0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066

ostgreSQL:

Introduction

and
Concepts

Bruce Momjian

June 17, 2000

i

WHERE NULL CREATE UNION AS DISTINCT
INDEX TRIGGER | GRANT | ROLLBACK | DEFAULT SUM
INTO ALTER COMMIT SELECT REVOKE CASE
TABLE FROM INSERT | OPERATOR SET UPDATE
FUNCTION EXCEPT | DELETE VALUES ORDER BY COUNT
BEGIN WORK LIKE IN VIEW HAVING EXISTS

0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132

0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198

Note to Reviewers

The material on these pages is a work in progress, titled, PostgreSQL: Introduction and Concepts, to be
published in 2000, ©Addison—Wesley. Posted with permission of the publisher. All rights reserved.

I have completed my first draft. The appendix needs a little more work.

I am interested in any comments you may have, including typographic errors, places with not enough
detail or too much detail, missing topics, extraneous topics, confusing sentences, poor word choice, etc. The
PDF version has numbers appearing in the margins to allow you to easily refer to specific lines in the book.
People reading the web version may refer to specific URLS. Please mention the date of June 17, 2000 when
referring to this document. You may contact me at mailto:pgman@candle.pha.pa.us.

A current copy may be retrieved from http://www.postgresql.org/docs/awbook.html. Also, it is available
from the POSTGRESQL FAQ’s and Documentation page, http://www.postgresql.org/docs. It is updated
automatically every night. This book is set in Bitstream Century Old Style, 11 point.

Keep in mind that this is to be printed as a book. In the PDF version, diagrams may not appear on the
same pages that refer to them. They will appear on the facing page when printed in book format.

VAV ADDISON-WESLEY

1ii

mailto:pgman@candle.pha.pa.us
http://www.postgresql.org/docs/awbook.html
http://www.postgresql.org/docs

v

NOTE TO REVIEWERS

0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264

0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330

Foreword

Most research projects never leave the academic environment. Occasionally, exceptional ones survive
the transition from the university to the real world and go on to become a phenomenon. POSTGRESQL
is one of those projects. Its popularity and success are a testament to the dedication and hard work of
the POSTGRESQL global development team. Developing an advanced database system is no small feat.
Maintaining and enhancing an inherited code base is even more challenging. The POSTGRESQL team has not
only managed to improve the quality and usability of the system, but also expand its use among the Internet
user community. This book is a major milestone in the history of the project.

POSTGRES95, later renamed POSTGRESQL, started out as a small project to overhaul POSTGRES. POSTGRES
is a novel and feature-rich database system created by the students and staff at the UNIVERSITY OF CALIFORNIA
AT BERKELEY. Our goal was to keep the powerful and useful features while trimming down the bloat caused
by much experimentation and research. We had a lot of fun reworking the internals. At the time, we had
no idea where we were going with the project. The POSTGRES95 exercise was not research, but simply
a bit of engineering housecleaning. By the spring of 1995, it occurred to us that there was a need for an
open-source SQL-based multi-user database in the Internet user community. Our first release was met with
great enthusiasm. We are very pleased to see the project continuing.

Obtaining information about a complex system like POSTGRESQL is a great barrier to its adoption. This
book fills a critical gap in the documentation of the project and provides an excellent overview of the system.
It covers a wide range of topics from the basics to the more advanced and unique features of POSTGRESQL.

In writing this book, Bruce Momjian has drawn on his experience in helping beginners with POSTGRESQL.
The text is easy to understand and full of practical tips. Momjian captures database concepts using simple
and easy to understand language. He also presents numerous real life examples throughout the book. He
does an outstanding job and covers many advanced POSTGRESQL topics. Enjoy reading the book and have
fun exploring POSTGRESQL! It is our hope this book will not only teach you about using PostgreSQL but also
inspire you to delve into its innards and contribute to the ongoing POSTGRESQL development effort.

JoLLY CHEN and ANDREW YU, co-authors of POSTGRES95

vi

FOREWORD

0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396

0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462

Preface

This book is about POSTGRESQL, the most advanced open source database. From its origin in academia,
POSTGRESQL has moved to the Internet with explosive growth. It is hard to believe the advances during the
past four years under the guidance of a team of world-wide Internet developers. This book is a testament to
their vision, and to the success POSTGRESQL has become.

The book is designed to lead the reader from their first database query through the complex queries
needed to solve real-world problems. No knowledge of database theory or practice is required. Basic
knowledge of operating system capabilities is expected, such as the ability to type at an operating system
prompt.

The book begins with a short history of POSTGRESQL. It leads the reader through their first query, and
teaches the most important database commands. Common problems are covered early, like placing quotes
inside quoted strings. This should prevent users from getting stuck with queries that fail. I have seen many
bug reports in the past few years, and try to cover the common pitfalls.

With a firm foundation established, additional commands are introduced. Finally, specialty chapters
outline complex topics like multi-user control and performance. While coverage of these complex topics is
not exhaustive, I try to show common real-world problems and their solutions.

At each step, the purpose of each command is clearly illustrated. I want readers to understand more than
query syntax. I want them to know why each command is valuable, so they will use the proper commands in
their real-world database applications.

A database novice should read the entire book, while skimming over the later chapters. The complex
nature of database systems should not prevent readers from getting started. Test databases are a safe way
to try queries. As readers gain experience, later chapters will begin to make sense. Experienced database
users can skip the chapters on basic SQL functionality. The cross-referencing of sections should allow you to
quickly move from general to more specific information.

Much information has been moved out of the main body of the book into appendices. Appendix A
shows how to find additional information about POSTGRESQL. Appendix B has information about installing
POSTGRESQL. Appendix Clists the features of POSTGRESQL not found in other database systems. Appendix D
contains a copy of the POSTGRESQL reference manual which should be consulted anytime you are having
trouble with query syntax. Also, I should mention the excellent documentation that is part of POSTGRESQL.
The documentation covers many complex topics. It includes much POSTGRESQL-specific functionality that
cannot be covered in a book of this length. I refer to sections of the documentation in this text where
appropriate.

The website for this book is located at http://www.postgresql.org/docs/awbook.html.

vii

http://www.postgresql.org/docs/awbook.html

viii

PREFACE

0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528

0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594

Acknowledgements

Update this page with current information before publication.

POSTGRESQL and this book would not be possible without the talented and hard-working members of the
POSTGRESQL Global Development Team. They took source code that could have become just another aban-
doned project, and turned it into the open source alternative to commercial database systems. POSTGRESQL
is a shining example of Internet community development.

Steering

FOURNIER, MARC G. in Wolfville, Nova Scotia, Canada coordinates the whole effort and provides the
server and administers our primary web site, mailing lists, ftp site, and source code repository.

LANE, ToM in Pittsburgh, Pennsylvania, USA Often seen working on planner/optimizer, but has left
fingerprints in many places. Generally more interested in bugfixes and performance improvements
than adding features.

LOCKHART, THOMAS G. in Pasadena, California, USA works on documentation, data types, particularly
date/time and geometric objects, and on SQL standards compatibility.

MIKHEEV, VADIM B. in San Francisco, California, USA does large projects, like vacuum, subselects,
triggers, and multi-version concurrency control(MVCC).

MOMJIAN, BRUCE in Philadelphia, Pennsylvania, USA maintains FAQ and TODO lists, code cleanup, patch
application, training materials, and some coding.

WIECK, JAN near Hamburg, Germany overhauled the query rewrite rule system, wrote our procedural
languages PL/PGSQL and PL/TCL and added the NUMERIC type.

Major Developers

CAIN, D’ARCY J.M. in Toronto, Ontario, Canada worked on the TCL interface, PyGreSQL, and the INET
type.

DAL ZoTTO, MASSIMO near Trento, Italy has done locking code and other improvements.

ELPHICK, OLIVER in Newport, Isle of Wight, UK maintains the POSTGRESQL package for Debian
GNU/Linux.

HORAK, DANIEL near Pilzen, Czech Republic did the WinNT port of PostgreSQL (using the Cygwin
environment).

INOUE, HIROSHI in Fukui, Japan improved btree index access.

X

X ACKNOWLEDGEMENTS

e IsHi, TATSUO in Zushi, Kanagawa, Japan handles multi-byte foreign language support and porting
issues.

MARTIN, DR. ANDREW C.R. in London, England has done the ECPG interface and helped in the Linux
and Irix FAQs including some patches to the POSTGRESQL code.

* MERGL, EDMUND in Stuttgart, Germany created and maintains pgsql perl5. He also created DBD-Pg
which is available via CPAN.

* MESKES, MICHAEL in Dusseldorf, Germany handles multi-byte foreign language support, and maintains
ecpg.

* MOUNT, PETER in Maidstone, Kent, United Kingdom has done the Java JDBC Interface.

* NIKOLAIDIS, BYRON in Baltimore, Maryland, USA rewrote and maintains the ODBC interface for Windows.
* OWEN, LAMAR in Pisgah Forest, North Carolina, USA RPM package maintainer.

* TEODORESCU, CONSTANTIN in Braila, Romania has done the PgAccess DB Interface.

e THYNI, GORAN in Kiruna, Sweden has worked on the unix socket code.

Non-code contributors
* BARTUNOV, OLEG in Moscow, Russia introduced the locale support.

* VIELHABER, VINCE near Detroit, Michigan, USA maintains our website.

All developers listed in alphabetical order.

0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660

0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726

Contents

Note to Reviewers
Foreword

Preface
Acknowledgements

1 History of POSTGRESQL

1.1 Introduction v v i i i e
1.2 UNIVERSITY OF CALIFORNIA AT BERKELEY v v v vt e e e e e e e e e e e e e e e
1.3 Development Leaves BERKELEY o v v v v v vt e e e e e e e e e e e e e e e e e
1.4 POSTGRESQL Global Development Team i it i it i
1.5 OpenSource SOftware i i i i i it e e e e e e e e e e e e e e e
1.6 SUMMATY e

2 Issuing Database Commands

2.1 Starting a Database Session i . e e e e e e e e e e e
2.2 Controlling @ SeSSION « « v v v v v v v e
23 Getting Help o o o i e e e e e e e e e e e e
2.4 EXiting aSession v v i i e
2.5 SUMMATY . . v o o e

3 Basic SQL Commands

3.1 Relational Databases e e e e e e e e e
3.2 Creating Tables v i i i i i e e e e e e e e e e e e e e e e e
3.3 Adding Data with INSERT i i i i e e e e e e e e e e e e e e e e e
3.4 Viewing Data with SELECT i i i e
3.5 Selecting Specific Rows with WHERE 0 i i i ittt i et et e et e e
3.6 Removing Data with DELETE o 0 i it e e e e e e e e e e e e e e e e e e e
3.7 Modifying Data with UPDATE i i e e et e e e e e e e e e e e e e e e e e
3.8 Sorting Datawith ORDERBY et it ee e
3.9 Destroying Tables o ot i i i e e e e e e e e e e e
300 SUMMATY . . . o v e
4 Customizing Queries
4.1 Datatypes i e
4.2 QuotesInside Text o o it i i e e e e e e e e e e e e e e e
43 Using NULL Values o i i it it e

X1

il

vii

iX

W W

oo lNoBENINe G INS) |

10
11
13
13
15
15
15
18
18

Xii CONTENTS
4.4 Controlling DEFAULT Values v v v i it i e e e e e e e e e e e e e et e e e e e 23
45 ColumnLabels e e e e e e e e e e e e e 24
4.6 COMMENLS & & v v v e 24
4.7 AND/ORUSAZE . « v v o v e 25
4.8 Rangeof Values o i i e e e e e e e e e e e e e 28
4.9 LIKE COMPArISOI & « v v v v v v o e e e e et e 28
4.10 Regular EXpressions v v v v v it e e e e e e e e e e e e e e e e e e 29
411 CASE ClaUuSE . . v v v i i et e 33
4.12 Distinct ROWS . & . o v v i i e e e e e e e e e e e e e e 34
4.13 Functions and Operators v v v v v v i e e e e e e e e e e e e e e e e e e 34
4.14 SET,SHOW, and RESET o ittt e e e e e e e e e e e e e 38
405 SUMMATY + ¢ v v o e 38

5 SQL Aggregates 41
5.1 Aggregates i i e 41
52 Using GROUPBY e e e e e e 44
53 Using HAVING o i e e e e e e e e e e e e e e e e e e 44
5.4 Query TIps . . . i e e e e e e e e e e e e e e e e e e e 45
5.5 SUMMAIY . . v o e 46

6 Joining Tables 47
6.1 Table and Column References i i i i i i ittt e e 47
6.2 Joined Tables e e e e e e e e e 47
6.3 Creating Joined Tables v i i i i i it e e e e e e e e e e e e 49
6.4 Performing Joins o o i it e e e e e e e e e e e e e e e e e 51
6.5 Threeand Four Table Joins i i i i e 53
6.6 Additional Join Possibilities e e e e e e e e e 55
6.7 ChoosingaJoin Key i i i i e e e e 56
6.8 One-to-Many JOIns v v vt i i i e e e e e e e e e e e e e e e e e e e 57
6.9 Unjoined Tables o o i it e e e e e e e e e e e e e e e e 59
6.10 Table Aliases and Self-JoIns o i v i i e e e e e e e e e e 59
6.11 Non-Equijoins o i it i it e e e e e e e e e e e e e e e e 60
6.12 Ordering Multiple Parts ittt e e e e e e e e 60
6.13 Primary and Foreign Keys e 62
6.14 SUMMATY . . . o v v e 62

7 Numbering Rows 65
7.1 Object Identification Numbers (OIDS) . . . v v v v v v v v i e e e e e e e e e e e e e e 65
7.2 Object Identification Number Limitations 66
7.3 SEQUENCES . v v v v e 67
7.4 Creating SEQUENCES « v v v v v v v v e e e e e e e e e e e et e e e e e e e 67
7.5 Using Sequences to Number Rows 69
7.6 Serial Column Type i i e e e e e e e e e e e e e e e 70
7.7 Manually Numbering Rows i e e e e e e e e 70
7.8 SUMMATY . . v v o i e 71

0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792

0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858

CONTENTS

8 Combining SELECTs
8.1 UNION, EXCEPT, INTERSECT ClauSes« v v v i e e e e e e e e e e e e e e e e e
8.2 SUDQUETIES . . . v it e e e e e e e e e e e e e e e e e e
8.3 OUter JoIns i i e e e e e e e e e e e e e e
8.4 Subqueries in NON-SELECT QUETIES . . + « v v v v v v et e e e e e e e e e e e e e e e
85 UPDATEWIth FROM o o i i e e e e e e e e e e e e e e e it e e e e
8.6 Imserting Data Using SELECT v v v v i v e
8.7 Creating Tables USING SELECT .+ & v v v v v v v e
8.8 SUMMAIY . . . v v v i e et e

