Kramer

8.2 C LDAP Application Programming Interface (API)

This section describes the API library for C language applications. We use an
example-driven approach to discuss the basic functions used for establishing
connections, doing searches, and parsing the results. You will often find the
LDAP server saturn mentioned in these examples. This is the name of the
LDAP server that was used to run the examples running the IBM SecureWay
Directory server on AIX.

8.2.1 Introduction
The basic conversation between an LDAP client and an LDAP server is
essentially accomplished in four steps:

1. The first step is to initialize an LDAP session. This is done with the
ldap_init() or ldap_open() API call, which returns a handle to an LDAP
session allowing multiple sessions to be open at one time.

2. The next step is the authentication to the server. The ldap_simple_bind_s()

and related functions are responsible for this. They support various
authentication methods from simple authentication to the more
sophisticated method Simple Authentication and Security Layer (SASL),
available in LDAP Version 3.

3. Once the connection is successfully established, you can perform your
LDAP operation(s), such as searching the directory for information and
retrieving the results.
Developing Directory-Enabled Applications 235

4. Finally, the connection has to be closed with the ldap_unbind() function
call.

Here is the first, simple example that shows these basic steps:

/*
* example #1
*/

#include <stdio.h>
#include <ldap.h>

main()
{

LDAP *ld;
char *User = NULL;
char *Passwd = NULL;

/* initiate a connection */
if ((ld = ldap_init("saturn.itso.austin.ibm.com", LDAP_PORT)) == NULL) {

fprintf(stderr, "ldap_init call failed !");
exit(1);

}

/* authenticate as nobody (Passwd is NULL) */
if (ldap_simple_bind_s(ld, User, Passwd) != LDAP_SUCCESS) {

ldap_perror(ld, "ldap_simple_bind_s");
exit(1);

}

/*................................
* do something, for example
* ask the server for information
................................../

/* close and free connection resources */
ldap_unbind(ld);
exit(0);
}

The ldap_init() function takes as an argument the name of the LDAP server
and the port where it is listening. The symbolic constant, LDAP_PORT,is set in
the ldap.h file to 389. This is the default, non-secure port for LDAP. In case of
success, ldap_init() returns a pointer to a data structure (a session handle),
which contains information about the current session. It must be passed on to
subsequent calls that refer to this session. In case of failure, ldap_init()

returns NULL.
236 LDAP Implementation Cookbook

Note that ldap_init() does not actually open the session to the server, it only
initializes it, and the session will only be opened when the first request is sent
to the server. Therefore, you are able to change session settings as defined in
the ID structure before the first connection occurs. When using ldap_init() ,
the first function that actually requires a connection will establish it
automatically. In the example above, that is the ldap_simple_bind_s() function.

Instead of using ldap_init() , we could have used ldap_open() as well. It takes
the same arguments, and it returns the same type of session handle. The
difference between these two methods is that ldap_open() does open a
connection to the LDAP server, while the ldap_init() only initializes a
connection (see explanation above). The use of ldap_open() , however, is
deprecated.

A look at the access log file of the LDAP server reveals that we have
successfully connected (Netscape’s Directory Server was used in this
example).

Notice that no user is listed in the dn field of the log file, which indicates that
the client is authenticated as user anonymous. This is done by passing NULL
values as user ID and password to the server within the ldap_simple_bind_s()

instruction (see program example above). In case of success,
ldap_simple_bind_s() returns LDAP_SUCCESS, an error code is returned
otherwise. For more information about error handling, see 8.2.7, “Error
Handling” on page 253.

Listed below are some of the session settings you can influence. You can find
the complete list of possible options either in the API RFC or in the header file
of the IBM SecureWay Directory Client SDK:

LDAP_OPT_SIZELIMIT The maximum number of entries returned in a
search; a value of LDAP_NO_LIMIT means no limit.

LDAP_OPT_TIMELIMIT The maximum number of seconds spent on a
search; a value of LDAP_NO_LIMIT means no limit.

...
[26/Mar/1998:14:22:42 -0600] conn=172 fd=35 slot=35 connection from 9.3.1.126
[26/Mar/1998:14:22:42 -0600] conn=172 op=0 BIND dn="" method=128 version=2
[26/Mar/1998:14:22:42 -0600] conn=172 op=0 RESULT err=0 tag=97 nentries=0
[26/Mar/1998:14:22:42 -0600] conn=172 op=1 UNBIND
[26/Mar/1998:14:22:42 -0600] conn=172 op=1 fd=35 closed
Developing Directory-Enabled Applications 237

LDAP_OPT_DEREF The way to handle aliases. It can have one of the
following values: LDAP_DEREF_NEVER,

LDAP_DEREF_SEARCHING, LDAP_DEREF_FINDING,or
LDAP_DEREF_ALWAYS.The LDAP_DEREF_SEARCHINGmeans
aliases should be dereferenced during the search
but not when locating the base object of the search.
The LDAP_DEREF_FINDINGvalue means aliases should
be dereferenced when locating the base object but
not during the search.

LDAP_OPT_REFERRALS Controls whether the LDAP library automatically
follows referrals (LDAP_OPT_ON) or not (LDAP_OPT_OFF).

LDAP_OPT_HOST_NAME The host name of the default LDAP server.
LDAP_OPT_ERROR_NUMBERThe number of the most recent LDAP error that

occurred for this session.
LDAP_OPT_ERROR_STRING The message returned with the most recent LDAP

error that occurred for this session.

The way to set the session preferences depends on the SDK implementation
you are using. In the IBM SecureWay Directory Client SDK, the connection
handle is an opaque data structure that can only be accessed with the
following two functions:

int ldap_get_option(
LDAP *ld,
int option,
void *outvalue);

int ldap_set_option(
LDAP *ld,
int option,
void *invalue);

Both functions return either LDAP_SUCCESS(integer value of zero) or a nonzero
value, and the specified error code is set within the LDAP session handle.
The option parameter specifies which session option is to be get or set. The
invalue or outvalue parameters contain the new value for the option or the
retrieved option value. This is a void pointer because the appropriate type
depends on the option chosen. A short example follows for both of these
functions.

To check whether or not the client automatically follows referrals returned
from the LDAP server (default is yes), the code in the following example #2
could be used:

/*
* example #2
238 LDAP Implementation Cookbook

*/

#include <stdio.h>
#include <ldap.h>

main()
{

LDAP *ld;
int optdata;
int res;

/* initiate a connection */
if ((ld = ldap_init("saturn.itso.austin.ibm.com", LDAP_PORT)) == NULL)

exit(1);

if (ldap_get_option(ld, LDAP_OPT_REFERRALS, &optdata) != LDAP_SUCCESS){
ldap_perror(ld, "ldap_simple_bind_s");
exit(1);
}

else {
switch(optdata){

case LDAP_OPT_ON:
printf("Follow Referrals is activated\n");break;

case LDAP_OPT_OFF:
printf("Don't Follow Referrals\n");break;

}
}
exit(0);
}

The appropriate option to check is, as listed above, LDAP_OPT_REFERRALS. The
result is captured in the integer variable, optdata, which is checked,
subsequently, to find out which option is set.

To set the maximum number of seconds spend on each search, the
LDAP_OPT_TIMELIMIT option has to be passed to the ldap_set_option() function:

/* Set number of seconds to spend on a search */
max_sec = 60;
if (ldap_set_option(ld, LDAP_OPT_TIMELIMIT,

(void *)&max_sec) != LDAP_SUCCESS) {
ldap_perror(ld, "ldap_set_option");
exit(1);

}

Developing Directory-Enabled Applications 239

8.2.2 Synchronous and Asynchronous Use of the API
You may have noticed the _s at the end of the bind command in example #1
above. This indicates that this command operates in synchronous mode with
the LDAP server. We could have used ldap_simple_bind() (without a trailing
_s) instead, then the communication would have been asynchronous. But
what is the difference between the two modes?

The LDAP protocol allows you to handle multiple sessions at the same time.
This means that several queries can be on their way to the server, and the
order in which they are processed is up to the server. The LDAP protocol
itself is, therefore, an asynchronous protocol.

In synchronous mode, the client sends a request to the server, and the
function call only returns when it gets the reply from the server. It is blocked in
between, which, in fact, means that no other operations can be processed.
There is no message ID related to the request. The synchronous function
returns either success or an appropriate error code.

When the client sends or receives requests in asynchronous mode, every
message is tagged with a message ID that is unique for a given session. The
client needs to use the function ldap_result() to check the status of the
request and to get the results. The advantage of this approach is that the time
gap between sending a request and actually getting the result from the server
can be used by the client to do other work.

Figure 62 illustrates the differences between synchronous and asynchronous
requests, and code samples are provided for each mode.

Figure 62. Synchronous versus asynchronous calls

T
im

e

Client Server Client Server

Synchronous Operation Asynchronous Operation

step n

step n+1

wait
process
request

step n

step n+m

do other work
process
request

ldap_result()
240 LDAP Implementation Cookbook

Only functions that actually send data over the network are involved when
comparing synchronous versus asynchronous functions. Each of these
network-related functions, therefore, exist in either mode with an appended
_s indicating the synchronous mode.

The synchronous approach is certainly not as powerful as the asynchronous
mode. This means that complex operations with a large number of requests
simply take more time. On the other hand, synchronous mode is much
simpler to use. The method you chose, therefore, depends on what you
intend to do.

8.2.3 A Synchronous Search Example
So far, the example for sample application above has only established a
connection to an LDAP server but has not actually performed any operations.
Now, we go a bit more into detail and provide a client that connects to the
server and performs a search operation.

/*
* example #3
*/

#include <stdio.h>
#include <ldap.h>

#define SEARCHBASE "o=IBM,c=US"

main()
{

LDAP *ld;
LDAPMessage *res;
int numfound;
char *User = NULL;
char *Passwd = NULL;
char line[BUFSIZ], search[] = "cn=";

/* Ask for the Name to search for */
printf("Type in a name to search for on LDAP server saturn:\n");
fgets(line, sizeof(line), stdin);
strcat(search, line);
search[strlen(search) - 1] = '\0';

/* initiate a connection */
if ((ld = ldap_init("saturn.itso.austin.ibm.com", LDAP_PORT)) == NULL)

exit(1);

/* authenticate as nobody */
Developing Directory-Enabled Applications 241

if (ldap_simple_bind_s(ld, User, Passwd) != LDAP_SUCCESS) {
ldap_perror(ld, "ldap_simple_bind_s");
exit(1);

}

/* search the database */
if (ldap_search_s(ld, SEARCHBASE, LDAP_SCOPE_SUBTREE, search, NULL,

0, &res) != LDAP_SUCCESS) {
ldap_perror(ld, "ldap_search_s");
exit(1);

}

/* did we get anything ? */
if ((numfound = ldap_count_entries(ld, res)) == -1) {

ldap_perror(ld, "ldap_count_entries");
exit(1);

}

/* free memory allocated for search results */
ldap_msgfree(res);

/* close and free connection resources */
ldap_unbind(ld);

/* print the results */
printf("Found %d entries of name %s\n\n", numfound, line);
exit(0);

}

After asking for a name to search for from the command line, the program
connects to saturn, the LDAP server, and searches for that name. The
number of hits is then printed to the screen. Keep in mind that you are only
able to find an entry if the access control of that entry is set appropriately.
Otherwise, the entry may be there, but you are not allowed to search it.