9 Data Types

9.1 Purposeof DataTypes o v i i i i e e e e e e e e e e e
9.2 Installed Types o o i i e e e e e e e e e e e e e e e e e
9.3 Type Conversion USING CAST & v v v v v v v v v v e e e e e e e et e e e e e e et e e oo
9.4 Support Functions i i i i e e e e e e e e e e e e
9.5 Support Operators o v v v i e
9.6 SupportVariables e e e e e e e e e e e e e e e

9.7 Arrays

9.8 Large ObJectS(BLOBS) v v v v v v v v o v e e e e et e e e e e e e e e e e e e e e
9.9 SUMMATY . . ¢ o o e

10 Transactions and Locks
10.1 Transactions . . v v v v v o e
10.2 Multi-Statement Transactions v v i i i i e e e e e e e e e e e e e e e e e
10.3 Visibility of Committed Transactions v v i v v i i e e e e e e e e
10.4 Read Committed and Serializable Isolation Levels
10.5 LOCKING . . v v v e
10.6 Deadlocks o i e
10.7 SUMMATY . . v v o e

11 Performance

11.1 Indexes
11.2 Unique
11.3 Cluster

Indexes v i e e e e e e e e e e e e e e e

B T L5 o o
11.5 Vacuum Analyze e e e e e e e e e e e e e e e
11.6 EXPLAIN .« & o v v e
T11.7 SUMMATY v e

12 Controlling Results

12.1 LmIT

12.2 CUISOTS v v v v o e
12.3 SUMMATY . . o v o e

13 Table Management
13.1 Temporary Tables i i i e e e e e e e e e e e e
13.2 ALTER TABLE o it e i e
13.3 GRANT and REVOKE o i i e i et e
13.4 Inheritance v v v i i i e e e e e e e e e e e e e e e e e e e

Xiil

73
73
76
83
83
85
85
86
87

89
89
89
93
93
93
96
96
98
98

99
99
99
101
102
103
105
105

107
107
108
108
109
109
109
111

113
113
114
114

Xiv CONTENTS

135 VIEWS . . o o e e e e e e e e e e e e e e e e e 122 0859
13.6 Rules . . . o e e e e e e e e e 123 0860
13.7 LISTEN and NOTIFY ¢ o v i e e i e 126 gggé
13.8 SUMMATY v e 126 0863
0864

14 Constraints 129 8222
14.1 NOT NULL . . . v ot e 129 0867
14.2 UNIQUE . . v v v o e 130 0863
14.3 PRIMARY KEY © o o v ot e e e e e e e e e e e e e e e e 131 s
14.4 FOREIGN KEY/REFERENCES . . . v v v i i e 131 0871
S T 0 1 10 139 0872
14.6 SUMMATY . . o v ot e 139 gg;i
0875

15 Importing and Exporting Data 141 0876
15.1 USING COPY & & v v vt e e e e e e e e e e e e e 141 ek
15.2 CorY File Format o o e e e e e e e e e e e 141 0879
15.3 DELIMITERS . .« « v v o v e o e 143 0880
15.4 CoPY withoutfiles v v i it e e e e e e e e e e e e e e 143 822;
15.5 Backslashes and NULLS v v v v i v e 144 0883
15.6 COPY TIPS « v v v v o e e e e e e e e e e e e e e e e e e e 145 ggg‘;
15.7 Summary e e 145 0886
0887

16 Database Query Tools 147 0888
8 I) 147 o
16.2 PGACCESS . v v v vt e 152 0891
16.3 SUMMAIY . . . v v o e e e e e e e e e e e e e e e 154 0892
0893

. 0894

17 Programming Interfaces 155 0895
17.1 C Language Interface (LIBPQ) . . . « v v v v v v v it e e e e e e e e e e e e e e e e e 156 0896
17.2 PgeaSy(LIBPGEASY) - « v v o v v e e e e e e e e e e e e e 158 oo
17.3 Embedded C (ECPG) v v v i i e 158 0899
174 CH+ (LIBPQH+) . o v i e 158 0900
17.5 Compiling Programs 0 i i i e e e e e e e e e e e e 158 gggé
17.6 Assignment to Program Variables e e e 162 0903
17.7 ODBC v v v e v e e e e e e e e e e 162 8‘;3‘;
17.8 JAVAGDBC) .+ v v v v e e e e e e e e e e e 163 0906
17.9 Scripting Languages o o v i i e e e e e e e e e e e e e e e e e e 163 0907
T700PERL . .« v ot et e e e e e e e e e 163 oo
17.11TCL/TK (PGTCLSH/PGTEKSH) & v v v v v e 163 0910
17.12PYTHON (PYGRESQL) & & & ¢ v v e 163 0911
17.08PHP .+ ot et e e e e e e e e e 166 ooz
17.14Installing Scripting Languages v v v v i i e e e e e e e e e e e e e e e e 168 0914
17.15SUMMALY + v v v v e e e e e e e e e e 168 0915
0916

. . 0917

18 Functions and Triggers 169 0918
18.1 Functions v i i e e e e e e e e e e e e e e e e e 169 0919
18.2 SQL Functions v o v i it e e e e e e e e e e e e e e 169 825(1)
18.3 PL/PGSQL FUNCHIONS . . & v v i e o e 174 0922
184 THig@ersS « v v v o e i e 180 0923

0924

0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990

CONTENTS

18.5

Summary 0 0o

19 Extending POSTGRESQL Using C

19.1
19.2
19.3

19.5

Writing C code

Compilethe Ccode
Register the New Functions
19.4 Optionally Create Operators, Types, and Aggregates
Summary 00000

20 Administration

B

C

20.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8
20.9

20.10Internationalization
20.11Upgrading
20.12Summary

Files.
CreatingUsers
Creating Databases
Access Configuration

Backup and Restore

Server Startup and Shutdown

Monitoring
Performance
System Tables

Additional Resources

Al
A2
A3
A4
A5

Frequently Asked Questions (FAQ’S)

Mailing List Support
Supplied Documentation
Commercial Support

Modifying the Source Code

Installation

PostgreSQL Non-Standard Features by Chapter

D Reference Manual

Bibliography

Index

XV

180

183
183
184
184
185
185

187
187
187
189
189
191
192
192
193
194
194
194
194

197
197
197
197
197
197

199
201
203
205

205

xvi

CONTENTS

0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056

1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122

List of Figures

2.1 psql SeSSION STATLUP & v v v v v v e 6
2.2 My first SQL QUETIY .« + v v v v o e 6
2.3 Multi-line qUETY v i e 7
24 Backslash-pdemo e e e e e e e 8
3.1 Databases e e e e e e e e e e e e e e e e 9
3.2 Createtable friend i i e e e e e e e e e 10
3.3 Example of backslash-d e e e e e e 11
3.4 INSERTINtOf7Iend« v v e 12
3.5 Additional f7iend INSERTS .« v v v v v v v e 12
3.6 My first SELECT . . v v v it e 13
3.7 My first WHERE o v vt e 14
3.8 More complex WHERE ClaUSE i i i it i e e e e e e e e e e e e e e e e e e e 14
3.9 Asinglecell e e e e e e e e e e e e e e e e 14
3.10 Ablockof cells o v i i i e e e e e e e e e e e e e e e 14
3.11 Comparing string fields i i i e e e e e e e e e 15
3.12 DELETE example o i e e e e e e e e e e e e e e e e e e e 16
3.13 My first UPDATE . . . o v v et e 16
314 Useof ORDERBY o o oo it e e e e e e e e 17
3.15 Reverse ORDER BY e e e e 17
3.16 Use of ORDERBYand WHERE v v v vttt e it et e e e e e e e e e e e e e 17
4.1 Example of common data types v i i e e e e e e e e e e e e e e e 20
4.2 Insertion of Specific COIUMNS v v v i i i i e e e e e e e e e e e e e e e e 21
4.3 NULLhandling o it i it e 22
4.4 Comparison of NULLfields o o i i i i i e e e e e e e e e e e e e 22
45 NULLsand blank Strings o v v v v i it e e e e e e e e e e e e e e e 23
4.6 USINGDEFAULTS & &« v v v v v e 24
4.7 Controlling column labels o i i e e e e e e e e e e 24
4.8 Computationusingacolumnlabel 25
4.9 Comment Styles v v i it e e e e e e e e e e e e e e e e e 25
410 New friends o v v v it e e e e e e e e e e e e e e e e e e 26
4.11 WHERE test for Sandy Gleason i i i it et e e 26
4.12 Friends in New Jersey and Pennsylvania, 27
4.13 Mixing ANDS @A ORS + + v v v v v e 27
4.14 Properly mixXing ANDS and ORS « « « v v v v v v e 27
4.15 Selecting arange of values i L e e e e e e e e e e e 28
4.16 Firstname begins With D. o o i i i e e e e e e e e e e e e e e e e e 29
4.17 Regular expression sample qUETIES . . v v v v v v v v v v e e e e e e e e e e e e e e e e e 31

xviii

4.18
4.19
4.20
4.21
4.22
4.23
4.24

5.1
5.2
5.3
54
5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3
8.4
8.5
8.6

LIST OF FIGURES
Complex regular €XpressSion QUETIES .« « v v v v v v v v b e e e e e e e e e e e e e e e e 32
CASE €Xample o it e 33
Complex CASE €Xample o v v v i e 34
DISTINCT prevents duplicates v v v v v v e 35
Function examples i i i e 36
Operator eXamples . . . v v v v i e 37
SHOW and RESET €XaMPIES « « v v v v v e v e e e e e e e e e e e e e e e et e e e e e e 39
Aggregate exampleso e e e e e e e e e e e e e e 42
Aggregates and NULLS v v v v v i i e 43
Aggregate with GROUP BY e e e e e 44
GROUPBY ONtWO COIUMNS '« . . v v v v e 45
HAVING USage i i e 45
Qualified cOlUMN NAMES« v o vt e 48
Joining tables e e e e e e e e e e e e e e e e 48
Creation of company tables i i i e e e e e e e e e e e e 50
Insertion into company tables e e e e e e e e e e 51
Finding customer name uSIng tWo QUEIIES . + v v v v v v v v v b e e e et e e e e 52
Finding customer name USING ONE QUETY .+ + « v v v v v v v v e e e e e e e e e e e e e e e u 52
Finding order number for customer name e e e e e e 53
Three-table Join o i i i it e 53
Four-table join o i i e e e e e e e e e e e e e e e e e e e 54
Employees who have taken orders for customers. 54
Joining customer and emplOyEe o v i e e e e e e e e e e e e e e e e 55
Joining part and employeeo e e e e e e e e e e e e 55
Statename table L L L e e e e e e e e e e e e e e e e 56
Using a customer COAE . . . v v v v v v e 57
One-to-mMany JOIN . « v v v v v v e 58
Unjoined tables i i i it e 59
Using table allases . . . v v v v v i e 59
Examples of self-joins using table aliases i e e e e 60
NON-EQUIJOINS .+ v v v v e 61
New salesorder table for multiple parts perorder 61
Orderparttable o e e e e e e e e e e e e e 61
Queries involving orderpart table L e e e e 63
1010] O 66
Columns With OIDS v v it e e e e e e e e e e e e e e e e e 66
Examples of sequence function US€ v v v v v i i i e e e e e e e e e e e 68
Numbering customer TOwWS USING A SEQUENCE « v v v v v v v v v e e e e e e e e e e e e e e 69
Customer table USING SERTAL .+« « v v v v v v e e e e e e e e e e e e e e et e e e e e e 70
Combining two columns With UNION o v v v i e e e e e e e e e e e e e e e e e e us 73
Combining two tables With UNION v v v i e e e e e e e e e e e e e e e e e e e us 74
UNION With duplicates v v v e 75
UNION ALL with duplicates o i i i e e e e e e e e e e e e e e e 75
EXCEPT restricts output from the first SELECT v v v v v v v e e e e e e e e e e u s 75
INTERSECT returns only duplicated rows v v v v i v i i e e e e e e e e e e e e 76

1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188

1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254

LIST OF FIGURES XiX

8.7 Friends not in Dick Gleason’s state i i i i i e e e e e e 77
8.8 Subqueries can replace SOME JOINS . . . v v v v v v v v i e e e e e e e e e e e e e e 78
8.9 Correlated subquery e e e e e e e e e e e e 79
8.10 Employees whotook orders o v v i i i it e e e e e e e e e e e e e 80
8.11 Customers whohavenoorders i i i it 81
8.12 IN query rewritten using ANY and EXISTS v i v i it e e e e e e e e e 82
8.13 NOT IN query rewritten using ALLand EXISTS v v v v v v v e e e e e e e e e e e e 83
8.14 SImulating OULET JOINS . + v v v v v e 84
8.15 Subqueries with UPDATE and DELETE ¢ v i v i e e e e e e e e e e e e e e e e e 84
8.16 UPDATE theorder date i i e 85
8.17 Using SELECT With INSERT v v v i i e 85
8.18 Table creation With SELECT v i i i e 86
9.1 Exampleofafunctioncall i e 93
9.2 Error generated by undefined function/type combination. 95
9.3 Error generated by undefined operator/type combination 96
9.4 Creation of array COIUMNS v v v i e e e e e e e e e e e e e e e e e e 96
9.5 USINZAITAYS + & v v v v v e 97
9.6 UsINglargeimages . . . v v v v v v i e 98
10.1 INSERT with no explicit transaction v v v v v v v v v ettt e e e e et e e e 99
10.2 INSERT with explicit transaction v v v v v v e e e e e e e e e e e e e e e e e e 100
10.3 Two INSERTs in a Single transaction v v v v v v v v v e e e e et e e e e e e e e 100
10.4 Multi-statement transaction v v v v i it e e e e e e e e e e e e e e e e e 100
10.5 Transaction rollback o o i i e e e e e e e e e 101
10.6 Read-committed isolation level 102
10.7 Serializable isolationlevel e e e e e e 103
10.8 SELECT Withno locKing o i i i i i e 104
10.9 SELECT...FORUPDATE . + v v v v i v e 105
11.1 Example of CREATEINDEX . . & ¢ v v v v v e v e 107
11.2 Example of a unique indeX v v v v v i i e e e e e e e e e e e e e e e e e e e 108
11.3 USING EXPLAIN . & v v v v e o e e e e e e e e e et e e e e e e e e e e e e e e 109
11.4 More complex EXPLAIN €XamPIES .+ « . v v v v v v v e e e e e e e e e e e e e e e e e e e 110
11.5 EXPLAIN example USING JOINS + « v v v v v v v v e 111
12.1 Examples of LIMIT and LIMIT/OFFSET . . v v v v v v e et e e e e e e e e e e e e e e e e e e 113
12.2 CUISOT USAZE . .« v v v o o e 115
13.1 Temporary table auto-destruction i i i e e e e e e e 118
13.2 Example of temporary table use e e e e e e e e e e 118
13.3 ALTER TABLE €XamMPIES . . . & v v v v o i i e 119
13.4 Examples of the GRANT command o v v v v it e e e e e e e e e e e e e e 120
13.5 Creation of inherited tables e e e . 120
13.6 Accessing inherited tables L e e e e e e e e 121
13.7 Inheritance IN1ayers o i v i i it e 121
13.8 Examples Of VIEWS . . . v v v v v i e 122
13.9 Rule that prevents INSERT o v i it e 123
13.10Rules to log table changes e e e e e e e e 124

LIST OF FIGURES

13.11Use of rule to log table changes i i it 125
13.12Views ignore table modifications i . . e e e e e e e e e e e e e e e 125
13.13Rules to handle view modifications v v v i i i e e e e e e e e e e e e e 126
13.14Rules handle view modifications e e e e e e e e e e e e . 127
14.1 NOTNULL constraint v o v v ittt e e e et e e e e e e e e e e e e 129
14.2 NOT NULL with DEFAULT CONStraint v v v v v v i it e et e et e e e e e e e e 130
14.3 Unique column CONSLIaiNt . . v v v v v v v e 130
14.4 Multi-column unique conStraint v v v v v v e e e e e e e e e e e e e e e e e e e 131
14.5 Creation of PRIMARY KEY COIUMN v v v v i e e e e e e e e e e e e e e e e e e e 131
14.6 Example of a multi-column primary key e . 132
14.7 Foreign Key Creation v v v v v v i i e 132
14.8 Foreign Key constraints v v v v i i it e e e e e e e e e e e e e e e e 133
14.9 Creation of company tables using primary and foreignkeys 133
14.10Customer table with foreign key actions i i ittt 134
14.11Foreign Key actions . . . v v v v v v e 135
14.12Example of a multi-column foreignkey 136
14.13MATCH FULL foreign Key v v v i e 137
14.14DEFERRABLE foreign key constraint v v v v v i v vt e et e e e e e e e 138
14.15CHECK CONSIIAINES . . & & v v i e 139
15.1 Example of COPY...TO and COPY...FROM . . + v v v v v e v e e e et e e e e e e e et e e us 142
15.2 Example of COPY...FROM . . . « ¢ v v v v v e 142
15.3 Example of COPY...TO...USING DELIMITERS & v v v v e v e et e e e e e e e et e e us 143
15.4 Example of COPY...FROM...USING DELIMITERS v v v v v v v v o v e o e oo e e e e e e 143
15.5 COPY using stdin and stdout i i e e e e e e e e e e e e e 144
15.6 COPY backslash handling o o i it ittt e e e e e e e e e e e e 144
16.1 Example of \pser oo e e e e e e e e e e e e 149
16.2 psql variables v o e 150
16.3 Pgaccess opening WiNAOW . . . v v v v v v v e 153
16.4 Pgaccess table WINAOW v v v v i i e 154
17.1 Sample application beING TUN v v v v v e e e e e e e e e e e e e e e e 155
17.2 Statename table e e e e e e e e e e e e e e e e e 156
17.3 Libpgdata flow o i e e e e e e e e e e e e e e 156
17.4 Libpg sample PrOZrall . . . v v v v v o e 157
17.5 libpgeasy sample ProOgram v v v v v v e 159
17.6 Ecpg sample PrOQramml . .« v v v v v v v e 160
17.7 Libpg++ sample Program v v v v v v v e 161
17.8 JAVA sample program i e 164
17.9 PERL sample program v v v v v i e 165
17.10TCL sample program v v v vt i e 165
17.11PYTHON sample Program v v i i e 166
17.12PHP sample program —Input e e e e e e 166
17.13PHP sample program — Output v v i i e e e e e e e e e e e e e e e e e 167
18.1 SQL floc function i i i e 170
18.2 SQLfax function i i e 171

1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

LIST OF FIGURES Xxi

1321 18.3 Recreation of the part table e e e e 171
1322 18.4 SQL shipping function o o i i e e e e e e e e e e e e 172

Egi 18.5 SQL function getstatename e e e e e e e e e e 173

1325 18.6 Getting state name using joinand function 173
1326 18.7 PL/PGSQL version of gefstatename e e e e e e e e 174

}ggg 18.8 PL/PGSQL spread function 0. e 175

1329 18.9 PL/PGSQL gefstatecode function i e e e e e e e e e e 176
1330 18.10Calls to gefstatecode funCtion v v v v it e e e e 177

gg; 18.11PL/PGSQL change_statename function i e 178

1333 18.12Example of change_statename() i e e e e 179
1334 : .

1335 18.13Trigger creation o v v i i e 181
1
122? 19.1 Coclof function i i it e e e e e e e e e e e e e e e 184
1338 19.2 Create function cfof« c v v v v i e e e e e e e e e e e e e e e e e e 184

gig 19.3 Calling function cfof v v v i i i e e e e e e e e e e e e e e e e e e 185

1341
1342 20.1 Examples of user administration i i it e e e e e e e e e e 188

1343 20.2 Examples of database creation andremoval 189

}gig 20.3 Making anew copy of database test e e e 191

1346 20.4 Postmaster and poStgres PrOCESSES . v v v v v v v v e e e e e e e e e e e e e e e e e e 192
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386

xxii

LIST OF FIGURES

1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452

1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518

List of Tables

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1

7.1

9.1
9.2
9.3
94
9.5

10.1
10.2
10.3
10.4

13.1

15.1

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8

17.1

Table friend e e e e e e e e e e e e e 10
Common data tyPes . .« v v v i e 19
COMPATISONS + v v v v e 27
LIKE COMPATISOI + « v v v v o o e e e e e e e e e e e e e et et e e e e e ettt e e e 29
Regular eXpression OPErators . . . v v v v v v v v v e e e e e e e e e e e e e e e e e e e 29
Regular expression special characters i i i it i i e 30
Regular expression eXamples v v v i i i e e e e e e e e e e e e e e e e 30
SET OPLIONS & & v v v v e 38
DATESTYLE OUEPUL o v o o i e 38
Aggregates e 41
Sequence number access fUnCtionS v v v v v i i e e e e e e e e e e e e e e 67
POSTGRESQL data types . . . v v v v v e 90
GEOMEIIC LY PES + v v v v e 92
Common functions o i v i it e e e e e e e e e e e e e e e 94
Common OPETAtOrS . . v v v v v e 95
Common variablesS v v v v i e e e e e e e e e e e e e e e e e e 96
Visibility of single-query transactions v v v v v i e e e e e e e e e e e e . 101
Visibility using multi-query transactions i e e e e e e e e e e e . 102
Waiting foralock i i i e e e e e e e e e e e e e e 104
Deadlock o i i e e e e e e e e e e e e e e e e e e 105
Temporary table 1S0lation o i e e e e e e e e e e e e e e e e 117
Backslashes understood by COPY o i i i i i e e e e e e e e e e e 145
psql query buffer commands L e e e e e e e e e e 147
psql general commands e i e 148
PST \PSEL OPLIONS & o v v v i e 148
psql output format shortcuts L e e e e e e e e e 149
psql predefined variables e e e e e e e e e e e e e e 151
psql listing commands e e e e e e e e e e e e 152
psql large object commands e e e e e e e e e e e e e e e e e 152
psql command-line arguments i it e 153
Interface sSUMMAry i e 155

XXiv

20.1 Commonly used system tables

LIST OF TABLES

1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584

1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650

Chapter 1

History of POSTGRESQL

1.1 Introduction

POSTGRESQL is the most advanced open source database server. In this chapter, you will learn about
databases, open source software, and the history of POSTGRESQL.

There are three basic office productivity applications: word processors, spreadsheets, and databases. Word
processors produce text documents critical to any business. Spreadsheets are used for financial calculations
and analysis. Databases are used primarily for data storage and retrieval. You can use a word processor or
a spreadsheet to store small amounts of data. However, with large volumes of data or data that must be
retrieved and updated frequently, databases are the best choice. Databases allow orderly data storage, rapid
data retrieval, and complex data analysis, as you will see in the coming chapters.

1.2 UNIVERSITY OF CALIFORNIA AT BERKELEY

POSTGRESQLS ancestor was INGRES, developed at the UNIVERSITY OF CALIFORNIA AT BERKELEY (1977-1985).
The INGRES code was taken and enhanced by RELATIONAL TECHNOLOGIES/INGRES CORPORATION!, which
produced one of the first commercially successful relational database servers. Also at Berkeley, MICHAEL
STONEBRAKER led a team to develop an object-relational database server called POSTGRES (1986-1994). The
POSTGRES code was taken by ILLUSTRA? and developed into a commercial product. Two Berkeley graduate
students, JOLLY CHEN and ANDREW YU, added SQL capabilities to POSTGRES, and called it POSTGRES95
(1994-1995). They left Berkeley, but Chen continued maintaining POSTGRES95, which had an active mailing
list.

1.3 Development Leaves BERKELEY

In the summer of 1996, it became clear that the demand for an open source SQL database server was great,
and a team was formed to continue development. MARC G. FOURNIER, Toronto, Canada, offered to host the
mailing list, and provide a server to host the source tree. One thousand mailing list subscribers were moved
to the new list. A server was configured, giving a few people login accounts to apply patches to the source

code using cvs.?.

ngres Corp. was later purchased by Computer Associates.
llustra was later purchased by Informix and integrated into Informix’s Universal Server.
3¢vs sychronizes access by developers to shared program files.

2 CHAPTER 1. HISTORY OF POSTGRESQL

JoLLY CHEN had stated, "This project needs a few people with lots of time, not many people with a little
time." With 250,000 lines of C* code, we understood what he meant. In the early days, there were four people
heavily involved, MARC FOURNIER in Canada, THOMAS LOCKHART in Pasadena, California, VADIM MIKHEEV
in Krasnoyarsk, Russia, and me in Philadelphia, Pennsylvania. We all had full-time jobs, so we did this in our
spare time. It certainly was a challenge.

Our first goal was to scour the old mailing list, evaluating patches that had been posted to fix various
problems. The system was quite fragile then, and not easily understood. During the first six months of
development, there was fear that a single patch would break the system, and we would be unable to correct
the problem. Many bug reports had us scratching our heads, trying to figure out not only what was wrong,
but how the system even performed many functions.

We inherited a huge installed base. A typical bug report was, "When I do this, it crashes the database."
We had a whole list of them. It became clear that some organization was needed. Most bug reports required
significant research to fix, and many were duplicates, so our TODO list reported every buggy SQL query. It
helped us identify our bugs, and made users aware of them too, cutting down on duplicate bug reports.

We had many eager developers, but the learning curve in understanding how the back-end worked was
significant. Many developers got involved in the edges of the source code, like language interfaces or database
tools, where things were easier to understand. Other developers focused on specific problem queries, trying
to locate the source of the bug. It was amazing to see that many bugs were fixed with just one line of C
code. POSTGRES had evolved in an academic environment, and had not been exposed to the full spectrum of
real-world queries. During that period, there was talk of adding features, but the instability of the system
made bug fixing our major focus.

1.4 POSTGRESQL Global Development Team

In late 1996, we changed the name from POSTGRES95 to POSTGRESQL. It is a mouthful, but honors the
Berkeley name and SQL capabilities. We started distributing the source code using remote cvs, which
allowed people to keep up-to-date copies of the development tree without downloading an entire set of files
every day.

Releases occurred every 3-5 months. This consisted of 2-3 months of development, one month of beta
testing, a major release, and a few weeks to issue sub-releases to correct serious bugs. We were never
tempted to follow a more aggressive schedule with more releases. A database server is not like a word
processor or a game, where you can easily restart it if there is a problem. Databases are multi-user, and lock
user data inside the database, so we must make our software as reliable as possible.

Development of source code of this scale and complexity is not for the novice. We initially had trouble get-
ting developers interested in a project with such a steep learning curve. However, our civilized atmosphere,
and our improved reliability and performance, finally helped attract the experienced talent we needed.

Getting our developers the knowledge they needed to assist with POSTGRESQL was clearly a priority.
We had a TODO list that outlined what needed to be done, but with 250,000 lines of code, taking on any TODO
item was a major project. We realized developer education would pay major benefits in helping people get
started. We wrote a detailed flowchart of the back-end modules.” We wrote a developers’ FAQ®, to describe
some of the common questions of POSTGRESQL developers. With this, developers became more productive
at fixing bugs and adding features.

The source code we inherited from Berkeley was very modular. However, most Berkeley coders used
POSTGRESQL as a test bed for research projects. Improving existing code was not a priority. Their coding

*C is a popular computer language first developed in the 1970’s.
5All the files mentioned in this chapter are available as part of the POSTGRESQL distribution, orat http: //www.postgresql.org/docs.
Frequently Asked Questions

1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716

http://www.postgresql.org/docs

1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782

1.5. OPEN SOURCE SOFTWARE 3

styles were also quite varied.

We wrote a tool to reformat the entire source tree in a consistent manner. We wrote a script to find
functions that could be marked as static’, or unused functions that could be removed completely. These are
run just before each release. A release checklist reminds us of the items to be changed for each release.

As we gained knowledge of the code, we were able to perform more complicated fixes and feature
additions. We redesigned poorly structured code. We moved into a mode where each release had major new
features, instead of just bug fixes. We improved SQL conformance, added sub-selects, improved locking, and
added missing SQL functionality. A company formed to offer telephone support.

The Usenet discussion group archives started touting us. In the previous year, we searched for POST-
GRESQL, and found many people were recommending other databases, even though we were addressing user
concerns as rapidly as possible. One year later, many people were recommending us to users who needed
transaction support, complex queries, commercial-grade SQL support, complex data types, and reliability.
This clearly portrayed our strengths. Other databases were recommended when speed was the overriding
concern. REDHAT’S shipment of POSTGRESQL as part of their LINUX® distribution quickly expanded our user
base.