There are three search functions: ldap_search_s(), ldap_search_st() and
ldap_search() (two additional functions, similar to these three, are available
for LDAP Version 3 that support server and client controls allowing an
application to specify varying size and time limits for each search operation).
The first two functions, ldap_search_s() and ldap_search_st() , are used in
synchronous mode; the last one provides an asynchronous search function.
In addition to the function of ldap_search() , ldap_search_st() lets you specify a
time-out value for each search operation.

In the example above, ldap_search_s() was used. Its syntax is:
242 LDAP Implementation Cookbook

int ldap_search_s(
LDAP *ld,
char *base,
int scope,
char *filter,
char **attrs,
int attrsonly

);

The meaning of the parameters is as follows:

ld The session handle obtained by ldap_init().

base A DN that defines the starting point in the LDAP directory tree.

scope This defines the way how a search in a tree is done. You can
choose one of the three possibilities: LDAP_SCOPE_BASE,
LDAP_SCOPE_ONELEVEL, LDAP_SCOPE_SUBTREE. See
explanation that follows below.

filter A character string as described in The String Representation of
LDAP Search Filters, RFC 2254, representing the search filter.

attrs A NULL-terminated array of strings indicating which attributes to
return for each matching entry. Passing NULL for this parameter
causes all available attributes to be retrieved.

attrsonly A Boolean value that should be zero if both attribute types and
values are to be returned nonzero if only types are wanted. The
latter option is useful if, you for example, you want to check to see
if only a certain attribute is available.

As mentioned above, two additional search API calls were added in LDAP V3
that support server and client controls. These are ldap_search_ext() and
ldap_search_ext_s(), respectively. Please read the online Programming
Reference (supplied with the IBM SecureWay Directory Client SDK) for
additional information.

To search an LDAP directory, a starting point in the tree structure of your
directory hierarchy has to be defined. In our example, this is done by setting
the base parameter for ldap_search_s() to “ o=IBM,c=US” .

Next, an appropriate scope needs to be chosen. There are three choices for
selecting a search scope (see also Figure 63 on page 244):

• A particular entry (LDAP_SCOPE_BASE) can be searched for.

• The search can be extended to one level below the base not including the
base (LDAP_SCOPE_ONELEVEL).
Developing Directory-Enabled Applications 243

• The whole subtree under the starting point can be searched
(LDAP_SCOPE_SUBTREE).

In the example above, we set scope to subtree (LDAP_SCOPE_SUBTREE)
to look for entries containing the common name (cn) typed in by the user on
the command line. The common name is appended to the attribute cn that is
stored altogether in the variable search. This defines the simple search filter
used in the example above. Because the attrs parameter is set to NULL and
attrsonly is set to zero; all attributes with their values are retrieved.

Figure 63. Different search scopes

The result of the directory search is returned by ldap_search_s() to a
structure of type LDAPMessage pointed to by the res pointer. When no
longer needed, the memory allocated in res should be freed using the
ldap_msgfree() function (see sample code above). The function
ldap_count_entries() is then used to count the number of entries found in the
directory matching the search filter. Its syntax is:

int ldap_count_entries(LDAP *ld, LDAPMessage *result);

where:

Rochester

Cambridge

Austin

cn=John Smith other entries
cn=..

o=IBM, c=US

scope = LDAP_SCOPE_BASE

scope = LDAP_SCOPE_ONELEVEL

scope = LDAP_SCOPE_SUBTREE

SEARCHBASE = "o=IBM,c=US"
244 LDAP Implementation Cookbook

ld is the connection handle, and

result is a pointer returned to the LDAPMessage structure filled by
ldap_search_s() or ldap_result()

In case of an error, ldap_count_entries() returns -1, otherwise, the number of
entries found.

The function ldap_msgfree(LDAPMessage *result) should be used to free the
memory occupied by the search results. When successful, the result type
freed is returned. This would be LDAP_RES_SEARCH_ENTRY in our case.

8.2.4 More about Search Filters
We used the filter “cn=common name” to look up directory entries. But the filter
parameter of the search functions is much more flexible. Its syntax is defined
in The String Representation of LDAP Search Filters, RFC 2254.

The basic syntax of the search filter is as follows:

(attribute operator value)

So, when we use the filter cn=John Smith, cn is the attribute, the equal sign is
the operator, and John Smith is the value. There are several more operators
available, for example, comparison operators, such as smaller than (<=) or
greater than (>=). Furthermore, you can combine several filters using
Boolean operators and, thus, search, for example, for more than one
attribute.

For a complete explanation of search filters, please study the above
mentioned RFC. Search filters are also introduced in more detail under 7.8.5,
“The LDAPSEARCH Utility” on page 192.

8.2.5 Parsing Search Results
The outcome of a search request is usually a chain of entries as shown in
Figure 64 on page 246. The last example program only counted the number
of entries. But that is usually not what we want; we are interested in the
information itself. Therefore, we need to parse the information returned by the
server. This is an iterative process that starts at the very outside of the data
container (an entry) and digs itself deeper in the data structure until it
eventually gets to the single attribute/value pairs. The functions we need are:

LDAPMessage *ldap_first_entry(LDAP *ld, LDAPMessage *result);
LDAPMessage *ldap_next_entry(LDAP *ld, LDAPMessage *preventry);

where:
Developing Directory-Enabled Applications 245

ld is the connection handle;

result is a pointer to the data structure obtained by ldap_search_s(),
ldap_search_st(), or ldap_result();

preventry is a pointer to an entry returned by a previous ldap_first_entry()
or ldap_next_entry(), and

return value if successful, returns a pointer to the first (ldap_first_entry()) or
to the next entry (ldap_next_entry()), or NULL in case of no
more entries or an error.

Figure 64. Result of a search request

But to actually retrieve the contents of an entry, we need to go further on. As
outlined in Chapter 2, “Schema and Namespace” on page 31, an entry of an
LDAP directory consists of attribute/value pairs as defined in the object
classes. The following functions retrieve the name of single attributes:

char *ldap_first_attribute(LDAP *ld, LDAPMessage *entry, BerElement **ber);
char *ldap_next_attribute(LDAP *ld, LDAPMessage *entry, BerElement *ber);

where:

ld is the connection handle;

entry is a pointer to an structure returned by ldap_first_entry() or
ldap_next_entry(), and

ber is a pointer to a data structure that is used to keep track of the current
attribute. BerElement refers to data encoded using the Basic
Encoding Rules. This pointer needs to be passed to subsequent calls
of ldap_next_attribute().

Sue Kramer

Janet Panoe

John Smith

uid = jsmith

cn = John Smith

mail = jsmith@ibm.se

sn = Smith

Entry List
Attribute Value(s)

Single Entry

...

...

... ... = ...
246 LDAP Implementation Cookbook

Now that we have the attribute names, we are ready for the last step. We can
retrieve the attribute values. The function used depends on the attribute
types. If they consist of string data, the function:

char **ldap_get_values(LDAP *ld, LDAPMessage *entry, const char *attr);

can be used. If the attribute contains binary data, such as images in JPEG
format, we have to use:

struct berval **ldap_get_values_len(
LDAP *ld, LDAPMessage *entry, const char *attr);

The parameters ID and entry are the same as in ldap_first_attribute() and
ldap_next_attribute() . The parameter attr is a character string returned by
ldap_first_attribute() and ldap_next_attribute() . Example #4 below shows
a function called check_result_and_print() using the functions described
above to parse search results:

/*
* example #4
*/

#include <stdio.h>
#include <ldap.h>

void check_result_and_print(LDAP *ld, LDAPMessage *res){

LDAPMessage *entry;
BerElement *ptr;
int numfound, i;
char *dn, *attr, **vals;

/* did we get anything? */
if ((numfound = ldap_count_entries(ld, res)) == -1) {

ldap_perror(ld, "ldap_count_entries");
exit(1);

}

/* parse the results */
if (numfound > 0) {

/* for each entry print out dn plus attributes */
for (entry = ldap_first_entry(ld,res); entry != NULL;

entry = ldap_next_entry(ld,entry)) {

/* check for distinguished name */
if((dn = ldap_get_dn(ld,entry)) != NULL){

printf("\n\ndn: %s\n", dn);
Developing Directory-Enabled Applications 247

ldap_memfree(dn);
}

/* get the attributes */
for (attr = ldap_first_attribute(ld, entry, &ptr);

attr != NULL;
attr = ldap_next_attribute(ld, entry, ptr)) {

printf("%s: ", attr);

/* print each value */
vals = ldap_get_values(ld, entry, attr);
for (i = 0; vals[i] != NULL; i++) {
printf("%s, ", vals[i]);
}
/* print the end of line for each attr. */
printf("\n");
ldap_value_free(vals);

}
printf("\n");
}

} else {
/* print that we didn't get anything */
printf("Nothing found!\n");

}

/* free the search results */
ldap_msgfree(res);
}

This function takes as input the connection handle ld and a pointer to a
structure res as returned by the ldap_search_s() function. First, it checks
using the ldap_count_entries() function, what ldap_search_s() has returned.
Next, if the number of entries is greater than zero, it starts parsing the results.

The attribute/value pairs are printed out in LDIF format (as described in 4.7.1,
“The LDIF File Format” on page 93). To be LDIF compliant, the first line of
every entry has to be the distinguished name (DN). The ldap_get_dn()

function looks it up for us. Its syntax is:

char *ldap_get_dn(LDAP *ld, LDAPMessage *entry);

The parameters ld and entry are the same as in the ldap_next_entry()

function. After retrieving the DN, we use the function ldap_memfree() to free
the memory occupied by ldap_get_dn(). You may also notice the function
ldap_value_free(). This is used to free memory blocked by the array that
contains the attribute values. Its return value is void.
248 LDAP Implementation Cookbook

8.2.6 An Asynchronous Search Example
So far, we have only dealt with synchronous functions. We now change our
search example in order to make it communicate asynchronously with the
LDAP server. As mentioned in 8.2.2, “Synchronous and Asynchronous Use of
the API” on page 240, the function ldap_search() is used for that purpose. It
only initiates the search and, therefore, does not directly return the results.
Instead, it returns a message ID, which identifies the search being processed
by the server and serves as a parameter for the ldap_result() function, which
can, subsequently, be used to check the search results.

int ldap_search(LDAP *ld, const char *base,
int scope, const char* filter,
char **attrs, int attrsonly);

Note that the pointer to the result structure is missing as a parameter here as
compared to the example shown in 8.2.3, “A Synchronous Search Example”
on page 241. The other parameters behave like the ones already mentioned
as we described ldap_search_s() . Here is the example code:

/*
* example #5
*/

#include <stdio.h>
#include <string.h>
#include <ldap.h>

#define SEARCHBASE "o=ibm,c=US"

/* prototype */
void check_result_and_print(LDAP *ld, LDAPMessage *res);

main()
{

LDAP *ld;
LDAPMessage *res;
char *User = NULL;
char *Passwd = NULL;
char line[BUFSIZ], *filter, temp[BUFSIZ];
int msgid, rc, i;
struct timeval tv = {0, 0};

strcpy(temp, "cn=");

/* ask for the Name to search for */
printf("\nType in a name to search for on LDAP server saturn:\n");
fgets(line, 20, stdin);
Developing Directory-Enabled Applications 249

strcat(temp, line);
temp[strlen(temp) - 1] = '\0';
filter = temp;

/* initiate a connection */
if ((ld = ldap_init("saturn.itso.austin.ibm.com", LDAP_PORT)) == NULL)

exit(1);

/* authenticate as nobody */
if (ldap_simple_bind_s(ld, User, Passwd) != LDAP_SUCCESS) {

ldap_perror(ld, "ldap_simple_bind_s");
exit(1);

}

/* search asynchronously */
if ((msgid = ldap_search(ld, SEARCHBASE, LDAP_SCOPE_SUBTREE,

filter, NULL, 0)) == -1){
ldap_perror(ld, "ldap_search_s");
exit(1);

}

/* Initialize the value returned by ldap_result() */
rc = 0;
i = 0;
while (rc == 0) {

/* ... do other work */
printf("Loopcount %i\n",i++);

/* while waiting ... */
/* check the status of the search operation */
rc = ldap_result(ld, msgid, 1, &tv, &res);

switch(rc) {
case 0:

/* do nothing, search is still in progress */
break;

case -1:
/* some error occurred */
ldap_perror(ld, "ldap_result");
exit(1);
break;

case LDAP_RES_SEARCH_RESULT:
/* result is complete, print it */
check_result_and_print(ld, res);
break;

}

250 LDAP Implementation Cookbook

}

/* close and free connection resources */
ldap_unbind(ld);

exit(0);

}

Checking of the search results is done within the while() loop using the
ldap_result() function. This function can be generally used to retrieve results
of asynchronous search functions. The return value can have one of three
general values. If it is -1, then some sort of error has occurred. A value of
zero indicates a time-out, and a value greater than zero indicates a
successful returning of a result. The various possible positive return values
are declared in the ldap.h file. Only three of these return values are relevant
to the search function. The reminder of possible return values belongs to
several other asynchronous functions used, for example to add, modify,
compare, or delete LDAP tree values. The (positive) return values associated
with ldap_search() are:

LDAP_RES_SEARCH_ENTRYA single entry matching a previously initiated
search result.

LDAP_RES_SEARCH_RESULTEither a result indicating the final outcome of
a previously initiated search operation or an entire
chain of entries matching the search operation
along with the final outcome.

LDAP_RES_SEARCH_REFERENCEWhen the search result is a reference
(this was added in LDAP Version 3).

For reasons of completeness, here are the other result values. Apart from the
last one, the names should be self-explanatory:

• LDAP_RES_BIND
• LDAP_RES_MODIFY
• LDAP_RES_ADD
• LDAP_RES_DELETE
• LDAP_RES_MODDN
• LDAP_RES_COMPARE
• LDAP_RES_EXTENDED (new in LDAP Version 3, this is the return of a

protocol extensibility operation)

The syntax of ldap_result() is:
Developing Directory-Enabled Applications 251

int ldap_result(LDAP *ld, int msgid, int all,
struct timeval *timeout, LDAPMessage **result);

where:

ld is the connection handle.
msgid This is the return value of a previously issued asynchronous

function, in our case, ldap_search(). If you specify the constant
LDAP_RES_ANY (-1), then the result of any operation is requested.

all A Boolean parameter that is only used in search operations. If it is
set to zero (false), only one message at a time is retrieved; if it is set
to non-zero (true), all results should be received before returning
them in a search chain.

timeout A structure that specifies how long to wait for results to be returned.
It takes the parameter tv_sec and tv_usec, which specifys seconds
and micro seconds of the time interval. A NULL value causes
ldap_result() not to return until results are available. A zero value
(numeric 0, not to be confused with NULL) specifies a polling
behavior. This means if values are available, ldap_result() retrieves
them immediately; if not, it will not wait.

res A pointer to the result obtained by asynchronous operations. This
memory area should be freed with ldap_msgfree() when it is no
longer needed.

Through the setting of the parameter all to true in example #5, we specified
that we want all results retrieved at once. The time-out period of zero seconds
(see the tv structure in the sample code) causes a polling behavior.
Therefore, every call of ldap_result() checks whether the search operation
has already finished. If not, it returns (with value zero in that case) and other
work can be done within the while loop. In our case, it simply prints out the
number of loops already processed. If ldap_result() returns
LDAP_RES_SEARCH_RESULT,this indicates that the final outcome of the search
operation, and that the chain of results is available. The result processing is
then done by the formerly introduced function (see example #4)
check_result_and_print() .

As mentioned at the beginning of this section, this is the big advantage of the
asynchronous method. Once the asynchronous command is transferred to
the server, the client is free to do other things. It uses the msgid and
ldap_result() to check the outcome of the operation whenever appropriate.

We specified in the above example #5 by setting the parameter all to true that
all results should get returned all together. This may be inconvenient,
especially when a large number of entries may be expected. In setting the
252 LDAP Implementation Cookbook

parameter all to false, we can cause ldap_result() to deliver single search
entries and not the whole result chain. This frees the client from waiting until
the complete result chain is available. Every time a new result entry is
available, ldap_return() delivers LDAP_RES_SEARCH_ENTRYasa return value
instead of LDAP_RES_SEARCH_RESULT.However, the latter value indicates the
end of the result list and delivers the final outcome. The following lines
change the result processing behavior as just described; the rest of the code
is the same as in example #5:

/* Initialize the values */
rc = 0;
i = 0;

/* while the search is still in progress, do this */
while (rc != LDAP_RES_SEARCH_RESULT) {

/* ... do other work; print loop count in this example */
printf("Loopcount %i\n",i++);

/* while waiting ... */
/* check the status of the search operation */
rc = ldap_result(ld, msgid, 0, &tv, &res);

switch(rc) {
case -1:

/* some error occurred */
ldap_perror(ld, "ldap_result");
exit(1);
break;

case LDAP_RES_SEARCH_ENTRY:
check_result_and_print(ld, res);
break;

case 0:
/* no result yet */
break;

}
}

8.2.7 Error Handling
If an LDAP function fails, information about what went wrong can be found in
the connection handle. Most of the error codes, which go into three separate
fields of the connection handle, are directly returned from the server, but the
fields can get set from client library functions as well. The fields are:

ld_matchedIn the event of an LDAP_NO_SUCH_OBJECT error, this
parameter contains the part of the DN that could be matched with
a DN found on the server.
Developing Directory-Enabled Applications 253

ld_error This parameter contains the error message sent in the result by
the server.

ld_errno This is the LDAP error code, such as LDAP_SUCCESS,
LDAP_NO_SUCH_OBJECT,
LDAP_STRONG_AUTH_REQUIRED, and so forth, indicating the
outcome of the operation.

How the error processing works depends on what LDAP function you use.
Most functions (all synchronous functions) directly return numerical error
codes. They can get mapped by the function ldap_err2string() to character
strings, which, in turn, can get printed to standard error output or to whatever
is appropriate for the application.

When, for example, searching the directory server using the synchronous
function ldap_search_s() , error checking can be done like this:

/* search the database */
if ((rc = ldap_search_s(ld, SEARCHBASE, LDAP_SCOPE_SUBTREE, search, NULL,

0, &res)) != LDAP_SUCCESS){
fprintf(stderr, "ldap_search_s: %s\n", ldap_err2string(rc));
exit(1);

}

In case of success, ldap_search_s() returns LDAP_SUCCESS(which is equivalent
to zero) or the appropriate numerical error code. If we set the SEARCHBASE

parameter to a nonexistent value, for example <o=icm,c=us> instead of
<o=ibm,c=us>, then the error message of the previous example would be as
follows (the particular return code equals to 32, LDAP_NO_SUCH_OBJECT):

ldap_search_s: No such object

This indicates that the entry we were looking for does not exist either due to
an incorrect DN or for other reasons.

A common way to monitor the return code of an LDAP function for errors is
also to use the function ldap_perror(LDAP *ld, char *msg). In fact, as you
might have noticed, that is what we did in our examples so far. This function
was defined in the LDAP Version 2 API. It internally converts the error
contained in the ld_errno field of the session handle to an error string and
prints it together with the msg string to standard error (stderr). In LDAP
Version 3, the use of this function is deprecated. Therefore, using the
ldap_err2string() function should be the preferred way in LDAP Version 3.

When checking for an error of an asynchronous function, ldap_parse_result()
has to be used. This is because the function that checks the outcome of the
254 LDAP Implementation Cookbook

operation, ldap_result(), returns the type of the result (for example
LDAP_RES_ADD, LDAP_RES_SEARCH_ENTRY, and so on) instead of the
LDAP error code.

The routine ldap_parse_result() checks messages of type
LDAP_RES_SEARCH_ENTRY and LDAP_RES_SEARCH_REFERENCE
returned from the LDAP server when looking for a result message to parse. It
returns the constant LDAP_SUCCESS if the result was successfully parsed
and no error was found; otherwise, it returns another error code. This function
then also sets the appropriate fields in the connection handle. The syntax of
ldap_parse_result() is as follows:

int ldap_parse_result(LDAP *ld,
LDAPMessage *res,
int *errcodep,
char **matcheddnp,
char **errmsgp,
char ***referralsp,
LDAPControl ***serverctrlsp,
int freeit);

The parameters are:

ld, res The connection file handle and the pointer to the message
structure which contains the result of an LDAP operation as
returned by ldap_result().

errcodep An integer pointer that will be filled with the error code of the
LDAP operation. That is the way the server tells the client about
the outcome of its operation. NULL may be passed to ignore this
field.

matcheddnp In case of an LDAP_NO_SUCH_OBJECT error, this parameter
will be filled with the part of the distinguished name that could
be matched. NULL may be passed to ignore this field. The
memory area occupied by this parameter should be freed using
the ldap_memfree() function.

errmsgp This result parameter will be filled in with the contents of the
error message contained in the returned message. NULL may
be passed to ignore this field. The memory area occupied by
this parameter should be freed using the ldap_memfree()
function.

referralsp This parameter will be filled in with the contents of the referrals
field contained in the returned message indicating zero or more
alternate LDAP servers where the information should be
retrieved. The referrals array should be freed by calling
ldap_value_free(). NULL may be passed to ignore this field.
Developing Directory-Enabled Applications 255

serverctrlsp This result parameter will be filled in with an allocated array of
controls copied out of the LDAPMessage structure. The
occupied memory area should be freed using
ldap_controls_free().

freeit This determines whether or not the LDAPMessage structure is
cleared after extracting the necessary information. Pass a
non-zero value to free it.

Note that ldap_parse_result() places the error code in the errcodep
parameter. Thus, check this parameter to trace errors of previous LDAP
operations.

If we apply this to our last example, the asynchronous search example, we
could do the following to check for errors after the ldap_search() has been
invoked:

/* while the search is still in progress, do this */
while (rc != LDAP_RES_SEARCH_RESULT) {

/* ... do other work; print loop count in this example */
printf("Loopcount %i\n",i++);

/* while waiting ... */
/* check the status of the search operation */
rc = ldap_result(ld, msgid, 0, &tv, &res);
switch(rc) {

case -1:
/* some error occurred */

fprintf(stderr, "ldap_search_s: %s\n", ldap_err2string(rc));
exit(1);
break;

case LDAP_RES_SEARCH_ENTRY:
check_result_and_print(ld, res);
break;

/* this is the end of the search, test for errors */
case LDAP_RES_SEARCH_RESULT:

ldap_parse_result(ld,res,&err,&errdn,&errmsg,NULL,NULL,1);
if (err != LDAP_SUCCESS) {

fprintf(stderr,
"Search Error: %s, %s, Matched DN:%s\n",
errmsg, ldap_err2string(err), errdn);

ldap_memfree(errdn);
ldap_memfree(errmsg);

}
break;

case 0:
256 LDAP Implementation Cookbook

/* no result yet */
break;

}
}

As we pointed out earlier, when the all parameter in ldap_result() is set to
zero (false), single search results get retrieved one at a time. The final
outcome is stored in the message structure when
LDAP_RES_SEARCH_RESULT is returned. The function mentioned above,
ldap_parse_result(), is then used to check the final outcome of the search.
The error code is stored in the integer value err. A return value not equal to
zero (LDAP_SUCCESS) indicates a search error. In this case,
ldap_err2string() is used to transform the error number to the related error
string. This is, together with errmsg and matcheddn, then printed out to the
standard error output. The ldap_memfree() eventually frees no longer needed
memory areas.