Every release is now a major improvement over the last. Our global development team now has mastery of
the source code we inherited from Berkeley. Finally, every module is understood by at least one development
team member. We are now easily adding major features, thanks to the increasing size and experience of our
world-wide development team.

1.5 Open Source Software

POSTGRESQL is open source software. The term open source software often confuses people. With commercial
software, a company hires programmers, develops a product, and sells it to users. With Internet communi-
cation, there are new possibilities. In open source software, there is no company. Capable programmers with
interest and some free time get together via the Internet and exchange ideas. Someone writes a program
and puts it in a place everyone can access. Other programmers join and make changes. When the program
is sufficiently functional, they advertise the program’s availability to other Internet users. Users find bugs
or missing features and report them back to the developers, who enhance the program.
It sounds like an unworkable cycle, but in fact it has several advantages:

* A company structure is not required, so there is no overhead and no economic restrictions.

* Program development is not limited to a hired programming staff, but taps the capabilities and experi-
ence of a large pool of Internet programmers.

* User feedback is facilitated, allowing program testing by a large number of users in a short period of
time.

* Program enhancements can be rapidly distributed to users.

1.6 Summary

This chapter has explored the long history of POSTGRESQL, starting with its roots in university research.
POSTGRESQL would not have grown to the success it is today without the Internet. The ability to commu-
nicate with people around the world has allowed a community of unpaid developers to enhance and support

"A static function is a function that is used by only one program file.
8Linux is a popular UNIX-like, open source operating system.

4 CHAPTER 1. HISTORY OF POSTGRESQL

software that rivals commercial database offerings. By allowing everyone to see the source code and con-
tribute, POSTGRESQL continues to improve every day. The remainder of this book shows how to use this
amazing piece of software.

1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848

1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914

Chapter 2

Issuing Database Commands

At this point, the book assumes you have:

* POSTGRESQL installed
* POSTGRESQL server running
* You are a configured POSTGRESQL user

* You have created a database called fest.

If not, please see appendix B.
In this chapter, you will learn how to connect to the database server, and issue simple commands to the
POSTGRESQL server.

2.1 Starting a Database Session

POSTGRESQL uses a client/server model of communication. That means that a POSTGRESQL server continually
runs, waiting for client requests. The server processes the request and returns the result to the client.

Choosing an Interface

Because the POSTGRESQL server runs as an independent process on the computer, there is no way for a user
to interact with it directly. Instead, there are client applications designed specifically for user interaction.
This chapter shows you how to interact with POSTGRESQL using the psql interface. Additional interfaces
are covered in Chapter 17.

Choosing a Database

Each POSTGRESQL server controls access to a number of databases. Databases are storage areas used by
the server to partition information. For example, a typical installation may have a production database, used
to keep all information about a company. They may also have a training database, used for training and
testing purposes. They may have private databases, used by individuals to store personal information. For
this exercise, we will assume you have created an empty database called test. If this is not the case, see
section B.

6 CHAPTER 2. ISSUING DATABASE COMMANDS

Starting a Session

To start a psql session and connect to the fest database, type psql test at the command prompt. Your output
should look similar to figure 2.1. Remember, the operating system command prompt is case-sensitive, so
you must type this in all lowercase.!

$ psql test
Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\q to quit

test=>

Figure 2.1: psql session startup

2.2 Controlling a Session

Congratulations. You have successfully connected to the POSTGRESQL server. You can now issue commands,
and receive replies from the server. Let’s try one. Type SELECT CURRENT USER; and press Enter (see figure 2.2).
If you make a mistake, just press backspace and retype. This should show your login name underneath the

test=> SELECT CURRENT USER;
getpgusername

postgres

(1 row)

test=>

Figure 2.2: My first SQL query

dashed line. In the example, the login name postgres is shown. The word getpgusername is a column label.
The server is also reporting that it has returned one row of data. The line test=> tells you that the server is
done and is waiting for your next database query.

Let’s try another one. At the test=> prompt, type SELECT CURRENT TIMESTAMP; and press Enter. It should
show the current date and time. Each time you execute the query, the server will report the current time to
you.

Typing in the Query Buffer

Typing in the query buffer is similar to typing at an operating system command prompt. However, at an
operating system command prompt, Enfer completes each command. In psql, commands are completed only

A few operating systems are case-insensitive.

1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980

1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046

2.3. GETTING HELP 7

when you enter a semicolon (;) or backslash-g (\g). Here’s a good example. Let’s do SELECT 1 + 3; but in
a different way. See figure 2.3.2 Notice the query is spread over three lines. Notice the prompt changed

test=> SELECT

test-> 1 + 3

test->
?column?

Figure 2.3: Multi-line query

from => on the first line to -> on the second line to indicate the query was being continued. The semicolon
told psql to send the query to the server. We could easily have replaced the semicolon with backslash-g. 1
do not recommend you type queries as ugly as this one, but longer queries will benefit from the ability to
spread them over multiple lines. You might notice the query is in uppercase. Unless you are typing a string
in quotes, the POSTGRESQL server does not care whether words are uppercase or lowercase. For stylistic
reasons, I recommend you enter words special to POSTGRESQL in uppercase.

Try some queries on your own involving arithmetic. Each computation must start with the word SELECT,
then your computation, and finally a semicolon or backslash-g to finish. For example, SELECT 4 * 10; would
return 40. Addition is performed using plus (+), subtraction using minus (-), multiplication using asterisk
(*), and division using forward slash (/).

If you have readline® installed, psq1 will even allow you to use your arrow keys. Your left and right arrow
keys allow you to move around, and the u#p and down arrows retrieve previously typed queries.

Displaying the Query Buffer

You can continue typing indefinitely, until you use a semicolon or backslash-g. Everything you type will
be buffered by psql until you are ready to send the query. If you use backslash-p (\p), you see everything
accumulated in the query buffer. In figure 2.4, three lines of text are accumulated and displayed by the user
using backslash-p. After display, we use backslash-g to execute the query which returns the value 21. This
comes in handy with long queries.

Erasing the Query Buffer

If you do not like what you have typed, use backslash-r (\r) to reset or erase the buffer.

2.3 Getting Help

You might ask, “Are these backslash commands documented anywhere?” If you look at figure 2.1, you will
see the answer is printed every time psql starts. Backslash-? (\?) prints all valid backslash commands.
Backslash-h displays help for SQL commands. SQL commands are covered in the next chapter.

2Don’t be concerned about ?column?. We will cover that in section 4.7.
3Readline is an open-source library that allows powerful command-line editing.

8 CHAPTER 2. ISSUING DATABASE COMMANDS

test=> SELECT

test->2 * 10 + 1

test-> \p

SELECT

2 %10 +1

test-> \g
?2column?

(1 row)

test=>

Figure 2.4: Backslash-p demo

2.4 Exiting a Session

This chapter would not be complete without showing you how to exit psql. Use backslash-q (\q) to quit the
session. Backslash-q exits psql. Backslash g (go), p (print), v (veset), and q (quit) should be all you need for a
while.

2.5 Summary

This chapter has shown how to use the most important features of psql. This knowledge will allow you to
try all the examples in this book. However, psql has many features that can assist you. Section 16.1 covers
psql in detail. You may want to review that chapter while reading through the book.

2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112

2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178

Chapter 3

Basic SQL Commands

SQL stands for Structured Query Language. It is the most common way of communicating with database
servers, and is supported by almost all database systems. In this chapter, you will learn about relational
database systems and how to issue the most important SQL commands.

3.1 Relational Databases

As I mentioned in section 1.1, the purpose of a database is rapid data storage and retrieval. Today, most
database systems are relational databases. While the term relational database has a mathematical foundation,
in practice it means that all data stored in the database is arranged in a uniform structure.

In figure 3.1, you see the database server with access to three databases, fest, demo, and finance. You

Database Server

/

Database Demo

==

Database Test

Database Finance

=

—

Figure 3.1: Databases

could issue the command psql finance and be connected to the finance database. You have already dealt with
this in chapter 2. Using psql, you chose to connect to database fest with the command psql test. To see a
list of databases available at your site, type psql -1. The first column lists the database names. However,
you may not have permission to connect to them.

You might ask, “What are those black rectangles in the databases?” Those are fables. Tables are the
foundation of a relational database management system (RDBMS). As I mentioned earlier, databases store data.

9

10 CHAPTER 3. BASIC SQL COMMANDS

Those tables are where data is stored in a database. Each table has a name defined by the person who created
it.
Let’s look at a single table called friend in table 3.1. You can easily see how tables are used to store data.

FirstName | LastName | City | State | Age

Mike Nichols | Tampa FL 19
Cindy Anderson | Denver CO | 23
Sam Jackson | Allentown | PA 22

Table 3.1: Table friend

Each friend is listed as a separate row in the table. The table records five pieces of information about each
friend, firstname, lastname, city, state, and age."

Each friend is on a separate row. Each column contains the same type of information. This is the type of
structure that makes relational databases successful. Relational databases allow you to select certain rows
of data, certain columns of data, or certain cells. You could select the entire row for Mike, the entire column
for City, or a specific cell like Denver. There are synonyms for the terms fable, row, and column. Table is more
formally referred to as a relation or class, row as record or tuple, and column as field or attribute.

3.2 Creating Tables

Let’s create our own table and call it friend. The psql statement to create the table is shown in figure 3.2.
You do not have to type it exactly like that. You could have used all lowercase, or you could have written it

test=> CREATE TABLE friend (

test(> firstname CHAR(15),
test(> lastname CHAR(20),
test(> city CHAR(15),
test(> state CHAR(2),
test (> age INTEGER
test(>);

CREATE

Figure 3.2: Create table friend

in one long line, and it would have worked just the same.

Let’s look at it from the top down. The words CREATE TABLE have special meaning to the database
server. They indicate that the next request from the user is to create a table. You will find most SQL
requests can be quickly identified by the first few words. The rest of the request has a specific format that
is understood by the database server. While capitalization and spacing are optional, the format for a query
must be followed exactly. Otherwise, the database server will issue an error such as parser: parse error
at or near "pencil", meaning the database server got confused near the word pencil. In such a case, the
manual page for the command should be consulted and the query reissued in the proper format. A copy of
the POSTGRESQL manual pages appear in appendix D.

The CREATE TABLE command follows a specific format. First, the two words CREATE TABLE, then the table
name, then an open parenthesis, then a list of column names and their types, followed by a close parenthesis.

In a real-world database, the person’s birth date would be stored and not the person’s age. Age has to be updated every time
the person has a birthday. A person’s age can be computed when needed from a birth date field.

2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244

2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310

3.3. ADDING DATA WITH INSERT 11

The important part of this query is between the parentheses. You will notice there are five lines there. The
first line, firstname CHAR(15), represents the first column of the table to create. The word firstname is the
name of the first column, and the text CHAR(15) indicates the column type and length. The CHAR(15) means
the first column of every row holds up to 15 characters. The second column is called lastname and holds
up to 20 characters. Columns of type char hold characters of a specified length. User-supplied character
strings” that do not fill the entire length of the field are right-padded with blanks. Columns city and state are
similar. The final column, age, is different. It is not a CHAR() column. It is an INTEGER column. It holds whole
numbers, not characters. Even if there were 5,000 friends in the table, you can be certain that there are no
names appearing in the age column, only whole numbers. It is this structure that helps databases to be fast
and reliable.

POSTGRESQL supports more column types than just char() and integer. However, in this chapter we will
use only these two. Sections 4.1 and 9.2 cover column types in more detail.

Create some tables yourself now. Only use letters for your table and column names. Do not use any
numbers, punctuation, or spaces at this time.

The \d command allows you to see information about a specific table, or a list of all table names in the
current database. To see information about a specific table, type \d followed by the name of the table. For
example, to see the column names and types of your new friend table in psql, type \d friend. Figure 3.3
shows this. If you use \d with no table name after it, you will see a list of all table names in the database.

test=> \d friend

Table "friend"
Attribute | Type | Modifier
___________ e et ————————

firstname | char(15) |

Tastname | char(20) |
city | char(15) |
state | char(2) |
age | integer |

Figure 3.3: Example of backslash-d

3.3 Adding Data with INSERT

Let’s continue toward the goal of making a table exactly like the friend table in table 3.1. We have the table
created, but there is no data/friends in it. You add data into a table with the INSERT command. Just as CREATE
TABLE has a specific format that must be followed, INSERT has a specific format too. You can see the format
in figure 3.4. First, you must use single quotes around the character strings. Double quotes will not work.
Spacing and capitalization are optional, except inside the single quotes. Inside them, the text is taken as
literal, so any capitalization will be stored in the database exactly as you specify. If you type too many quotes,
you might get to a point where your backslash commands do not work anymore, and your prompt will appear
as test'>. Notice the single-quote before the greater-than sign. Just type another single quote to get out of
this mode, use \r to clear the query buffer and start again. Notice that the 19 does not have quotes. It does
not need them because the column is a numeric column, not a character column. When you do your inserts,
be sure to match each piece of data to the receiving column. Figure 3.5 shows the additional INSERTs needed
to make the friend table match the three friends shown in table 3.1.

%A character string is a group of characters strung together.

12

test=> INSERT INTO friend VALUES (

test(>

test(

test(

test(

test(>
(
R

\%

test(>);
INSERT 19053 1

CHAPTER 3. BASIC SQL COMMANDS

'Mike',
'Nichols',
'Tampa',
"FL',

19

Figure 3.4: INSERT into friend

test=> INSERT INTO friend VALUES (

test(>

test(>

test(>

test(

test(>

test(>);

INSERT 19054 1

test=> INSERT INTO friend VALUES (

test(>

test(>

test(>

test(

test(>
(
R

>

\%

test(>);
INSERT 19055 1

'"Cindy',
"Anderson’,
'Denver',
'Co',

23

'Sam',
'Jackson',
'"Allentown’,
'PA',

22

Figure 3.5: Additional friend INSERTs

2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376

2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442

3.4. VIEWING DATA WITH SELECT 13

3.4 Viewing Data with SELECT

You have just seen how to store data in the database. Now, let’s show you how to retrieve that data.
Surprisingly, there is only one command to get data out of the database, and that command is SELECT. You
have already used SELECT in your first database query in figure 2.2 on page 6. We are going to use it to show
the rows in the table friend. The query is shown in figure 3.6. In this case, I put the entire query on one line.

test=> SELECT * FROM friend;

firstname | Tastname | city | state | age
----------------- i il it ke
Mike | Nichols | Tampa | FL | 19
Cindy | Anderson | Denver | CO | 23
Sam | Jackson | Allentown | PA | 22
(3 rows)

Figure 3.6: My first SELECT

That’s fine. As queries get longer, breaking them into multiple lines helps make things clearer.

Let’s look at this in detail. First, we have the word SELECT, followed by an asterisk (*), then the word
FROM, and our table name friend, and a semicolon to execute the query. The SELECT starts our command,
and tells the database server what is coming next. The * tells the server we want all the columns from the
table. The FROM friend indicates which table we want to see. So, we have said we want all (*) columns from
our table friend, and indeed, that is what is displayed. It should have the same data as table 3.1 on page 10.

As I mentioned, SELECT has a large number of variations, and we will look at a few of them now. First,
suppose you want to retrieve only one of the columns from the friend table. You might already suspect that
the asterisk (*) has to be changed in the query. If you replace the asterisk (*) with one of the column names,
you will see only that column. Try SELECT city FROM friend. You can choose any of the columns. You can
even choose multiple columns, by separating the names with a comma. For example, to see first and last
names only, use SELECT firstname, lastname FROM friend. Try a few more SELECT commands until you get
comfortable. If you specify a name that is not a valid column name, you will get an error message, ERROR:
attribute 'mycolname' not found. If you try selecting from a fable that does not exist, you will get an error
message like ERROR: Relation 'mytablename' does not exist. POSTGRESQL is using the formal relational
database terms relation and attribute in these error messages.

3.5 Selecting Specific Rows with WHERE

Let’s take the next step in controlling the output of SELECT. In the previous section, we showed how to
select only certain columns from the table. Now, we will show how to select only certain rows. This requires
a WHERE clause. Without a WHERE clause, every row is returned.

The WHERE clause goes right after the FROM clause. In the WHERE clause, you specify the rows you want
returned, as shown in figure 3.7. The query returns the rows that have an gge column equal to 23. Figure 3.8
shows a more complex example that returns two rows. You can combine the column restrictions and the
row restrictions in a single query, allowing you to select any single cell, or a block of cells. See figures 3.9
and 3.10. Try using one of the other columns in the WHERE clause. Up to this point, we have made only
comparisons on the agge column. The age column is integer. The only tricky part about the other columns
is that they are char() columns, so you have to put the comparison value in single quotes. You also have
to match the capitalization exactly. See figure 3.11. If you had compared the firstname column to 'SAM’ or
'sam’, it would have returned no rows.

14

CHAPTER 3. BASIC SQL COMMANDS

test=> SELECT * FROM friend WHERE age = 23;

firstname | Tastname | city | state | age
----------------- e il il it ke
Cindy | Anderson | Denver | CO | 23
(1 row)

Figure 3.7: My first WHERE

test=> SELECT * FROM friend WHERE age <= 22;

firstname | Tastname | city | state | age
----------------- il il it ke
Mike | Nichols | Tampa | FL | 19
Sam | Jackson | Allentown | PA | 22

Figure 3.8: More complex WHERE clause

test=> SELECT Tastname FROM friend WHERE age = 22;
lastname

Jackson
(1 row)

Figure 3.9: A single cell

test=> SELECT city, state FROM friend WHERE age >= 21;

city | state
_________________ o
Denver | CO
Allentown | PA
(2 rows)

Figure 3.10: A block of cells

2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508

2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574

3.6. REMOVING DATA WITH DELETE 15

Try a few more until you are comfortable.

test=> SELECT * FROM friend WHERE firstname = 'Sam';
firstname | Tastname | city | state | age
----------------- B T L LT T L L Lk T TP, PP

Sam | Jackson | Allentown | PA | 22

Figure 3.11: Comparing string fields

3.6 Removing Data with DELETE

We now know how to add data to the database. Now we learn how to remove it. Removal is quite simple.
The DELETE command can quickly remove any or all rows from a table. The command DELETE FROM friend
will delete all rows from the table friend. The query DELETE FROM friend WHERE age = 19 will remove only
those rows that have an gge column equal to 19.

Here is a good exercise. INSERT a row into the friend table, use SELECT to verify the row has been
properly added, then use DELETE to remove the row. This combines the things you learned in the previous
sections. Figure 3.12 shows an example.

3.7 Modifying Data with UPDATE

How do you modify data already in the database? You could use DELETE to remove the row, then INSERT to
insert a new row, but that is quite inefficient. The UPDATE command allows you to update data already in the
database. It follows a format similar to the previous commands.

Continuing with our friend table, suppose Mike had a birthday, so we want to update his age in the table.
Figure 3.13 shows an example. The example shows the word UPDATE, the table name friend, followed by
SET, then the column name, the equals sign (=), and the new value. The WHERE clause restricts the number
of rows affected by the update, as in DELETE. Without a WHERE clause, all rows are updated.

Notice that the Mike row has moved to the end of the list. The next section will show you how to control
the order of the row display.

3.8 Sorting Data with ORDER BY

In a SELECT query, rows are displayed in an undetermined order. If you want to guarantee the rows are
returned from SELECT in a specific order, you need to add the ORDER BY clause to the end of the SELECT.
Figure 3.14 shows the use of ORDER BY. You can reverse the order by adding DESC, as seen in figure 3.15.
If the query were to use a WHERE clause too, the ORDER BY would appear after the WHERE clause, as in
figure 3.16.

You can ORDER BY more than one column by specifying multiple column names or labels, separated by
commas. It would sort by the first column specified. For rows with equal values in the first column, it
would sort based on the second column specified. Of course, this does not make sense in the friend example
because all column values are unique.

16

test=> SELECT * FROM friend;

firstname | Tastname | city
_________________ S
Mike | Nichols | Tampa
Cindy | Anderson | Denver
Sam | Jackson | Allentown
(3 rows)

CHAPTER 3. BASIC SQL COMMANDS

| state | age

e o
| FL | 19
| co | 23
| PA | 22

test=> INSERT INTO friend VALUES ('Jim', 'Barnes', 'Ocean City','NJ', 25);

INSERT 19056 1
test=> SELECT * FROM friend;

firstname | Tastname | city
_________________ o m e m e ————— et ————————————
Mike | Nichols | Tampa
Cindy | Anderson | Denver
Sam | Jackson | Allentown
Jim | Barnes | Ocean City
(4 rows)

test=> DELETE FROM friend WHERE Tastname = 'Barnes';
DELETE 1
test=> SELECT * FROM friend;

firstname | Tastname | city
_________________ e m e — e — et ————————————
Mike | Nichols | Tampa
Cindy | Anderson | Denver
Sam | Jackson | Allentown
(3 rows)

Figure 3.12: DELETE example

test=> UPDATE friend SET age = 20 WHERE firstname =
UPDATE 1
test=> SELECT * FROM friend;

firstname | Tastname | city
_________________ e m e — e — e —— et ————————————
Cindy | Anderson | Denver
Sam | Jackson | Allentown
Mike | Nichols | Tampa
(3 rows)

'Mike';

| state | age
et e ——— o
| FL | 19
|co | 23
| PA | 22
| N | 25
| state | age
et ——— R,
| FL | 19
|co | 23
| PA | 22
| state | age
et ——— R,
|co | 23
| PA | 22
| FL | 20

Figure 3.13: My first UPDATE

2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640

2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706

3.8. SORTING DATA WITH ORDER BY

test=> SELECT * FROM friend ORDER BY state;

firstname

| Tastname | city
_________________ O

| Anderson | Denver

| Nichols | Tampa

| Jackson | Allentown

| state | age
R Fee——
|co | 23
| FL | 20
| PA | 22

Figure 3.14: Use of ORDER By

test=> SELECT * FROM friend ORDER BY age DESC;

firstname

| Tastname

| Anderson
| Jackson
| Nichols

state | age

|

Fomm - Fem——
| co | 23
| PA | 22
| FL | 20

Figure 3.15: Reverse ORDER By

test=> SELECT * FROM friend WHERE age >= 21 ORDER BY firstname;

firstname

| Tastname | city | state | age
----------------- R ittt ettt ikttt Kttt

| Anderson | Denver | CO | 23

| Jackson | Allentown | PA | 22

Figure 3.16: Use of ORDER BY and WHERE

17

18 CHAPTER 3. BASIC SQL COMMANDS

3.9 Destroying Tables

This chapter would not be complete without showing how to delete tables. It is accomplished using the DROP
TABLE command. The command DROP TABLE friend will remove the friend table. Both the table structure
and the data contained in the table will be erased. We will be using the friend table in the next chapter, so I do
not recommend you remove the table at this time. Remember, to remove only the data in the table, without
removing the table structure itself, use DELETE.

3.10 Summary
This chapter has have shown the basic operations of any database:

e Table creation (CREATE TABLE)

Table destruction (DROP TABLE)
* Displaying (SELECT)

* Adding (INSERT)

* Replacing (UPDATE)

* Removing (DELETE)

This chapter has shown these commands in their simplest forms. Real-world queries are much more complex.
The next chapters will show how these simple commands can be used to handle some very complicated
tasks.

2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772

2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838

Chapter 4

Customizing Queries

This chapter will illustrate additional capabilities of the basic SQL commands.

4.1 Data types

Table 4.1 shows the most common column data types. Figure 4.1 shows queries using these types. There

Category Type Description

character string | char(length) blank-padded string, fixed storage length
varchar(length) variable storage length

number integer integer, +/-2 billion range
float floating point number, 15-digit precision
numeric(precision, decimal) | number with user-defined precision and decimal location

date/time date date
time time
timestamp date and time

Table 4.1: Common data types

is table creation, INSERT, and SELECT. There are a few things of interest in this example. First, notice how
the numbers do not require quotes, while character strings, dates, and times require them. Also note the
timestamp column displays its value in the standard UNIX date! format. It also displays the time zone.

The final SELECT uses psql’s \x display mode.? Without the \x, the SELECT would have displayed too
much information to fit on one line. The fields would have wrapped around the edge of the display, making it
hard to read. The columns would still line up, but there would be other data in the way. Of course, another
solution to field wrapping is to select fewer columns. Remember, you can select any columns from the table
in any order.

Section 9.2 covers column types in more detail.

4.2 Quotes Inside Text

Suppose you want to insert the name O’Donnell. You might be tempted to enter this in psql as '0'Donnell"’,
but this will not work. The presence of a single quote inside a single-quoted string generates a parse error.

IThis is the format generated by typing the command date at the UNIX command prompt.
2See section 16.1 for a full list of the psq1 backslash commands.

19

20

CHAPTER 4. CUSTOMIZING QUERIES

test=> CREATE TABLE alltypes (

test(> state CHAR(2),

test(> name CHAR(30),

test(> children INTEGER,
test(> distance FLOAT,
test(> budget NUMERIC(16,2),
test(> born DATE,

test(> checkin TIME,

test(> started TIMESTAMP
test(>);

CREATE

test=> INSERT INTO alltypes
test-> VALUES (

test(> 'PA',

test(> 'Hilda Blairwood',
test(> 3,

test (> 10.7,

test (> 4308.20,

test (> '9/8/1974',

test (> '9:00',

test (> '07/03/1996 10:30:00');

INSERT 19073 1
test=> SELECT state, name, children, distance, budget FROM alltypes;

state | name | children | distance | budget
------- e e -
PA | Hilda Blairwood | 3 10.7 | 4308.20
(1 row)

test=> SELECT born, checkin, started FROM alltypes;

born | checkin | started
____________ S
1974-09-08 | 09:00:00 | 1996-07-03 10:30:00-04
(1 row)
test=> \x

Expanded display is on.
test=> SELECT * FROM alltypes;

-[RECORD 1 J==-=-mmmmmmmmmmmmmmmme oo
state | PA

name | Hilda Blairwood

children | 3

distance | 10.7

budget | 4308.20

born | 1974-09-08

checkin | 09:00:00

started | 1996-07-03 10:30:00-04

Figure 4.1: Example of common data types

2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904

2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970

4.3. USING NULL VALUES 21

One way to place a single quote inside a single-quoted string is to use two quotes together like this, '0"' 'Don-
nel1'.? Two single quotes inside a single-quoted string cause one single quote to be generated. Another way
is to use a backslash like this, '0\'Donne11'. The backslash escapes the single quote character.

4.3 Using NULL Values

Let’s return to the INSERT statement described in section 3.3 on page 11. We will continue to use the friend
table from the previous chapter. In figure 3.4, we specified a value for friend column. Suppose we wanted to
insert a new row, but did not want to supply data for all the columns, i.e. we want to insert information about
Mark, but we do not know Mark’s age.

Figure 4.2 shows this. After the table name, we have column names in parentheses. These columns will

test=> INSERT INTO friend (firstname, lastname, city, state)
test-> VALUES ('Mark', 'Middleton', 'Indianapolis', 'IN');
INSERT 19074 1

Figure 4.2: Insertion of specific columns

be assigned, in order, to the supplied data values. If we were supplying data for all columns, we wouldn’t
need to name them. In this example, we must name the columns. The table has five columns, but we are
only supplying four data values.

The column we did not assign was age. The interesting question is, “What is in the age cell for Mark?”.
The answer is that the age cell contains a NULL value.

NULL is a special value that is valid in any column. It is used when a valid entry for a field is not known or
not applicable. In the previous example, we wanted to add Mark to the database but we didn’t know his age.
It is hard to imagine what numeric value could be used for Mark’s age column. Zero or minus-one would be
strange age values. NULL is the appropriate value for his age.

Suppose we had a spouse column. What value should be used if someone is not married? A NULL value
would be the proper value for that field. If there were a wedding anniversary column, unmarried people
would have a NULL value in that field. NULL values are very useful. Before databases supported NULL values,
users would put special values in columns, like -1 for unknown numbers and 1/1/1900 for unknown dates.
NULLs are much clearer.

NULLs have a special behavior in comparisons. Look at figure 4.3. First, notice the age column for Mark
is empty. It is really a NULL. In the next query, because NULL values are unknown, the NULL row does not
appear in the output. The third query often confuses people.* Why doesn’t the Mark row appear? The age is
NULL or unknown, meaning the database does not know if it equals 99 or not, so it doesn’t guess. It refuses
to print it. In fact, there is no comparison that will produce the NULL row, except the last query shown. The
tests IS NULL and IS NOT NULL are designed specifically to test for the existence of NULL values. NULLs often
confuse new users. Remember, if you are making comparisons on columns that could contain NULL values,
you must test for them specifically.