If we searched for an entry with the same wrong search base as in an earlier
example above (o=icm,c=us), we would get the error message:

Search Error: , No such object, Matched DN:c=us

This corresponds to an LDAP_NO_SUCH_OBJECTerror. The errmsg field is not set,
but the matched DN field shows us the portion of the name that could
successfully be matched.

Another function for error checking is available in the LDAP Version 3 API. It
is ldap_parse_sasl_bind_result(). It allows an application to check for errors
resulting from a SASL bind operation. For more information about this
function, we refer you to the online Programming Reference that comes with
the product.

8.2.8 Authentication Methods
Authentication can be understood as identifying a client (or a user) to the
server. This needs to be done before any operation can be performed with the
server. There are several authentication mechanism supported in LDAP. We
start with Basic Authentication that was introduced in 5.2, “Security Support
of the IBM SecureWay Directory” on page 104.

LDAP Version 3 includes the SASL authentication framework. A common way
to gain a higher level of security, especially when exchanging information over
the Internet, is to use SSL to encrypt the session, which is a method
supported by SASL. The use of SASL/SSL will be explained in this section as
well.
Developing Directory-Enabled Applications 257

For general information about the different security techniques and the
definitions and terms used below, we refer you to Chapter 5, “Directory
Security” on page 103.

If you not only want to read and search a directory but also want to modify the
entries in it, the anonymous user authentication used so far to search the
directory will certainly not be sufficient. You need to properly authenticate a
user who needs special access permissions, for example as an authorized
directory administrator. The easiest way to do this is to use basic
authentication. This is done by specifying a DN and a password in the
ldap_simple_bind() function and sending it over to the LDAP server as in the
following example:

/*
* example #6
*/

#include <stdio.h>
#include <ldap.h>

main()
{

LDAP *ld;
char *User = "cn=Directory Manager";
char *Passwd = "1234qwer";

/* initiate a connection */
if ((ld = ldap_init("saturn.itso.austin.ibm.com", LDAP_PORT)) == NULL)

exit(1);

/* authenticate to the server */
if (ldap_simple_bind_s(ld, User, Passwd) != LDAP_SUCCESS) {

ldap_perror(ld, "ldap_simple_bind_s");
exit(1);

}

printf("Authenticated as %s\n", User);

/*
* do something, for example
* ask the server for information
* */

/* close and free connection resources */
ldap_unbind(ld);
exit(0);
258 LDAP Implementation Cookbook

}

The only essential difference between example #6 above and example #1
(shown on page 236) is that the user’s DN and the password are passed to
ldap_simple_bind_s() rather than just NULL values. This is, however, not very
secure because the password is sent over the network unencrypted and can
be eavesdropped. A more secure way is to use SSL to encrypt the session
traffic between client and server.

Example #7 below shows how to connect to an IBM SecureWay Directory
using the SSL-related API calls. Prior to using SSL, it had to be configured
properly (see 5.4, “Configuring SSL Security” on page 111).

As shown in the following, the example uses server authentication only
although the IBM SecureWay Directory supports client authentication as well
(see 5.4.3, “Configuring an LDAP Server to Use SSL” on page 116).

/*
* example #7
*/

#include <stdio.h>
#include <ldap.h>

main()
{

LDAP *ld;
char *User = "cn=Directory Manager";
char *Passwd = "1234qwer";
char *keyring = "/home/root/keys/venus-keyfile.kdb";
char *keyring_pw = NULL, *name = NULL;
int rc, ssl_rc;

/* initialize SSL client */
if ((rc = ldap_ssl_client_init(keyring, keyring_pw, 10, &ssl_rc)) != NULL){

perror("ldap_ssl_client_init error");
exit(1);
}

else {
printf("ldap_ssl_client_init done.\n");

}

/* initiate SSL session */
if ((ld = ldap_ssl_init("saturn.itso.austin.ibm.com", LDAPS_PORT, name)) ==

NULL) {
perror("ldap_ssl_init error");
exit(1);
Developing Directory-Enabled Applications 259

}
else {

printf("Success: ldap_ssl_init\n");
}

/* optionally set SSL options using ldap_set_option() here */

/* authenticate to server */
if (ldap_simple_bind_s(ld, User, Passwd) != LDAP_SUCCESS) {

ldap_perror(ld, "ldap_simple_bind_s");
exit(1);

}
printf("Authenticated as %s\n", User);

/*
* do something, for example
* ask the server for information
* */

/* close and free connection resources */
ldap_unbind(ld);
exit(0);
}

A new call in example #7 above, ldap_ssl_client_init() , initializes the client’s
SSL library. It requires four parameters:

keyring This specifies the name of the keyring file. It usually contains
the certificates of the trusted (by the client) certificate
authorities. It can also contain a public key and the associated
certificate if client authentication is required.

keyring_pw The password that protects the keyring file. It is set when the
keyring file is created with the ikmgui tool. A NULL password,
as in our example, is accepted, which causes the password to
be taken from a stash file (see 5.4, “Configuring SSL Security”
on page 111).

ssl_timeout A timeout value, in seconds, for the SSL connection. It is set
to 10 (seconds) in example #7.

ssl_rc A return code that contains additional error conditions as
defined in ldapssl.h.

The second difference to example #6 is that the ldap_init() call is replaced by
ldap_ssl_init(), which initializes an SSL connection on port LDAPS_PORT
instead of LDAP_PORT. This constant, LDAPS_PORT, is set in the ldap.h file
260 LDAP Implementation Cookbook

to 636, which is the default SSL port for LDAP. The actual SSL connection,
however, is only established when the ldap_simple_bind_s() call takes place.

The optional ldap_set_option() call allows an application to set various SSL
options, such as the ciphers to be used. This may be important if you want to
restrict the level of security to only certain ciphers.

Note that the user’s ID (DN) and the password are still being sent to the
server (by ldap_simple_bind_s()), but since a secure SSL session has been
established, they are encrypted and cannot be eavesdropped on the network.

A very general authentication command available with LDAP Version 3, which
offers access to different authentication methods, is the ldap_sasl_bind_s()

function (or its asynchronous version ldap_sasl_bind()). Its syntax is:

int ldap_sasl_bind_s(LDAP *ld,
char *dn,
char *mechanism,
struct berval *cred,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct berval **servercredp);

In principle, the SASL functions can be understood as a general
authentication framework for the LDAP client. They take as arguments,
among others, the DN (the name of the entry to bind as), the mechanism
(authentication method), and the credentials used to authenticate. The format
of the credentials passed to the SASL command depends on the mechanism
used. If the special constant, LDAP_SASL_SIMPLE, is passed, then basic
authentication is requested. This is equivalent to using ldap_simple_bind() (or
ldap_simple_bind_s()). Other methods, such as Kerberos or S/Key, can be
used as well.

SSL, or more general its successor TLS (Transport Layer Security), can get
integrated within the SASL framework through its EXTERNAL mechanism.
When this method is chosen and the cred field is empty, the server
determines the client’s identity through external information. This could be an
SSL client certificate issued for the distinguished name used in the
ldap_sasl_bind() function to bind to the LDAP server. If the cred field is not
empty, the LDAP server has to verify that the client’s authenticated TLS
credentials allow use of the credentials passed to ldap_sasl_bind().

8.2.9 Multithreaded Applications
The LDAP Version 2 API only dealt with the single-threaded model of the
LDAP API. In an effort to overcome such vendor-dependent approaches, the
Developing Directory-Enabled Applications 261

LDAP Version 3 C-language API has been extended with a common set of
multithreaded function calls.

As an example, let us assume that a large number of directory entries have to
be modified. This can, of course, be done by sequentially stepping through
the list of entries that have to be modified and by doing the changes one after
the other. The list will have to be composed first, for example by performing
an adequate search.

One way to accomplish the modifications is to divide the list of entries into, for
example, 10 equal sized blocks. Then, multiple connections could be opened
to the server (issuing ldap_init() multiple times), each one running in its own
thread using the multithreading facilities of the operating system. Every
thread would obtain its own connection handle for its connection. Every
connection handle contains information about the connection itself, fields for
error handling, and so on. This results in a multithreaded, multiconnection
application, as depicted in Figure 65.

Figure 65. Multiple parallel threads

The single connection approach would be to use only one connection but
several threads operating on it. Because one connection means only one
connection handle, the LDAP Version 3 C API supports functions to isolate
information that is vital for each thread protecting it from getting tampered
with by functions from another thread. This is, for example, done by creating

ldap_init(ld, host)
ldap_search()

ldap_unbind()

modify modify

10 x ldap_init(ld, host)

MulticonnectionSingle Connection

ldap_init(ld, host)
ldap_search()
ldap_unbind()

10 x ldap_unbind()

Multithreaded Multithreaded

1-100 101-200
modify modify
1-100 101-200
262 LDAP Implementation Cookbook

thread-specific fields in the connection handle for error handling. Here, the
error code of the last instruction issued within the attached thread is stored.
Only functions within the same thread can access and evaluate it.

The IBM LDAP C client libraries are generally thread safe for all supported
platforms (AIX, Solaris, OS/2, HP-UX, Win95, OS390, and WinNT). While a
multithreaded application can safely use the LDAP library on multiple threads
within the application, there are a few considerations to keep in mind.

• State information for a LDAP connection is maintained in the ld returned
from the following LDAP APIs:

• ldap_init()
• ldap_ssl_init()
• ldap_open() (deprecated)

The ld, as returned from one of these APIs, is actually a pointer to a data
structure that contains information relevant to the LDAP connection. The
ld is maintained by the application and is supplied on subsequent LDAP
API invocations.

• Using the LDAP connection (that is the ld) on the thread on which it was
created (using ldap_init(), ldap_ssl_init() or ldap_open()) is a good model.
This model avoids the possibility of conflicts that could arise if multiple
threads attempt to concurrently process the results of an operation.

• An application may be designed to submit requests on a thread with
results being fetched on a different thread. This is also a good model since
it avoids the situation where two or more threads are attempting to
concurrently fetch results associated with a single LDAP connection.

• The ldap_get_errno() API obtains information with respect to the most
recent error that occurred for the specified LDAP connection. It does not
necessarily return the most recent LDAP error that occurred on the thread
on which it was issued. This could be a factor even if two threads are
using the same ld in a well-coordinated fashion.

• In general, to avoid unpredictable results, it is recommended that the
application be designed so that multiple threads are not concurrently using
the same LDAP connection. An application following this guideline has a
variety of models to choose from.

• Using a master thread (or threads to create connections) and passing
work and the connection to a thread in a pool of worker threads.