Figure 4.4 shows an example. We have inserted Jack, but the city and state were not known, so they are
set to NULL. The next query’s WHERE comparison is contrived, but illustrative. Because city and state are
both NULL, you might suspect that the Jack row would be returned. However, because NULL means unknown,
there is no way to know if the two NULL values are equal. Again, POSTGRESQL does not guess, and refuses
to print it.

3That is not a double qoute between the O and D. Those are two single quotes.
“The <> means not equal.

CHAPTER 4. CUSTOMIZING QUERIES

2971
test=> SELECT * FROM friend ORDER BY age DESC; gg;ﬁ
firstname | lastname city | state | age 2974

|
_________________ e SOt SO S 2975
|
|
|
|

Cindy | Anderson 2976

Sam | Jackson

Denver | CO 2977

Allentown | PA 22 2978

|

|

Mike | Nichols Tampa | FL | 20 2979
| 2980

Mark | Middleton Indianapolis | IN 2981

(4 rows) 2982
2983

) 2984

test=> SELECT * FROM friend WHERE age > 0 ORDER BY age DESC; 2985
firstname | Tastname city | state | age 2986
2987
2988
Cindy | Anderson Denver | CO | 23 2989
Sam | Jackson Allentown | PA | 22 2990
. . 2991
Mike | Nichols Tampa | FL | 9092
(3 rows) 2993
2994

test=> SELECT * FROM friend WHERE age <> 99 ORDER BY age DESC; o
firstname | Tastname | city | state | age 2997
_________________ O St SRR P 2998
2999

Cindy | Anderson | Denver | CO | 23 3000
Sam | Jackson | Allentown | PA | 22 3001
Mike | Nichols | Tampa | FL. | 20 3002
3003

(3 rows) 3004

3005

test=> SELECT * FROM friend WHERE age IS NULL ORDER BY age DESC; gggg

firstname | Tastname city | state | age 3008

|
----------------- o e e 3009
: . 3010
| Indianapolis | IN | 3011
(1 row) 3012
3013
3014
3015
3016
3017
3018
3019
3020
test=> INSERT INTO friend 3021

3022
test-> VALUES ('Jack', 'Burger', NULL, NULL, 27); 3023

INSERT 19075 1 3024

test=> SELECT * FROM friend WHERE city = state; gggg

firstname | lastname | city | state | age 3027
----------- e EEnns CEEEEEE SRS S 3028
3029

3030

3031

3032

Figure 4.4: Comparison of NULL fields 3033
3034

3035

3036

Figure 4.3: NULL handling

3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102

4.4. CONTROLLING DEFAULT VALUES 23

There is one more issue with NULLs that needs clarification. In character columns, a NULL is not the same
as a zero length field. That means that the string '' and NULL are different. Figure 4.5 shows an example of
this. There are no valid numeric and date blank values, but a character string can be blank. When viewed

test=> CREATE TABLE nulltest (name CHAR(20), spouse CHAR(20));
CREATE
test=> INSERT INTO nulltest VALUES ('Andy', '');
INSERT 19086 1
test=> INSERT INTO nulltest VALUES ('Tom', NULL);
INSERT 19087 1
test=> SELECT * FROM nulltest ORDER BY name;
name | spouse

test=> SELECT * FROM nulltest WHERE spouse 'y
name | spouse

test=> SELECT * FROM nulltest WHERE spouse IS NULL;
name | spouse

Figure 4.5: NULLs and blank strings

in psql, any numeric field that is blank has to contain a NULL because there is no blank number. However,
there are blank strings, so blank strings and NULLs are displayed the same in psql. However, they are not
the same, so be careful not to confuse the meaning of NULLs in character fields.

4.4 Controlling DEFAULT Values

As we learned in the previous section, columns not specified in an INSERT statement are given NULL values.
This can be changed using the DEFAULT keyword. When creating a table, next to each column type, you can
use the keyword DEFAULT and then a value. The value will be used anytime the column value is not supplied
in an INSERT. If no DEFAULT is defined, a NULL is used for the column. Figure 4.6 shows a typical use of
default values. The default for the timestamp column is actually a call to an internal POSTGRESQL variable
that returns the current date and time. If any value is supplied for a field with a default, that value is used
instead.

24 CHAPTER 4. CUSTOMIZING QUERIES

test=> CREATE TABLE account (

test(> name CHAR(20),

test(> balance NUMERIC(16,2) DEFAULT 0,

test(> active CHAR(1) DEFAULT 'Y',

test (> created TIMESTAMP DEFAULT CURRENT TIMESTAMP
test(>);

CREATE

test=> INSERT INTO account (name)
test-> VALUES ('Federated Builders');
INSERT 19103 1
test=> SELECT * FROM account;
name | balance | active | created

---------------------- B e e itttk
Federated Builders | 0.00 | Y | 2000-05-30 21:37:48-04
(1 row)

Figure 4.6: Using DEFAULTS

4.5 Column Labels

You might have noticed the text that appears at the top of each column in the SELECT output. That is called
the column label. Usually, the label is the name of the selected column. However, you can control what text
appears at the top of each column by using the AS keyword. For example, figure 4.7 replaces the default
column label firstname with the column label buddy. You might have noticed that the query in figure 2.3 on

test=> SELECT firstname AS buddy FROM friend ORDER BY buddy;
buddy

Figure 4.7: Controlling column labels

page 7 has the column label ?column?. The database server returns this label when there is no suitable label.
In that case, the result of an addition does not have an appropriate label. Figure 4.8 shows the same query
with an appropriate label added using AS.

4.6 Comments

POSTGRESQL allows you to place any text into psql for use as comments. There are two comment styles.
The presence of two dashes (--) marks all text to the end of the line as a comment. POSTGRESQL also
understand C-style comments, where the comment begins with slash-asterisk (/*) and ends with asterisk-
slash (*/). Figure 4.9 shows these comment styles. Notice how the multi-line comment is marked by a psq]

3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168

3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234

4.7. AND/OR USAGE 25

test=> SELECT 1 + 3 AS total;
total

Figure 4.8: Computation using a column label

command prompt of *>. It is a reminder you are in a multi-line comment, just as -> is a reminder you are in
a multi-line statement, and '> is a reminder you are in a multi-line quoted string.

test=> -- a single line comment
test=> /* a multi-line
test*> comment */

Figure 4.9: Comment styles

4.7 AND/OR Usage

Up to this point, we have used only simple WHERE clause tests. In the following sections, we will show how
to do more complex WHERE clause testing.

Complex WHERE clause tests are done by connecting simple tests using the words AND and OR. For
illustration, I have inserted new people into the friend table, as shown in figure 4.10. Selecting certain
rows from the table will require more complex WHERE conditions. For example, if we wanted to select
Sandy Gleason by name, it would be difficult with only one comparison in the WHERE clause. If we tested
for firstname = 'Sandy', we would select both Sandy Gleason and Sandy Weber. If we tested for Tastname =
'Gleason’', we would get both Sandy Gleason and her brother Dick Gleason. The proper way is to use AND to
join tests of both firstname and lastname. The proper query is shown in figure 4.11. The AND joins the two
comparisons we need.

A similar comparison could be done to select friends living in Cedar Creek, Maryland. There could be
other friends living in Cedar Creek, Ohio, so the comparison city = 'Cedar Creek'is not enough. The proper
testis city = 'Cedar Creek' AND state = 'MD'.

Another complex test would be to select people who are in the state of New Jersey (N]) or Pennsylvania
(PA). Such a comparison requires the use of OR. The test state = 'NJ' OR state = 'PA' would return the
desired rows, as shown in figure 4.12.

An unlimited number of ANDs and ORs can be linked together to perform complex comparison tests. When
ANDs are linked with other ANDs, there is no possibility for confusion. The same is true of ORs. However,
when ANDs and ORs are both used in the same query, the results can be confusing. Figure 4.13 shows such
a case. You might suspect that it would return rows with firstname equal to Victor and sfate equals PA or
NJ. In fact, the query returns rows with firstname equal to Victor and state equals PA, or state equals NJ. In
this case, AND is evaluated first, then OR. When mixing ANDs and ORs, it is best to collect the ANDs and ORs
into common groups using parentheses. Figure 4.14 shows the proper way to enter this query. Without
parentheses, it is very difficult to understand a query with mixed ANDs and ORs.

26

CHAPTER 4. CUSTOMIZING QUERIES

test=> DELETE FROM friend;

DELETE 6

test=> INSERT INTO friend

test-> VALUES ('Dean', 'Yeager', 'Plymouth', 'MA', 24);
INSERT 19744 1

test=> INSERT INTO friend

test-> VALUES ('Dick', 'Gleason', 'Ocean City', 'NJ', 19);
INSERT 19745 1

test=> INSERT INTO friend

test-> VALUES ('Ned', 'Millstone', 'Cedar Creek', 'MD', 27);
INSERT 19746 1

test=> INSERT INTO friend

test-> VALUES ('Sandy', 'Gleason', 'Ocean City', 'NJ', 25);
INSERT 19747 1

test=> INSERT INTO friend

test-> VALUES ('Sandy', 'Weber', 'Boston', 'MA', 33);
INSERT 19748 1

test=> INSERT INTO friend

test-> VALUES ('Victor', 'Tabor', 'Williamsport', 'PA', 22);
INSERT 19749 1

test=> SELECT * FROM friend ORDER BY firstname;

firstname | Tastname | city | state | age
----------------- R ittt Rttt ikttt Ktk
Dean | Yeager | PTlymouth | MA | 24
Dick | Gleason | Ocean City | NJ | 19
Ned | Millstone | Cedar Creek | MD | 27
Sandy | Gleason | Ocean City | NJ | 25
Sandy | Weber | Boston | MA | 33
Victor | Tabor | Williamsport | PA | 22
(6 rows)

Figure 4.10: New friends

test=> SELECT * FROM friend
test-> WHERE firstname = 'Sandy' AND Tastname = 'Gleason';

firstname | Tastname | city | state | age
----------------- e il il it Ktk
Sandy | Gleason | Ocean City | NJ | 25
(1 row)

Figure 4.11: WHERE test for Sandy Gleason

3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300

3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366

4.7. AND/OR USAGE

test=> SELECT * FROM friend
test-> WHERE state = 'NJ' OR state = 'PA'
test-> ORDER BY firstname;

firstname | Tastname | city | state | age
----------------- e il i it ke
Dick | Gleason | Ocean City | NJ | 19
Sandy | Gleason | Ocean City | NJ | 25
Victor | Tabor | Williamsport | PA | 22
(3 rows)

Figure 4.12: Friends in New Jersey and Pennsylvania

test=> SELECT * FROM friend
test-> WHERE firstname = 'Victor' AND state = 'PA' OR state = 'NJ'
test-> ORDER BY firstname;

firstname | Tastname | city | state | age
----------------- e il il it ke
Dick | Gleason | Ocean City | NJ | 19
Sandy | Gleason | Ocean City | NJ | 25
Victor | Tabor | Williamsport | PA | 22
(3 rows)

Figure 4.13: Mixing ANDs and ORs

test=> SELECT * FROM friend
test-> WHERE firstname = 'Victor' AND (state = 'PA' OR state = 'NJ')
test-> ORDER BY firstname;

firstname | Tastname | city | state | age
----------------- R ittt Rttt ittt Ktk
Victor | Tabor | Williamsport | PA | 22
(1 row)

Figure 4.14: Properly mixing ANDs and ORs

Comparison Operator
less than <
less than or equal <=
equal =
greater than or equal >=
greater than >
not equal <>or!=

Table 4.2: Comparisons

27

28 CHAPTER 4. CUSTOMIZING QUERIES

4.8 Range of Values

Suppose we wanted to see all friends who had ages between 22 and 25. Figure 4.15 shows two queries that
produce this result. The first query uses AND to perform two comparisons that both must be true. We used

test=> SELECT *

test-> FROM friend

test-> WHERE age >= 22 AND age <= 25
test-> ORDER BY firstname;

firstname | Tastname | city | state | age
----------------- R ittt ittt ittt Kttt
Dean | Yeager | Plymouth | MA | 24
Sandy | Gleason | Ocean City | NJ | 25
Victor | Tabor | Williamsport | PA | 22
(3 rows)
test=> SELECT *
test-> FROM friend
test-> WHERE age BETWEEN 22 AND 25
test-> ORDER BY firstname;

firstname | Tastname | city | state | age
----------------- ittt ittt ittt Kttt
Dean | Yeager | Plymouth | MA | 24
Sandy | Gleason | Ocean City | NJ | 25
Victor | Tabor | Williamsport | PA | 22
(3 rows)

Figure 4.15: Selecting a range of values

<= and >= so the age comparisons included the limiting ages of 22 and 25. If we used < and > the ages 22
and 25 would not have been included in the output. The second query uses BETWEEN to generate the same
comparison. BETWEEN comparisons include the limiting values in the result.

4.9 LIKE Comparison

Greater-than and less-than comparisons are possible, as shown in table 4.2. Even more complex comparisons
are possible. Users often need to compare character strings to see if they match a certain pattern. For
example, sometimes they only want fields that begin with a certain letter, or contain a certain word. The
LIKE keyword allows such comparisons. The query in figure 4.16 returns rows where the firstname begins
with D. The percent sign (%) is interpreted to mean any characters can follow the D. The query performs the
test firstname LIKE 'D%'.

The test firstname LIKE '%D%' returns rows where firstname contains a D anywhere in the field, not just
at the beginning. The effect of having a % before and after a character allows the character to appear anywhere
in the string.

More complex tests can be performed with LIKE, as shown in table 4.3. While percent (%) matches an
unlimited number of characters, the underscore () matches only a single character. The underscore allows
any single character to appear in its position. To test if a field does #ot match a pattern, use NOT LIKE. To
test for an actual percent sign (%), use %%. An actual underscore () is tested with two underscores (_).

3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432

3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498

4.10. REGULAR EXPRESSIONS 29

test=> SELECT * FROM friend
test-> WHERE firstname LIKE 'D%'
test-> ORDER BY firstname;

firstname | Tastname | city | state | age
----------------- R ittt Rttt ikttt Kttt
Dean | Yeager | Plymouth | MA | 24
Dick | Gleason | Ocean City | NJ | 19
(2 rows)

Figure 4.16: Firstname begins with D.

Comparison Operation
begins with D LIKE 'D%'
contains a D LIKE '%D%'
has D in second position LIKE ' D%'
begins with D and contains e LIKE 'D%e%'
begins with D, contains e, then f | LIKE 'D%e%f%'
begins with non-D NOT LIKE 'D%'

Table 4.3: LIKE comparison

Attempting to find all character fields that end with a certain character can be difficult. For char()
columns, like firstname, there are trailing spaces that make such trailing comparisons difficult with LIKE.
Other character column types do not use trailing spaces. Those can use the test colname LIKE '%g'to find all
rows that end with g. See section 9.2 for complete coverage on character data types.

4.10 Regular Expressions

Regular expressions allow more powerful comparisons than the more standard LIKE and NOT LIKE. Regular
expression comparisons are a unique feature of POSTGRESQL. They are very common in UNIX, such as in the
UNIX grep command.”

Table 4.4 shows the regular expression operators and table 4.5 shows the regular expression special

Comparison ‘ Operator
regular expression -
regular expression, case insensitive T*
not equal to regular expression -
not equal to regular expression, case insensitive 17*

Table 4.4: Regular expression operators

characters. Note that the caret (") has a different meaning outside and inside square brackets ([]1). While
regular expressions are powerful, they are complex to create. Table 4.6 shows some examples. Figure 4.17
illustrates examples of queries using regular expressions. For a description, see the comment above each
query.

Figure 4.18 shows two more complex regular expressions. The first query shows the way to properly
test for a trailing n. Because char() columns have trailing space to fill the column, you need to test for possible

5 Actually, POSTGRESQL regular expressions are like egrep extended regular expressions.

30

Test

CHAPTER 4. CUSTOMIZING QUERIES

| Special Characters

start
end

A

$

any single character

set of characters

set of characters not equal
range of characters

range of characters not equal

[cec]
["cec]
[c-c]
["c-c]

zero or one of previous character

zero or multiple of previous characters
one or multiple of previous characters
OR operator

?
%

|
|

Table 4.5: Regular expression special characters

Test Operation
begins with D © D!
contains D “ D!
D in second position T
begins with D and contains e T 'tD.re!
begins with D, contains e, and then f T 'D.*e *f!

contains A, B, C, or D

contains A or a

does not contain D

does not begin with D

begins with D, with one optional leading space
begins with D , with optional leading spaces
begins with D, with at least one leading space
ends with G, with optional trailing spaces

Table 4.6: Regular expression

“ '[A-D] "' or " '[ABCD]'
“* 'a'or " '[Ad]"
17 'p!

1" '“p'or ~'°["D]"
‘l"?Dl
"l’*DI

‘I"+D|
~ |G *$|

examples

3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564

4.10. REGULAR EXPRESSIONS

test=> SELECT * FROM friend

gggg test-> ORDER BY firstname;

3567 firstname | Tastname | city | state | age
3568 0 mmmmmmmmmemmoeo o m el S Hommmmmo S
3569 Dean | Yeager | Plymouth | MA | 24
gg;? Dick | Gleason | Ocean City | NJ | 19
3579 Ned | Millstone | Cedar Creek | MD | 27
3573 Sandy | Gleason | Ocean City | NJ | 25
3574 Sandy | Weber | Boston | MA | 33
3575 Victor | Tabor | Williamsport | PA | 22
3576 (6 rows)

3577

3578

3579 test=> -- firstname begins with 'S’

3580 test=> SELECT * FROM friend

3581 test-> WHERE firstname ~ '°S'

ggg; test-> ORDER BY firstname;

3584 firstname | Tastname | city | state | age
3585 000000 mmmmmmmmmmmmmm-e- e o Fomme——— B
3586 Sandy | Gleason | Ocean City | NJ | 25
3587 Sandy | Weber | Boston | MA | 33
3588 (2 rows)

3589

3590

3591 test=> -- firstname has an e in the second position

3592 test=> SELECT * FROM friend

3593 test-> WHERE firstname ~ '".e'

gggg test-> ORDER BY firstname;

3506 firstname | Tastname | city | state | age
3597 0 mmmmmmmmmmsmemeee Fo e Fomm e - Fomm - Fem——
3598 Dean | Yeager | Plymouth | MA | 24
3599 Ned | Millstone | Cedar Creek | MD | 27
3600 (2 rows)

3601

3602

3603 test=> -- firstname contains b, B, c or C

3604 test=> SELECT * FROM friend

3605 test-> WHERE firstname ~* '[bc]'

gggg test-> ORDER BY firstname;

3608 firstname | Tastname | city | state | age
3609 000 0mmmmmmmmmmmmemee- o Femm e - Fomm - Fem———
3610 Dick | Gleason | Ocean City | NJ | 19
3611 Victor | Tabor | Williamsport | PA | 22
3612 (2 rows)

3613

3614

3615 test=> -- firstname does not contain s or §

3616 test=> SELECT * FROM friend

3617 test-> WHERE firstname !™* 's'

ggig test-> ORDER BY firstname;

3620 firstname | Tastname | city | state | age
3621 000 mmmmmmmmmmmmemee- o Fem e - Fomm - Fem——-
3622 Dean | Yeager | Plymouth | MA | 24
3623 Dick | Gleason | Ocean City | NJ | 19
gggg Ned | Millstone | Cedar Creek | MD | 27
3626 Victor | Tabor | Williamsport | PA | 22
3627 (4 rows)

3628

3629

3630 Figure 4.17: Regular expression sample queries

CHAPTER 4. CUSTOMIZING QUERIES

3631

3632

3633

3634

3635

3636

3637

3638

3639

3640

3641

3642

3643

3644

3645

. . 3646

test=> -- firstname ends with n 3647
test=> SELECT * FROM friend 3648

test-> WHERE firstname ~ 'n *§' gggg

test-> ORDER BY firstname; 3651

firstname | Tastname city | state | age 3652
3653

3654
P]ymouth | MA | 24 3655
(1 row) 3656

3657

3658
test=> -- firstname contains a non-S character 3659
test=> SELECT * FROM friend 3660

3661
test-> WHERE firstname -~ '["S]' 3662

test-> ORDER BY firstname; 3663
firstname | Tastname state | age 3664
3665

"""" to---- 3666

| |
+ + +
| Yeager | Plymouth | MA 24 3667
Dick | Gleason | Ocean City | 3668

3669
Millstone Cedar Creek 27 3670

|
|
|
Gleason Ocean City NJ | 25 3671
|
|

Sandy Weber Boston 3673
Victor Tabor Williamsport 22 3674
(6 rows) 3675
3676

3677

.) . 3678

Figure 4.18: Complex regular expression queries 3679

3680

3681

3682

3683

3684

3685

3686

3687

3688

3689

3690

3691

3692

3693

3694

3695

3696

3672

3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762

4.11. CASE CLAUSE 33

trailing spaces. See section 9.2 for complete coverage on character data types. The second query might be
surprising. Some think it returns rows that do not contain an S. Instead, the query returns all rows that have
any character that is not an S. Sandy contains characters that are not S, such as 4, #, d, and y, so that row is
returned. The test would only prevent rows containing only S’s from being printed.

You can test for the literal characters listed in table 4.5. For example, to test for a dollar sign, use \$. To
test for an asterisk, use *. The backslash removes any special meaning from the character that follows it.
To test for a literal backslash, use two backslashes (\\). This is different from LIKE special character literal
handling, where %% was used to test for a literal percent sign.

Because regular expressions have a powerful special character command set, creating them can be
difficult. Try some queries on the friend table until you are comfortable with regular expression comparisons.

411 CASE Clause

Many programming languages have conditional statements, stating if condition is true then do-something,
else do-something-else. This allows execution of statements based on some condition. While SQL is not a
procedural programming language, it does allow conditional control over what data is returned from a query.
The WHERE clause uses comparisons to control row selection. The CASE statement allows comparisons in
column output. Figure 4.19 shows a query using CASE to create a new output column showing adult or minor
as appropriate, based on the age field. Of course, the values adult and minor do not appear in the table friend.

test=> SELECT firstname,

test-> age,

test-> CASE

test-> WHEN age >= 21 THEN 'adult'
test-> ELSE 'minor'

test-> END

test-> FROM friend
test-> ORDER BY firstname;

firstname | age | case

_________________ ot ————
Dean | 24 | adult
Dick | 19 | minor
Ned | 27 | adult
Sandy | 25 | adult
Sandy | 33 | adult
Victor | 22 | adult
(6 rows)

Figure 4.19: CASE example

The CASE clause allows the creation of those conditional strings.

A more complex example is shown in figure 4.20. In this example, there are multiple WHEN clauses. The
AS clause is used to label the column with the word distance. Though I have shown only SELECT examples,
CASE can be used in UPDATE and other complex situations. CASE allows the creation of conditional values,
which can be used for output or for further processing in the same query. CASE values exist only inside a
single query, so they cannot be used outside the query that defines them.

34 CHAPTER 4. CUSTOMIZING QUERIES

test=> SELECT firstname,

test-> state,

test-> CASE

test-> WHEN state = 'PA' THEN 'close'’

test-> WHEN state = 'NJ' OR state = 'MD' THEN 'far'
test-> ELSE 'very far'

test-> END AS distance

test-> FROM friend
test-> ORDER BY firstname;

firstname | state | distance
_________________ B
Dean | MA | very far
Dick | NJ | far
Ned | MD | far
Sandy | NJ | far
Sandy | MA | very far
Victor | PA | close
(6 rows)

Figure 4.20: Complex CASE example

4.12 Distinct Rows

It is often desirable to return the results of a query with no duplicates. The keyword DISTINCT prevents
duplicates from being returned. Figure 4.21 shows the use of the DISTINCT keyword to prevent duplicate
states and duplicate city and state combinations. Notice DISTINCT operates only on the columns selected in
the query. It does not compare non-selected columns when determining uniqueness. Section 5.2 shows how
counts can be generated for each of the distinct values.

4.13 Functions and Operators

There are a large number of functions and operators available in POSTGRESQL. Function calls take zero, one,
or more arguments and return a single value. You can list all functions and their arguments using psql’s
\df command. You can use psql’s \dd command to display comments about any specific function or group of
functions, as shown in figure 4.22.

Operators differ from functions in the following ways:

* Operators are symbols, not names
* Operators usually take two arguments

* Arguments appear to the left and right of the operator symbol

For example, + is an operator that takes one argument on the left and one on the right, and returns their sum.
Psql’s \do command lists all POSTGRESQL operators and their arguments. Figure 4.23 shows operator listings
and their use. The standard arithmetic operators —addition (+), subtraction (-), multiplication (*), division
(/), modulo/remainder (%), and exponentiation (") — honor standard precedence rules. Exponentiation is
performed first, multiplication, division, and modulo second, and addition and subtraction are performed

3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828

3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894

4.13. FUNCTIONS AND OPERATORS

test=> SELECT state FROM friend ORDER BY state;
state

PA
(6 rows)

test=> SELECT DISTINCT state FROM friend ORDER BY state;
state

PA
(4 rows)

test=> SELECT DISTINCT city, state FROM friend ORDER BY state, city;

city | state
_________________ e
Boston | MA
Plymouth | MA
Cedar Creek | MD
Ocean City | NJ
WilTiamsport | PA
(5 rows)

Figure 4.21: DISTINCT prevents duplicates

35

List

36
test=> \df
Result | Function

----------- o
_bpchar | _bpchar |
_varchar | _varchar |
floatd | abs

float8 | abs

test=> \df int

CHAPTER 4. CUSTOMIZING QUERIES

of functions
Arguments
_bpchar int4
_varchar int4
float4
float8

List of functions

Result | Function
__________ o ———————
int2 | int2

int2 | int2

int2 | int2

int2 | int2

test=> \df upper
List of functions

S

Arguments

floatd
float8
int2
intd

Result | Function | Argument
________ o et ————————
text | upper | text

(1 row)

test=> \dd upper
Object descriptions
Name | Object

| Description

_______ Y T

upper | function | uppercase
(1 row)

test=> SELECT upper('jacket')
upper

JACKET
(1 row)

test=> SELECT sqrt(2.0);
sqrt

1.4142135623731
(1 row)

-- square root

Figure 4.22: Function examples

3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960

3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026

4.13. FUNCTIONS AND OPERATORS

test=> \do
List of operators

Op | Left arg | Right arg | Result |
tion
----- R il Rttt ittt ittt
' | int2 | | int4 |

' | int4 | | int4 | factorial

I | int8 | | int8 | factorial

o | int2 | int4 |
test=> \do /

List of operators

Op | Left arg | Right arg | Result | Description
————t e Fommm - Fomme e F e e
/ | box | point | box | divide box by point (scale)
/ | char | char | char | divide

/ | circle | point | circle | divide

/ | floatd | float4 | floatd | divide
test=> \do ~

List of operators

Op | Left arg | Right arg | Result | Description
B e Fommm e e Fom e

© | float8 | float8 | float8 | exponentiation (x"y)

(1 row)
test=> \dd ~

Object descriptions

Name | Object | Description
______ e e e e et ———————————————

| operator | exponentiation (x"y)
(1 row)

test=> SELECT 2 + 3 ~ 4,
?column?

Figure 4.23: Operator examples

38 CHAPTER 4. CUSTOMIZING QUERIES

last. Parentheses can be used to alter this precedence. Other operators are evaluated left-to-right, unless
parentheses are present.

4.14 SET, SHOW, and RESET

The SET command allows the changing of various POSTGRESQL parameters. The changes remain in effect
for the duration of the database connection. Table 4.7 shows various parameters that can be controlled with
SET.

Function | SET option
DATESTYLE | DATESTYLE TO 'POSTGRES’ |’SQL |'ISO’ |’ GERMAN’ | 'US’ |'NONEUROPEAN’ |"EUROPEAN’
TIMEZONE | TIMEZONE TO 'value’

Table 4.7: SET options

DATESTYLE controls the appearance of dates when printed in psql as seen in table 4.8. It controls the

Output for
Style ‘ Optional Ordering | February 1, 1983
POSTGRES | us or NONEUROPEAN | 02-01-1983
POSTGRES | EUROPEAN 01-02-1983
SQL US or NONEUROPEAN | 02 /01/1983
SQL EUROPEAN 01/02/1983
ISO 1983-02-01
German 01.02.1983

Table 4.8: DATESTYLE output

format (slashes, dashes, or year first), and the display of the month first (US) or day first (European). The
command SET DATESTYLE TO ’SQL,US’ would most likely be selected by users in the USA, while Europeans
might prefer SET DATESTYLE TO 'POSTGRES,EUROPEAN’. The ISO DATESTYLE and GERMAN DATESTYLE are not
affected by any of the other options.

TIMEZONE defaults to the timezone of the server or the PGTZ environment variable. The psql client might
be in a different timezone, and SET TIMEZONE allows this to be changed inside psql.