• Dispatching work to a thread from a pool of threads where all work
related to a connection is performed on the thread (such as ldap_init(),
ldap_simple_bind(), or ldap_unbind()).
Developing Directory-Enabled Applications 263

• Using one thread to issue an asynchronous request and using another
thread to wait for and process results.

This brief discussion about multithreaded application programming in LDAP
Version 3 concludes the introduction to building LDAP-enabled applications.
There is, of course, a lot more to it, but it would be beyond the scope of this
book to elaborate more on the complete LDAP API and LDAP programming
techniques. We refer you to the online Programming Reference that comes
with the product.

8.3 Special Programming Topics

This section discusses several design and implementation topics for
LDAP-enabling your product using the IBM SecureWay Directory. Think of
this section as applied or advanced LDAP programming. You will find some
suggestions on how to avoid known traps in directory exploitation, some
workarounds for current limitations of the LDAP architecture, and some
strong direction (or rules) for data modeling, security, and deploying your
LDAP-enabled application in a production environment.

8.3.1 Data Considerations, Discrete Attributes versus Blobs
Data can be stored in the directory in a variety of forms: Human readable
attributes, binary (opaque) attributes, and structure attributes (combination of
human readable and binary). As you need to define new attributes, you will
need to decide on the format those attributes will take, that is, the syntax for
each attribute. The current implementation supports a number of syntaxes, of
which, the most useful are:

• Binary

• Boolean

• IA5 String (ces, case-sensitive string)

• Directory String (cis, case-insensitive string)

• DN (Distinguished Name)

• integer

• Telephone Number

• Generalized Time

• UTC Time
264 LDAP Implementation Cookbook

All the syntaxes, except binary, produce values of the attribute that are human
readable. The binary syntax is opaque (think of it as similar to viewing object
code).

A key to making the directory usable (across multiple exploiters) is to apply a
correct syntax to an attribute. This means that there are appropriate uses of
the binary syntax (also referred to as blobs) and inappropriate uses. In
general, information placed in the directory service will be human readable.
Exceptions to this are binary objects, such as certificates or JPEG photos.

Therefore, it is important that you examine closely (and understand) the data
to be stored in the directory and define the needed object classes and
attributes to express that information. Where objects and attributes match
those currently defined in the schema, they should be used. If application
configuration information is to be stored in a directory, it should not be placed
in the directory as a single concatenated binary attribute (blob). The IBM
SecureWay Directory access control functions should be used to control
access to a directory entry rather than relying on making the entry private or
unreadable by storing it as a blob.

Directory entries stored as blobs have a direct and negative impact on
implementors’ abilities to achieve the overall objectives for providing a
centralized LDAP-based directory service. It is impossible to provide a
converged consistent administrative model, impossible for applications to
share information, and, therefore, impossible to obtain any reuse of object
classes and attributes across applications inserting information in the
directory.

8.3.2 Caching Considerations
The IBM SecureWay Directory uses server-side caching, via DB2's caching
mechanisms, to improve lookup times on frequently accessed data. With
appropriate tuning, sub-second response times for first time lookups and
even faster for server-side cached entries are possible even with 15 million
entries in the IBM SecureWay Directory.

If an application requires even faster response than this on frequently
accessed data, then it may need to implement some form of client-side
caching.

Determining whether to use client-side caching involves evaluating the
tradeoff between improving performance and reducing consistency
guarantees. When a lookup is done to the LDAP server, the result is
guaranteed to be up-to-date regardless of whether the result came from the
Developing Directory-Enabled Applications 265

database or from the server-side cache. But when a client decides to use
locally cached data, it is possible that another client may have updated that
entry since it was last retrieved.

Each application will have different consistency requirements. When a
directory is used for naming, as in DNS or CDS, the client can tell whether the
location information contained in an entry is stale by using it to contact the
named entity. If the location information is correct, the connection attempt will
succeed. If the information is incorrect (stale), the connection attempt will fail.
At this point, the client can recover by repeating the name lookup with
caching disabled using the dontUseCopy service control. So, naming
information can be considered a hint and has relatively loose consistency
requirements.

By contrast, an application that authenticates users using certificates may
want to check for certificate revocation with caching disabled, or it may just
require that revocation information be no more than one hour old. An e-mail
client may be content to just require that e-mail addresses be less than a day
old since users typically change addresses infrequently.

If an application can accept data with a given age, it may be appropriate to
introduce a time-to-live (ttl) attribute. An Internet Draft, A Simple Caching
Scheme for LDAP and X.500 Directories, <draft-ietf-asid-ldap-cache-01.txt>,
has expired at the time of writing but described such a solution.

This draft proposed a simple caching model similar to that used by the DNS.
The new attribute, ttl, is defined to specify the maximum time for which a
cached copy of any attributes in the entry should be considered valid. The ttl
attribute should be allowed in every entry that may be cached.

A new object class, cacheObject, could be defined, which allows an entry to
have the new ttl attribute even if the server implementation does not support
operational attributes.

The ttl attribute contains the time, for example, in seconds, that any
information from the entry should be kept by a client before it is considered
stale and a new copy fetched. A value of 0 (zero) could imply that the object
must not be cached.

So, an application that wishes to implement client-side caching using the ttl
attribute could define a thin caching layer that wraps the LDAP queries it
makes. The caching layer would keep a cache of returned entries along with
a timestamp representing when each entry expires (fetch time + ttl).
266 LDAP Implementation Cookbook

When the application wishes to retrieve an entry, it would first check its cache
for an unexpired entry, and if it found one, return the cached information. The
application could also optionally pass in a parameter to override the ttl
attribute if a particular query needed tighter (or looser) consistency
constraints than were specified by the ttl attribute.
Developing Directory-Enabled Applications 267

268 LDAP Implementation Cookbook

Appendix A. Standards

This appendix lists the pertinent formal and informal standards (RFCs and
Internet Drafts) that relate to LDAP. A brief description or the actual abstract
of the RFCs or the Internet Drafts, as it can be found on many Internet sites
(for example, http://www.ietf.org), is added for your reference and
convenience.

RFC 2222, Simple authentication and security layer (SASL)

This describes a method for adding authentication support to
connection-based protocols. To use this specification, a protocol includes a
command for identifying and authenticating a user to a server and for
optionally negotiating protection of subsequent protocol interactions. If its use
is negotiated, a security layer is inserted between the protocol and the
connection. This document describes how a protocol specifies such a
command, defines several mechanisms for use by the command, and defines
the protocol used for carrying a negotiated security layer over the connection.

RFC 2251, Lightweight directory access protocol (v3)

This describes the LDAP Version 3 protocol designed to provide lightweight
access to directories supporting the X.500 model. The lightweight protocol is
meant to be implementable in resource-constrained environments such as
browsers and small desktop systems. It describes how entries are named
with distinguished names, defines the format of messages exchanged
between client and server, enumerates the operations that can be performed
by the client, and specifies that data is represented using UTF-8 character
encoding.

RFC 2252, Lightweight directory access protocol (v3): Attribute
syntax definitions

This RFC defines how values, such as integers, time stamps, mail addresses,
and so on are represented. For example, the integer 123 is represented by
the string 123. These definitions are called attribute syntaxes. This RFC
describes how an attribute with a syntax ,such as telephone number is
encoded. It also defines matching rules to determine if values meet search
criteria.
© Copyright IBM Corp. 1999 269

RFC 2253, Lightweight directory access protocol (v3): UTF-8 string
representation of distinguished names

This RFC defines how distinguished names are represented as strings. A
string representation is easy to encode and decode and is also human
readable.

RFC 2254, The string representation of LDAP search filters

This document defines how to represent a search filter as a human-readable
string. Such a representation can be used by applications or in program
source code to specify search criteria. Attribute values are compared using
relational operators, such as equal, greater than, or sounds like for
approximate or phonetic matching. Boolean operators can be used to build
more complex search filters. For example, the search filter (| (sn=Smith)
(cn=Diana*)) searches for entries that either have a surname attribute of
Smith or that have a common name attribute that begins with Diana.

RFC 2255, The LDAP URL format

Uniform Resource Locators (URLs) are used to identify Web pages, files, and
other resources on the Internet. An LDAP URL specifies an LDAP search to
be performed at a particular LDAP server. An LDAP URL represents, in a
compact and standard way, the information returned as the result of the
search.

RFC 2256, A summary of the X.500(96) user schema for use with
LDAPv3

Many schema and attributes commonly accessed by directory clients are
already defined by X.500. This RFC provides an overview of those attribute
types and object classes that LDAP servers should recognize. For instance,
attributes such as cn (common name), description, and postalAddress are
defined. Object classes, such as country, organizationalUnit, groupOfNames,
and applicationEntity are also defined.

A simple LDAP change notification mechanism
<draft-ietf-ldapext-psearch-01.txt>

This document defines two controls that extend the LDAPv3 [LDAP] search
operation to provide a simple mechanism by which an LDAP client can
receive notification of changes that occur in an LDAP server. The mechanism
is designed to be very flexible yet easy for clients and servers to implement.
270 LDAP Implementation Cookbook

LDAPv3 security parameters
<draft-hassler-ldapv3-secparam-00.txt>

This document defines an LDAP control called LDAPSecurityParameters for
transferring security parameters with LDAP operations. With this control, it is
possible to append digital signature to LDAP operations and, in this way,
provide for message authenticity, message integrity, non-repudiation of
message origin, and message freshness.

Authentication methods for LDAP
<draft-ietf-ldapext-authmeth-03.txt>

This document specifies particular combinations of security mechanisms that
are required and recommended in LDAP implementations.

LDAPv3 triggered search control <draft-ietf-ldapext-trigger-01.txt>

This document defines a LDAPv3 control to be used on the search request to
allow a client to retrieve information on changes that are made to the
directory information tree held by that server.

The LDAP data interchange format (LDIF) - Technical specification
<draft-good-ldap-ldif-03.tx>

This document describes a file format suitable for describing directory
information or modifications made to directory information. The file format,
known as LDIF for LDAP Data Interchange Format, is typically used to import
and export directory information between LDAP-based directory servers or to
describe a set of changes that are to be applied to a directory.

Access control requirements for LDAP
<draft-ietf-ldapext-acl-reqts-01.txt>

This document describes the fundamental requirements of an access control
list (ACL) model for the Lightweight Directory Application Protocol (LDAP)
directory service. It is intended to be a gathering place for access control
requirements needed to provide authorized access to and interoperability
between directories.

Lightweight directory access protocol (v3): Extensions for dynamic
directory services <draft-ietf-asid-ldapv3-dynamic-08.txt>

This document defines the requirements for dynamic directory services and
specifies the format of request and response extended operations for
supporting client-server interoperation in a dynamic directories environment.
The Lightweight Directory Access Protocol (LDAP) supports lightweight
Standards 271

access to static directory services allowing relatively fast search and update
access. Static directory services store information about people that persists
in its accuracy and value.

The Java LDAP application program interface
<draft-ietf-ldapext-ldap-java-api-03.txt>

This document defines a java language application program interface to the
lightweight directory access protocol (LDAP) in the form of a class library. It
complements but does not replace RFC 1823, which describes a C language
application program interface. It updates and replaces Draft
draft-ietf-ldapext-ldap-java-api-01.txt in adding minor API extensions.
272 LDAP Implementation Cookbook

Appendix B. Special Notices

This publication is intended to help I/T architects and system engineers to
design and implement a centralized directory based on the LDAP standard.
The information in this publication is not intended as the specification of any
programming interfaces that are provided by the IBM SecureWay Directory.
See the PUBLICATIONS section of the respective IBM Programming
Announcement for the IBM SecureWay Directory, or the IBM product or
platform-specific announcements (IBM OS/390, IBM OS/400, IBM AIX, Sun
Solaris, or Microsoft Windows NT) for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood,
NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
© Copyright IBM Corp. 1999 273

responsibility and depends on the customer's ability to evaluate and integrate
them into the customer's operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples contain the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and
addresses used by an actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States, other countries,
or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

AIX  AS/400 
DB2  eNetwork
IBM  OS/390 
OS/400  RS/6000 
S/390  SecureWay 
WebSphere
274 LDAP Implementation Cookbook

MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States, other countries, or both and is used by IBM Corporation under
license.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

SET and the SET Logo are trademarks owned by SET Secure Electronic
Transaction LLC. (For further information, see
http//www.setco.org/aboutmark.html)

Other company, product, and service names may be trademarks or service
marks of others.
Special Notices 275

276 LDAP Implementation Cookbook

Appendix C. Other References and Related Publications

The references and publications listed in this appendix are considered
particularly suitable for a more detailed discussion of the topics covered in
this redbook.

C.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 283.

• Understanding LDAP, SG24-4986

• Ready for e-business: OS/390 Security Server Enhancements,
SG24-5158

C.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs:

C.3 Other Publications

These publications are also relevant as further information sources:

• OS/390 V2R7 Security Server LDAP Server Administration and Usage
Guide, SC24-5861

• LDAP: Programming Directory-Enabled Applications with Lightweight
Directory Access Protocol, ISBN 1-57870-000-0

• X.500 Directory Services; Technology and Deployment,
ISBN 1-85032-879-X

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177

Networking and Systems Management Redbooks Collection SK2T-6022

Transaction Processing and Data Management Redbook SK2T-8038

Lotus Redbooks Collection SK2T-8039

Tivoli Redbooks Collection SK2T-8044

AS/400 Redbooks Collection SK2T-2849

RS/6000 Redbooks Collection (HTML, BkMgr) SK2T-8040

RS/6000 Redbooks Collection (PostScript) SK2T-8041

RS/6000 Redbooks Collection (PDF Format) SK2T-8043

Application Development Redbooks Collection SK2T-8037
© Copyright IBM Corp. 1999 277

• LDAP Version 3: The Maturing of the Internet Directory Standard, The
Burton Group, 1998

• The Advent of Directory-Enabled Computing v2, The Burton Group, 1995

• Directory-Enabled Networks Initiative, The Burton Group, 1997

C.4 The Internet Engineering Task Force (IETF)

The Internet Engineering Task Force (IETF) is an open international
community to design and discuss future Internet technologies. The people
belonging to this group are network designers, operators, and researchers
from commercial and non-commercial organizations. The task is to design
open standards for common use in the Internet. The group is open to any
interested individual.

The actual work of the IETF is done in workgroups, which are organized by
topics into several areas, for example routing, transport, security, and so on.
The workgroups are grouped into areas and managed by area directors.
These area directors are members of the Internet Engineering Steering
Group (IESG). Providing architectural oversight is the Internet Architecture
Board (IAB). Both the IESG and IAB are chartered by the Internet Society
(ISOC) for these purposes. The general area director also serves as the chair
of IETF and IESG and is an ex-official member of the IAB.

The central coordinator is the Internet Assigned Numbers Authority (IANA),
which coordinates the unique assignment of parameter values for Internet
protocols. The IANA is chartered by the ISOC to act as the clearinghouse to
assign and coordinate the use of numerous Internet protocol parameters.

New technologies are invented and discussed in so-called IETF drafts (or
Internet Drafts). These drafts and the basic design ideas are posted to the
mailing list and are discussed until general consensus is reached to stop
work on the draft or progress it to RFC by requesting approval of the area
director and the IESG. At approval, an RFC number is assigned. The RFC is
the base description for new versions and enhancements.

The IETF Web site can be reached at:

http://www.ietf.org

On this Web site, there are links to IETF Workgroups, Internet Drafts, mailing
lists, and so on.
278 LDAP Implementation Cookbook

C.5 The University of Michigan (UMICH)

The University of Michigan was, and still is, an important contributor in the
development of LDAP and can be considered a reliable, neutral source for
extensive information and program source code for LDAP servers and clients.

The UMICH’s home page is at:

http://www.umich.edu

The UMICH’s LDAP page can be accessed at:

http://www.umich.edu/~dirsvcs/ldap

This latter page contains, among others, links to online LDAP documentation
from the UMICH and others and downloadable software, most of which is
source code.

C.6 IBM Internet Wet Site for the IBM SecureWay Directory

The IBM Web site for LDAP and related directory topics is:

http://www.ibm.com/software/enetwork/directory

C.7 IBM Intranet Web Site

The first point of contact for IBM development teams is the IBM eNetwork
LDAP Directory Intranet Web site at:

http://w3.ibm.com/software/ldap

The Web site includes:

• IBM eNetwork LDAP Directory Code for Download

• GA Level - IBM eNetwork LDAP Directory for all available platforms

• Beta level - IBM eNetwork LDAP Directory (when available)

• LDAP and JNDI Client code for all available platforms

• Online Documents

• IBM eNetwork LDAP Directory Exploitation Guide (this document)

• IBM eNetwork LDAP Directory Product Documentation

• Current Schema and Namespace Definitions

• Library for Schema and Namespace Extensions from Products and
Standards Bodies
Other References and Related Publications 279

• Current Requirements from Exploitation Projects

• Links to IETF and other interesting LDAP and related Web Sites

• A central e-mail ID for submitting questions and problems to the LDAP
developmen team: ldap@us.ibm.com , or via Lotus Notes:
ldap/Austin/IBM

C.8 Lotus Notes Discussion Database

In addition to the information and code available via the LDAP Web site, the
DSS Architecture Team has a Lotus Notes-based discussion database for
discussing directory exploitation issues with the growing number of IBM
teams working with LDAP directories.

To access the database manually from Lotus Notes:

• File-Database-Open from the menu bar to get the Open Database dialog
box.

• In the Server field, type: dss.austin.ibm.com

• In the Filename field, type: dss\direxp.nsf

• Click the Open button

Note that you might have to add a connection document for this server.

C.9 Software Development Kits

Below, you find some Web siteswhere you can download SDKs offered by
different vendors for a wide variety of platforms. You might find some useful
information, such as documentation and FAQ (Frequently Asked Questions)
lists and links to other interesting LDAP-related places, there as well.

The University of Michigan’s LDAP server code, a C language SDK, and other
links to documentation and LDAP mailing lists can be found at the following
link:

http://www.umich.edu/~dirsvcs/ldap/

IBMs C and Java SDKs can be found at:

http://www.ibm.com/java

Netscape offers a C and a Java SDKs at:

http://developer.netscape.com/software/sdks/index.html
280 LDAP Implementation Cookbook

C.10 Other Sources

The following are links to various Web sites that carry information related to
the subject of this book.

C.10.1 LDAP, General

For general information about LDAP, please refer to the Web sites of the IETF
and the University of Michigan as listed earlier in this appendix. If you search
the Web for LDAP, there will be thousands of hits. The following are just a few
links to related Web sites that you might find interesting.

An LDAP Roadmap and FAQs:

http://www.kingsmountain.com/ldapRoadmap.shtml
http://www.critical-angle.com/ldapworld/ldapfaq.html

IBM eNetwork Security and Directory library:

http://www.ibm.com/software/security/firstsecure/library

Critical Angle Inc. (Innosoft International Inc.) hosts a series of interesting
information and links at:

http://www.critical-angle.com/ldapworld/index.html

A System Administrator’s view of LDAP:

http://people.netscape.com/bjm/whyLDAP.html

C.10.2 Request for Comments (RFCs) and other References

A good source for accessing RFCs with search capabilities, besides the IETF
Web site (see above), is provided by the Information Sciences Institute (ISI)
at:

http://www.rfc-editor.org

This ISI Web site includes a number of links to other RFC sources. If, for
some reason, you cannot access the link above, try one of the following:

http://www.pasteur.fr/other/computer/RFC
http://www.garlic.com/~lynn/rfcietf.html
http://www.nexor.com/public/rfc/index/rfc.html
http://www.csl.sony.co.jp/rfc

Unicode descriptions, including tables and graphics of all characters, can be
found at:

http://www.unicode.org
Other References and Related Publications 281

282 LDAP Implementation Cookbook

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download or order hardcopy/CD-ROM redbooks from the redbooks web site. Also
read redpieces and download additional materials (code samples or diskette/CD-ROM images) from
this redbooks site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders via e-mail including information from the redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information for customer may be found at http://www.redbooks.ibm.com/ and for IBM employees at
http://w3.itso.ibm.com/ .

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

IBM employees may register for information on workshops, residencies, and redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com / and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees
may also view redbook. residency, and workshop announcements at http://inews.ibm.com /.

IBM Intranet for Employees
© Copyright IBM Corp. 1999 283

IBM Redbook Fax Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
284 LDAP Implementation Cookbook

List of Abbreviations

ACL Access Control List

APS Auxiliary Storage Pool

ASN Abstract Syntax Notation

ASP Auxiliary Storage Pool

BLOB Binary Large Objects

BNF Backus-Naur Form (also
Backus Normal Form)

CA Certificate Authority

CCITT Comite Consultatif
International Telephonique
et Telegraphique

CDS Cell Directory Service
(DCE)

CDSA Common Data Security
Architecture

CIM Common Information
Model

CRAM-MD5 Challenge-Response
Authentication Mechanism
- Message Digest 5

DAP Directory Access Protocol
(X.500)

DARPA Defense Advanced
Research Projects Agency

DAS Directory Assistance
Service

DB2 Database 2

DCE Distributed Computing
Environment

DEN Directory Enabled
Networks

DES Data Encryption Standard

DIT Directory Information Tree

DMTF Desktop Management Task
Force

DN Distinguished Name
© Copyright IBM Corp. 1999
DNS Domain Name System

DSA Directory Services Agent
(synonym for Directory
Server)

DSE DSA-Specific Entry

DSS Directory & Security
Services

DTS Distributed Time Service

EDI Electronic Data
Interchange

EJB Enterprise Java Beans

FTP File Transfer Protocol

GDA Global Directory Agent

GDS Global Directory Service

GSO Global Sign-On

GSSAPI Generic Security Service
API

HTTP Hypertext Transport
Protocol

IAB Internet Architecuture
Board

IANA Internet Assigned
Numbers Authority

IBM International Business
Machines Corporation

IETF Internet Engineering Task
Force

IESG Internet Engineering
Steering Group

IMAP Internet Message Access
Protocol

ISI Information Sciences
Institute

ISO International Standards
Organization

ISOC Internet Society
285

ITSO International Technical
Support Organization

ITU-T International
Telecommunications Union
- Telecommunications

JCL Job Control Language

JDAP Java Directory Access
Protocol (context: Java
LDAP Application
Programming Interface)

JDBC Java Database
Connectivity

JNDI Java Naming and Directory
Interface (Sun)

LAN Local Area Network

LDAP Lightweight Directory
Access Protocol

LDIF LDAP Data Interchange
Format

LIPS Lightweight Internet
Person Schema

MIME Multipurpose Internet Mail
Extensions

NDS Novell Directory Services

NOS Network Operating System

NSI Name Service Interface
(DCE)

OSF Open Software Foundation

OSI Open Systems
Interconnection

RDN Relative Distinguished
Name

RFC Request for Comment

RPC Remote Procedure Call

SASL Simple Authentication and
Security Layer

SDK Software Development Kit

SHA Secure Hash Algorithm

SPI Service Provider Interface

SPUFI SQL Processor Using File
Input

SQL Structured Query
Language

SSL Secure Sockets Layer

TCP/IP Transmission Control
Protocol/Internet Protocol

TLS Transport Layer Security

TME Tivoli Management
Environment

TMR Tivoli Management Region

UCS Unicode Character Set

UMICH University of Michigan

URL Uniform Resource Locator

USS UNIX Systems Services

UTF UCS Tranformation Format

WAN Wide Area Network
286 LDAP Implementation Cookbook

Index

A
abbreviations 285
abstract objectclass 32
access control 23, 103, 120
Access Control List, see ACL
access group 121, 204
access role 121, 206
accounting objects 53
ACL 8, 23, 53, 103, 120, 204, 206, 271

attribute classes 122
attributes 123
explicit 123
permissions 121
propagation 123

aclEntry 123, 206
aclPropagate 123, 206
aclSource 123, 206
acronyms 285
Active Directory (Microsoft) 71
administration 77, 159
administration of data 187
administrative areas 79
administrator GUI 166
AIX 24, 137
aliases 33
aminDN 167
anonymous authentication 104, 237, 258
anybody (pseudo DN) 80, 125
API 5, 11, 78, 223
Application Framework for e-business 75
Application Programming Interface, see API
ASCII 83
asynchronous mode (API calls) 240
atomic names 225
attributes 31, 32

access classes 81
class permissions 122
mandatory 32
types 43

authenticated (pseudo DN) 125
authentication 8, 103, 107

anonymous 104, 237, 258
methods 257
objects 51
secondary 128

authorization 8, 103
© Copyright IBM Corp. 1999
objects 53
auxiliary objectclass 32
availability 7, 73, 88

B
back pointer 38
backup 93
Base64 95, 188
basic authentication 104, 257
binary 264
blob 264
boolean 264
bulkload 182, 189, 191

C
C language

API 235
Programming Reference 133

caching 265
CCITT 13
centralized 6
Certificate Authority (CA) 9, 52, 107, 111
certificates 107

self-signed 114
signed by a well-known CA 112

client authentication 106, 108, 117, 259
client SDK 24, 223
client/server model 5
command line utilities 77
Common Data Security Architecture (CDSA) 17,
109
Common Directory Schema 19
Common Information Model (CIM) 12, 41, 43, 58,
60, 62
common schema 18
Communicator (Netscape) 1, 132, 138
confidentiality 103
configuration 24
consistency 65
container nodes 36
containment 37
CRAM-MD5 103, 105, 231
credentials 105
crypt 129
287

D
data administration 187
Data Encryption Standard (DES) 104
database 3
DB2 22, 132, 140, 143
db2ldif 98, 135, 177, 181, 188, 192, 212
designing a directory 65
Desktop Management Task Force (DMTF) 12, 21,
43, 58
Digital Certificate Manager (DCM) 109
directory

and databases 3
and transactions 3
application-specific vs. common 11
architecture 18
as infrastructure 10
benefits of a common directory 11
data 36
design 65
directory-enabled applications 10
distributed 6
implementation 65
partitioned and replicated 7
population 172
security 8, 103
servers and clients 5

Directory Access Protocol (DAP) 13
Directory Information Tree (DIT) 33, 37, 79, 226
Directory Management Tool, see DMT
Directory-Enabled Networks (DEN) 12, 16, 21, 22,
43
distinguished name (DN) 9, 31, 37, 69, 105, 120,
248, 264
distributed directory 6
DMT 21, 22, 31, 77, 159
dmt.conf 160
Domain Name Services (DNS) 23, 218, 224
Domino 21, 24
dontUseCopy 266
dsnaoini 146
dynamically extensible directory schema 22, 25

E
EBCDIC 140
e-business 17
Electronic Data Interchange (EDI) 16
encryption

passwords 106, 128

ENDTCPSVR 158
eNetwork Dispatcher 73
Engineering Steering Group (IESG) 278
Enterprise Java Beans (EJB) 224
entries 31
entryOwner 123, 206
explicit ACL 123
explicit owner 123

F
firewall 8, 20
forward pointer 38
FTP 12

G
generalized time 264
global 6
graphical administration tool 77
group 121
GroupOfNames 206
GSKit 108, 232
GUI 24, 166

H
hash table (JNDI) 228
hierarchical namespace 31, 36
hierarchical structure 36
HTTP 12, 15

I
IBM attribute types 43
IBM Cryptographic Access Provider 109
IBM Schema 41
IBM SecureWay Directory 20, 21
IBM Warp Server 71
IETF 16, 41, 43, 106, 278
IETF Draft 278
ikeyman 108
ikmgui 108, 110, 232, 260
imask 129
information model 31
Information Sciences Institute (ISI) 281
infrastructure 10, 73
installp 110
InstallShield 109
integer 264
integrity 38, 103, 107
288 LDAP Implementation Cookbook

Internet Architecture Board (IAB) 278
Internet Assigned Numbers Authority (IANA) 278
Internet Draft 269, 278
Internet Engineering Task Force, see IETF
Internet Explorer (Microsoft) 1, 132, 138
Internet Society (ISOC) 278
Internet White Pages 43
ISO

10646 34
9594 13

ITU-T 13

J
Java API Software Development Kit (SDK) 224
Java Database Connectivity (JDBC) 224
Java Development Toolkit (JDK) 110
Java LDAP API (JDAP) 224, 272
JAVA_HOME 110
JCL 142, 148, 150
JNDI 78, 223

example program 233
Programming Guide 133
security 230

JPEG 188

K
Kerberos 261
keyring file 108, 232

L
LAN 1
language (character code sets) 83
language support 24
LDAP

API 22, 223
introduction 1
protocol or directory? 13
referrals 23, 184
roadmap 15
Version 2 15, 16
Version 3 15, 16, 251, 257, 262

LDAP_BASEDN 193, 200
ldap_bind() 127, 128
ldap_bind_s() 193
ldap_controls_free() 256
ldap_count_entries() 244, 248
ldap_delete() 200

ldap_err2string() 254, 257
ldap_first_attribute() 247
ldap_first_entry() 246
ldap_get_dn() 248
ldap_get_errno() 263
ldap_init() 193, 235, 236, 237
ldap_memfree() 248, 255, 257
ldap_modify() 197
ldap_modrdn() 202
ldap_msgfree() 244
ldap_next_attribute() 246, 247
ldap_next_entry() 246, 248
ldap_open() 193, 235, 236, 260, 262
ldap_parse_result() 254, 255, 256, 257
ldap_parse_sasl_bind_result() 257
ldap_perror() 254
LDAP_PORT 236
ldap_result() 240, 249, 251, 252, 253, 257
ldap_sasl_bind() 105
ldap_sasl_bind_s() 261
ldap_search() 192, 242, 251
ldap_search_ext() 243
ldap_search_ext_s() 243
ldap_search_s() 242, 244, 248, 249
ldap_search_st() 242
ldap_server_conf_save() 220
ldap_server_free_list() 220
ldap_server_locate() 220
ldap_set_option() 261
ldap_set_rebind_proc() 91
ldap_simple_bind() 240, 258
ldap_simple_bind_s() 193, 235, 237, 261
ldap_ssl_client_init() 117, 127, 260
ldap_ssl_init() 127, 260
ldap_unbind() 236
ldap_value_free() 248, 255
ldapadd 149, 188, 197, 212
ldapcfg 136, 139
ldapcp 141
ldapdb2 171
ldapdelete 200
LDAPDNS 221
ldapmodify 149, 188, 197, 212
ldapmodrdn 202
ldapsearch 149, 176, 188, 192, 211
ldapspfi.spufi.migrate 144
ldapucfg 136, 139
ldapxcfg 132, 139
LDIF 78, 93, 120, 151, 172, 188
289

creating directory entries 95
data encoding 95
file format 93
Internet Draft 271

ldif utility 188
ldif2db 148, 175, 177, 181, 188, 189, 212
libldap 78
Lightweight Internet Person Schema (LIPS) 43
load balancing 88
local 6
Lotus Domino 21

M
manageability 73, 88
management 77

tools 21
mandatory attributes 32
master server 178
MasterServer (directive) 184
matching rules 44
mechanism 105
meta directory 19
Microsoft 49, 71
migration

from non-LDAP sources 92
from previous release 91

migration model 70
mkkf 108
multi-component RDNs 41
multithreaded model 261
multi-valued 31
myslapd.conf 146

N
names 33
namespace 31, 36, 69
Naming 40
national language support 83
Navigator (Netscape) 1, 132, 138
NDS (Novell) 71, 224
Netscape Communications Corp. 106
NetWare (Novell) 21, 67, 71
Network Application Consortium (NAC) 43
Network Information System (NIS) 224
network infrastructure 17
network operating system (NOS) 11

O
object class 32, 39, 43
object identifier (OID) 31
object permissions 122
object relationship 37
object request broker (ORB) 12
objects

accounting 51
authentication 51
authorization 51
directory server 45
group 49
miscellaneous 50
organizational 47
other 63
person 48
policy 54
profile 55
security 51
service 62
software 60
system 58
white pages 46

Open Systems Interconnect (OSI) 14
Operations Navigator 152
optional attributes 32
ordering 31
OS/390 24, 140

configuration 142
installation 141
Security Server 21, 140

OS/400 24, 109, 150
configuration 152
installation 151

owner
explicit 123

ownerPropagate 123, 207
ownerSource 123, 207

P
parsing search results 245
partitioning 7, 33, 73, 88
password encryption 106, 128
performance 7, 74
permissions 121
physical design 73
plugins 23
policy 20
290 LDAP Implementation Cookbook

PostScript 2
preferences 56
privacy 103, 107
proagation of ACLs 123
programming model 16, 72
proxy 14
pseudo DN 125
Public Key Infrastructure 25
public-key 106
pwencryption 129

Q
QShell (qsh) 151

R
RACF 142
RDN 33
redundancy 65
re-engineering 13
reference 37
referential integrity 38
referral directive 184
referral object 185
referrals 7, 23, 73, 88, 184
relational database 65
relationships between objects 37
relative distinguished name (RDN) 33, 202
replica server 178

promote as master 182
replication 7, 23, 25, 73, 178
restore 93
reuse of objects and attributes 39
RFC 28, 269, 281

1274 43, 51
1617 41
1777 15
1778 43
1823 272
2079 58
2222 104, 269
2247 47
2251 15, 269
2252 31, 43, 44, 269
2253 34, 270
2254 195, 227, 243, 245, 270
2255 35, 270
2256 43, 48, 51, 58, 60, 270
2279 34

role 121, 204
root DN 79
rootDSE 22, 117, 214
RPC 12

S
S/Key 261
sample.ldif 148, 169
SASL 19, 23, 103, 104, 105, 230, 235, 257
scalability 73, 88
schema 31

categories 44
file 91

schemacheck (configuration directive) 217
SCHEMACHECK (environment variable) 189
SDK 280
search filter 195, 245
secondary authentication 128
Secure Sockets Layer, see SSL
SecureWay Directory Client SDK 24, 223
security 8, 103

authentication 8
authorization 8
basic authentication 257

security policy 8, 70
server authentication 106, 107, 108, 259
Service Provider Interface (SPI) 225
setup.exe 110, 132
SHA1 128
Simple Authentication and Security Layer, see
SASL
single sign-on 9
single threaded model 261
single-valued 31
slapd.at.conf 190
slapd.at.system 216
slapd.conf 92, 129, 137, 139, 146, 148, 167, 172,
184, 189, 216
slapd.oc.conf 190
slapd.oc.system 216
SMIT 138
Solaris (Sun) 24, 131
SRV records (DNS) 219
SSL 17, 19, 103, 104, 136, 257

client setup 117
configuration 111
ikmgui 110
server setup 116
291

SSL_KEYRING 194, 198, 201, 203
SSLight 115, 232
standards 28, 269
string form 33
STRTCPSVR 158
structural objectclass 32
Structured Query Language (SQL) 4
subclassing 22
suffix 36, 45, 171
symmetric-key 106
synchronous mode (API calls) 240
syntaxes 35, 43
system administration 159
SystemSSL 109

T
TCP/IP 12, 14, 17
telephone directory 2
telephone number 264
The Open Group 43
this (pseudo DN) 125
threads 261
three tier model 72
Tivoli 21, 26, 85
Tivoli Management Environment (TME) 85
Tivoli Management Region (TMR) 27, 86
Tivoli User Administration 21
TLS 106, 261
top (abstract class) 32
transaction 3
Transport Layer Security (TLS) 106, 261
twistie 169
two tier model 72
TXT records (DNS) 218

U
Unicode 34, 83, 281
University of Michigan 279
UNIX 21
URL Form 34, 270
userPassword 126
users 9
UTC time 264
UTF-8 23, 34, 83, 187

W
Web browser 24

white pages 2, 9
Windows NT 21, 24

installation and configuration 131
World Wide Web 15

X
X.500 13, 21, 25, 31, 41, 43, 58, 270
X.509 17, 107, 108
X.521 48, 58, 60

Y
yellow pages 2
292 LDAP Implementation Cookbook

© Copyright IBM Corp. 1999 293

ITSO Redbook Evaluation

LDAP Implementation Cookbook
SG24-5110-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete
this questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Printed in the U.S.A.

SG24-5110-00

LD
A

P
Im

plem
entation

C
ookbook

S
G

24
-51

1
0-0

0

	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Introduction
	1.1 What Is a Directory?
	1.1.1 Differences Between Directories and Databases
	1.1.2 Directory Clients and Servers
	1.1.3 Distributed Directories
	1.1.4 Directory Security
	1.1.5 Users, Platforms, and Networks

	1.2 The Directory as Infrastructure
	1.2.1 Directory-Enabled Applications
	1.2.2 The Benefits of a Common Directory for Applications
	1.2.3 Directory-Enabled Networks

	1.3 LDAP: Protocol or Directory?
	1.3.1 X.500: The Directory Service Standard
	1.3.2 LDAP Server as a Gateway
	1.3.3 LDAP as Standalone Server

	1.4 The LDAP Road Map
	1.4.1 LDAP Is More than a Programming Model

	1.5 The Framework for Creating Enterprise-Wide Solutions
	1.6 IBM Directory Strategy
	1.7 IBM Directory Offerings
	1.7.1 The IBM SecureWay Directory
	1.7.2 The IBM SecureWay Directory Client SDK
	1.7.3 Lotus Domino R5.0
	1.7.4 Tivoli User Administration: LDAP Connection

	1.8 LDAP Standards
	1.9 Summary

	Chapter 2. Schema and Namespace
	2.1 LDAP Information Model Overview
	2.2 LDAP Names
	2.2.1 String Form
	2.2.2 URL Form
	2.2.3 Additional Syntaxes

	2.3 Directory Information Tree (Namespace) Structure
	2.4 Relationship Between Objects
	2.4.1 Object and Attribute Reuse
	2.4.2 Naming Conventions

	2.5 The IBM Schema
	2.5.1 Schema Information

	2.6 Schema Categories
	2.6.1 Directory Server Objects
	2.6.2 White Pages Objects
	2.6.3 Security Objects
	2.6.4 Policy Objects
	2.6.5 Profile Objects
	2.6.6 System Objects
	2.6.7 Software Objects
	2.6.8 Service Objects
	2.6.9 Other Objects

	2.7 The IBM Schema Repository

	Chapter 3. A Step-by-Step Approach for Directory Implementation
	3.1 Define the Objective for Using an LDAP Directory Service
	3.2 Define the Data to Store in the Directory Service
	3.2.1 The Type and Use of Directory Data
	3.2.2 Survey the Directory Data

	3.3 Evaluate Data and Its Relationship to Directory Schema
	3.4 Define and Assign Responsibilities for the Data
	3.5 Evaluate Data and Its Placement in the Namespace
	3.6 Evaluate the Existing Security Policy
	3.7 Define the Migration Model
	3.8 Define the LDAP Programming Model
	3.9 Define the Deployment and Performance Criteria
	3.9.1 Availability of the Directory Service
	3.9.2 Performance Considerations

	3.10 Step-by-Step Summary

	Chapter 4. Managing an LDAP Directory
	4.1 Overview: Administration Tools, Utilities, and APIs
	4.2 Centralized versus Distributed Administration
	4.2.1 Who Administers The Data?
	4.2.2 Attribute Grouping
	4.2.3 Multiple Applications

	4.3 UTF-8 Support
	4.4 Tivoli TME Considerations
	4.5 Distributed Directories - Split Namespaces
	4.5.1 Partitioning a Directory
	4.5.2 Administering a Split Namespace

	4.6 Migration from the Previous Release
	4.7 Migration from Non-LDAP Sources
	4.7.1 The LDIF File Format
	4.7.2 LDIF Data Encoding
	4.7.3 Creating Directory Entries Using LDIF
	4.7.4 LDIF File Example
	4.7.5 Importing LDIF Data

	4.8 Summary and Conclusions

	Chapter 5. Directory Security
	5.1 Security of the Directory
	5.2 Security Support of the IBM SecureWay Directory
	5.2.1 Overview of Simple Authentication and Security Layer (SASL)
	5.2.2 Overview of Secure Sockets Layer (SSL)

	5.3 SSL Utilities
	5.3.1 GSKit Installation
	5.3.2 The ikmgui Utility

	5.4 Configuring SSL Security
	5.4.1 Creating a Certificate Signed by a Trusted Certificate Authority
	5.4.2 Creating a Self-Signed Certificate
	5.4.3 Configuring an LDAP Server to Use SSL
	5.4.4 Configuring an LDAP Client to Use SSL

	5.5 Delegation Model
	5.6 Access Control
	5.6.1 ACL Permissions
	5.6.2 Attribute Classes
	5.6.3 Propagation
	5.6.4 LDAP ACL Attributes
	5.6.5 Pseudo DNs
	5.6.6 Granting Access

	5.7 Storing Security Related Information in the Directory
	5.7.1 Passwords
	5.7.2 Certificates
	5.7.3 Displaying Sensitive Data
	5.7.4 Attacks

	Chapter 6. Installation and Configuration
	6.1 Windows NT
	6.1.1 System and Software Requirements
	6.1.2 Installing the Server
	6.1.3 Configuration
	6.1.4 Unconfiguring and Uninstalling the Server

	6.2 AIX
	6.2.1 System and Software Requirements
	6.2.2 Installing the Server
	6.2.3 Configuration
	6.2.4 Unconfiguring and Uninstalling the Server

	6.3 OS/390
	6.3.1 System and Software Requirements
	6.3.2 Installing the Server
	6.3.3 Configuration
	6.3.4 Unconfiguring and Uninstalling the Server

	6.4 OS/400
	6.4.1 System and Software Requirements
	6.4.2 Installing the Server
	6.4.3 Configuration
	6.4.4 Uninstalling the Server

	Chapter 7. LDAP Data and System Administration
	7.1 The Directory Management Tool
	7.1.1 Startup and Configuration
	7.1.2 Example: Expanding the Schema

	7.2 The Administrator Graphical User Interface
	7.2.1 Launching the Administrator GUI
	7.2.2 Window Layout

	7.3 Database Configuration
	7.3.1 Default Database
	7.3.2 Custom Database

	7.4 Defining a Suffix
	7.5 Database Population
	7.5.1 Adding Data Entries
	7.5.2 Verifying Data Entries
	7.5.3 Updating Data Entries
	7.5.4 Back up the Database

	7.6 Replication
	7.6.1 Configuration
	7.6.2 Promote a Replica as Master

	7.7 Referrals
	7.8 Command Line Utilities
	7.8.1 The LDIF Utility
	7.8.2 The LDIF2DB Utility
	7.8.3 The BULKLOAD Utility
	7.8.4 The DB2LDIF Utility
	7.8.5 The LDAPSEARCH Utility
	7.8.6 The LDAPMODIFY and LDAPADD Utilities
	7.8.7 The LDAPDELETE Utility
	7.8.8 The LDAPMODRDN Utility

	7.9 Security Setup
	7.9.1 Creating and Working with Access Groups
	7.9.2 Creating and Working with Access Roles
	7.9.3 Ownership and Access Control

	7.10 Schema Data Management
	7.10.1 The rootDSE
	7.10.2 Schema Files
	7.10.3 Back up and Restore Schema Information

	7.11 Locating LDAP Servers Using DNS
	7.11.1 TXT Records
	7.11.2 SRV Records
	7.11.3 CNAME Records
	7.11.4 APIs Provided for DNS Support

	Chapter 8. Developing Directory-Enabled Applications
	8.1 Java Naming and Directory Interface (JNDI)
	8.1.1 Introduction
	8.1.2 Directory Context and Schema Context
	8.1.3 Java Object Serialization
	8.1.4 JNDI and Security
	8.1.5 JNDI Example Program

	8.2 C LDAP Application Programming Interface (API)
	8.2.1 Introduction
	8.2.2 Synchronous and Asynchronous Use of the API
	8.2.3 A Synchronous Search Example
	8.2.4 More about Search Filters
	8.2.5 Parsing Search Results
	8.2.6 An Asynchronous Search Example
	8.2.7 Error Handling
	8.2.8 Authentication Methods
	8.2.9 Multithreaded Applications

	8.3 Special Programming Topics
	8.3.1 Data Considerations, Discrete Attributes versus Blobs
	8.3.2 Caching Considerations

	Appendix A. Standards
	Appendix B. Special Notices
	Appendix C. Other References and Related Publications
	C.1 International Technical Support Organization Publications
	C.2 Redbooks on CD-ROMs
	C.3 Other Publications
	C.4 The Internet Engineering Task Force (IETF)
	C.5 The University of Michigan (UMICH)
	C.6 IBM Internet Wet Site for the IBM SecureWay Directory
	C.7 IBM Intranet Web Site
	C.8 Lotus Notes Discussion Database
	C.9 Software Development Kits
	C.10 Other Sources
	C.10.1 LDAP, General
	C.10.2 Request for Comments (RFCs) and other References

	How to Get ITSO Redbooks
	IBM Redbook Fax Order Form

	List of Abbreviations
	Index
	ITSO Redbook Evaluation