See the SET manual page for a full list of SET options.

The SHOW command is used to display current database session parameters. RESET allows session
parameters to be reset to their default values. Figure 4.24 shows an example of this.®

4.15 Summary

This chapter has shown how simple commands can be enhanced using features like DISTINCT, NULL, and
complex WHERE clauses. These features give users great control over how queries are executed. They were
chosen by committees to be important features that should be in all SQL databases. While you may never use
all the features listed in this chapter, many of them will be valuable when solving real-world problems.

5Your site defaults may be different.

4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092

4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158

4.15. SUMMARY

test=> SHOW DATESTYLE;

NOTICE: DateStyle is ISO with US (NonEuropean) conventions
SHOW VARIABLE

test=> SET DATESTYLE TO 'SQL, EUROPEAN';

SET VARIABLE

test=> SHOW DATESTYLE;

NOTICE: DateStyle is SQL with European conventions

SHOW VARIABLE

test=> RESET DATESTYLE;

RESET VARIABLE

test=> SHOW DATESTYLE;

NOTICE: DateStyle is ISO with US (NonEuropean) conventions
SHOW VARIABLE

Figure 4.24: SHOW and RESET examples

39

40

CHAPTER 4. CUSTOMIZING QUERIES

4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224

4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290

Chapter 5

SQL Aggregates

Users often need to summarize database information. Instead of seeing all rows, they want just a count
or total. This is called aggregation or gathering together. This chapter deals with POSTGRESQL'’s ability to
generate summarized database information using aggregates.

5.1 Aggregates

There are five aggregates outlined in table 5.1. COUNT operates on entire rows. The others operate on

Aggregate Function
COUNT(*) count of rows
SUM(colname) | total
MAX(colname) | maximum
MIN(colname) | minimum
AVG(colname) | average

Table 5.1: Aggregates

specific columns. Figure 5.1 shows examples of aggregate queries.

Aggregates can be combined with the WHERE clause to produce more complex results. The query SELECT
AVG(age) FROM friend WHERE age >= 21 computes the average age of people age 21 or older. This prevents
Dick Gleason from being included in the average computation because he is younger than 21. The column
label defaults to the name of the aggregate. You can use AS to change it, as shown in section 4.5.

NULLs are not processed by most aggregates, like MAX(), SUM(), and AVG(). If a column is NULL, it is
skipped and the result is not affected by any NULL values. However, if a column contains only NULL values,
the result is NULL, not zero. COUNT(¥) is different. It does count NULLs because it is looking at entire rows
by using the asterisk(*). It is not looking at individual columns like the other aggregates. To find the COUNT
of all non-NULL values in a certain column, use COUNT(columnname).

Figure 5.2 illustrates aggregate handling of NULLs. First, a single row containing a NULL column is used
to show aggregates returning NULL results. Two versions of COUNT on a NULL column are shown. Notice
COUNT never returns a NULL value. Then, a single non-NULL row is inserted, and the results shown. Notice
the AVG() of 3 and NULL is 3, not 1.5, illustrating the NULL is not involved in the average computation.

41

42

test=> SELECT * FROM friend ORDER BY firstname;

firstname

Victor
(6 rows)

lastname

Yeager
Gleason
MiTlstone
Gleason
Weber
Tabor

test=> SELECT COUNT(*) FROM friend;

count

test=> SELECT SUM(age) FROM friend;

test=> SELECT MAX(age) FROM friend;

max

33
(1 row)

test=> SELECT MIN(age) FROM friend;

min

19
(1 row)

test=> SELECT AVG(age) FROM friend;

avg

P1ymouth
Ocean City
Cedar Creek
Ocean City
Boston
Williamsport

CHAPTER 5. SQL AGGREGATES

| state | age
| MA | 24
| N | 19
| M | 27
| N0 | 25
| MA | 33
| PA | 22

Figure 5.1: Aggregate examples

4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356

5.1. AGGREGATES

1357 test=> CREATE TABLE aggtest (col INTEGER);
4358 CREATE
4359 test=> INSERT INTO aggtest VALUES (NULL);

4360
4361 INSERT 19759 1

4362 test=> SELECT SUM(col) FROM aggtest;
4363 sum

4364
4365
4366
4367
4368
4369
4370 test=> SELECT MAX(col) FROM aggtest;
4371

4372 max

4373 TTT==

4374
4375
4376
4377

4378 test=> SELECT COUNT(*) FROM aggtest;

4379 t
4380 coun

4381 -mmmee-
4382 1
4383

4384 (1 row)

4385

iggg test=> SELECT COUNT(col) FROM aggtest;

4388 count
4389 mmmmee-
4390

4391 0
4392 (1 row)
4393
4394 ~
4395 test=> INSERT INTO aggtest VALUES (3);
4396 INSERT 19760 1

igg; test=> SELECT AVG(col) FROM aggtest;
4399 avg

4400 0 ===—-

4401 3

4402

4403 (1 row)

4404

ﬁgg test=> SELECT COUNT(*) FROM aggtest;

4407 count

4408 oo
4409
4410
4411 (1 row)
4412
4413
4414 test=> SELECT COUNT(col) FROM aggtest;
4415 count

4416

4417

4418 1

4419 (1 row)
4420

4421

4422

(1 row)

(1 row)

Figure 5.2: Aggregates and NULLs

44 CHAPTER 5. SQL AGGREGATES

5.2 Using GROUP By

Simple aggregates return one row as a result. It is often desirable to apply an aggregate to groups of rows.
Queries using aggregates with GROUP BY have the aggregate applied to rows grouped by another column in
the table. For example, SELECT COUNT(*) FROM friend returns the total number of rows in the table. The
query in figure 5.3 shows the use of GROUP BY to generate a count of the number of people in each state.
COUNT(¥) is not applied to the entire table at once. With GROUP BY, the table is split up into groups by state,
and COUNT(*) is applied to each group.

test=> SELECT state, COUNT(*)
test-> FROM friend
test-> GROUP BY state;

state | count

PA
(4 rows

~—_— — — —

test=> SELECT state, MIN(age), MAX(age), AVG(age)
test-> FROM friend
test-> GROUP BY state
test-> ORDER BY 4 DESC;
state | min | max | avg

------- e Tl s R
MA | 24| 33| 28
MD | 27| 27| 27
NG| 19] 25| 22
PA | 22| 22| 22
(4 rows)

Figure 5.3: Aggregate with GROUP By

The second query shows the minimum, maximum, and average age of the people in each state. It also
shows an ORDER BY on the aggregate column. Because the column is the fourth column in the result, you can
identify the column by the number 4. Doing ORDER BY avg would have worked too. You can GROUP BY more
than one column, as shown in figure 5.4.

GROUP BY collects all NULL values into a single group. Psql’s \da command lists all the aggregates
supported by POSTGRESQL

5.3 Using HAVING

There is one more aggregate capability that is often overlooked. It is the HAVING clause. HAVING allows a
user to perform conditional tests on aggregate values. It is often used with GROUP BY. With HAVING, you can
include or exclude groups based on the aggregate value for that group. For example, suppose you want to
know all the states where there is more than one friend. Looking at the first query in figure 5.3, you can see
exactly which states have more than one friend. HAVING allows you to programmatically test on the count

4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488

4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554

5.4. QUERY TIPS 45

test=> SELECT city, state, COUNT(*)
test-> FROM friend

test-> GROUP BY state, city

test-> ORDER BY 1, 2;

city | state | count
_________________ ot e ————
Boston | MA | 1
Cedar Creek | MD | 1
Ocean City | NJ | 2
Plymouth | MA | 1
Williamsport | PA | 1
(5 rows)

Figure 5.4: GROUP BY on two columns

column, as shown in figure 5.5. Aggregates cannot be used in a WHERE clause. They are valid only inside

test=> SELECT state, COUNT(*)
test-> FROM friend

test-> GROUP BY state

test-> HAVING COUNT(*) > 1
test-> ORDER BY state;

state | count

_______ o
MA | 2
N 2
(2 rows)
Figure 5.5: HAVING usage
HAVING.

5.4 Query Tips

In figures 5.3 and 5.5, the queries are spread over several lines. When a query has several clauses, like
FROM, WHERE, and GROUP BY, it is best to place each clause on a separate line. It makes queries easier to
understand. Clear queries also use appropriate capitalization.

In a test database, mistakes are not a problem. In a live, production database, one incorrect query can
cause great difficulties. It takes five seconds to issue an erroneous query, and sometimes five days to recover
from it. Double-check your queries before executing them. This is especially important for UPDATE, DELETE,
and INSERT queries because they modify the database. Also, before performing UPDATE or DELETE, do a
SELECT or SELECT COUNT(*) with the same WHERE clause. Make sure the SELECT result is reasonable before
doing the UPDATE or DELETE.

46 CHAPTER 5. SQL AGGREGATES

5.5 Summary

Sometimes users want less output rather than more. They want a total, count, average, maximum, or
minimum value for a column. Aggregates make this possible. They collect or aggregate data into fewer rows
and send the result to the user.

4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620

4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686

Chapter 6

Joining Tables

This chapter will show how to store data using multiple tables. Multi-table storage and multi-table queries
are fundamental to relational databases.

We start this chapter with table and column references. These are important in multi-table queries.
Then, we cover the advantages of splitting data across multiple tables. Next, we introduce an example based
on a mail order company, showing table creation, insertion, and queries using joins. Finally, we explore
various join types.

6.1 Table and Column References

Before dealing with joins, there is one important feature that must be mentioned. Up to this point, all queries
have involved a single table. With multiple tables in a query, column names can be confusing. Unless you
are familiar with each table, it is difficult to know which column names belong to which tables. Sometimes
two tables have the same column name. For these reasons, SQL allows you to fully qualify column names by
preceding the column name with the table name. An example of table name prefixing is shown in figure 6.1.
The first query has unqualified column names. The second is the same query, but with fully qualified column
names. A period separates the table name from the column name.

The final query shows another feature. Instead of specifying the table name, you can create a table alias
to take the place of the table name in the query. The alias name follows the table name in the FROM clause.
In this example, f is used as an alias for the friend table. While these features are not important in single
table queries, they are useful in multi-table queries.

6.2 Joined Tables

In our friend example, splitting data into multiple tables makes little sense. However, in cases where we must
record information about a variety of things, multiple tables have benefits. Consider a company that sells
parts to customers through the mail. The database has to record information about many things: customers,
employees, sales orders, and parts. It is obvious a single table cannot hold the different types of information
in an organized manner. Therefore, we create four tables: customer, employee, salesorder, and part. However,
putting information in different tables causes problems. How do we record which sales orders belong to which
customers? How do we record the parts for the sales orders? How do we record which employee received
the sales order? The answer is to assign unique numbers to every customer, employee, and part. When we
want to record the customer in the salesorder table, we put the customer’s number in the salesorder table.
When we want to record which employee took the order, we put the employee’s number in the salesorder
table. When we want to record which part has been ordered, we put the part number in the salesorder table.

47

48 CHAPTER 6. JOINING TABLES

test=> SELECT firstname FROM friend WHERE state = 'PA';
firstname

Victor
(1 row)

test=> SELECT friend.firstname FROM friend WHERE friend.state = 'PA';
firstname

Victor
(1 row)

test=> SELECT f.firstname FROM friend f WHERE f.state = 'PA';
firstname

Victor
(1 row)

Figure 6.1: Qualified column names

Breaking up the information into separate tables allows us to keep detailed information about customers,
employees, and parts. It also allows us to refer to those specific entries as many times as needed by using a
unique number. This is illustrated in figure 6.2.

Customer Employee Part

Salesorder

Figure 6.2: Joining tables

People might question the necessity of using separate tables. While not necessary, it is often a good
idea. Without having a separate customer table, every piece of information about a customer would have to
be stored in the salesorder table every time a salesorder row was added. The customer’s name, telephone
number, address, and other information would have to be repeated. Any change in customer information,
like a change in telephone number, would have to be performed in all places that information is stored. With
a customer table, the information is stored in one place, and each salesorder points to the customer table. This

4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752

4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818

6.3. CREATING JOINED TABLES 49

is more efficient, and allows easier administration and data maintenance. The advantages of using multiple
tables are:

* Easier data modification
* Easier data lookup
* Data stored in only one place

* Less storage space required
The only time duplicate data should zot be moved to a separate table is when all of these are true:

* Time required to perform a join is prohibitive
* Data lookup is unnecessary
* Duplicate data requires little storage space

* Data is very unlikely to change

The customer, employee, part, and salesorder example clearly benefits from multiple tables.!

6.3 Creating Joined Tables

Figure 6.3 shows the SQL statements needed to create those tables.” The customer, employee, and part tables
each have a column to hold their unique identification numbers. The salesorder® table has columns to hold
the customer, employee, and part numbers associated with the sales order. For the sake of simplicity, we will
assume that each salesorder contains only one part number.

We have used underscores () to allow multiple words in column names, e.g. customer_id. This is
common. You could enter the column as Customerld, but POSTGRESQL converts all identifiers, like column
and table names, to lowercase, so the actual column name becomes customerid, which is not very clear. The
only way to define non-lowercase column and table names it to use double quotes. Double quotes preserve
any capitalization you supply. You can even have spaces in table and column names if you surround the name
with double quotes ("), e.g. "customer id". If you decide to use this feature, you must put double quotes
around the table or column name every time it is referenced. This can be cumbersome.

Keep in mind that all table and column names not protected by double quotes should be made up of only
letters, numbers, and the underscore character. Each name must start with a letter, not a number. Do not
use punctuation, except underscore, in your names either. For example, address, office, and zipcode9 are valid
names, while 2pair and my# are not.

The example also shows the existence of a column named customer _id in two tables. This is done because
the two columns contain the same type of number, a customer identification number. Naming them the same
clearly shows which columns join the tables together. If you wanted to use unique names, you could name the
column salesorder _customer id or sales cust_id. This makes the column names unique, but still documents
the columns to be joined.

1The process of distributing data across multiple tables to prevent redundancy is called data normalization.

%In the real-world, the name columns would be much longer, perhaps char(60) or char(180). You should base the length on the
longest name you may ever wish to store. I am using short names so they display properly in the examples.

3A table can not be called order. Order is a reserved keyword, for use in the ORDER BY clause. Reserved keywords are not
available as table or column names.

50

test=> CREATE TABLE customer (

test(>

CREATE
test=>
test(>
test(>
test(>
test(>
test(>
CREATE
test=>

)s

customer_id INTEGER,

name CHAR(30),
telephone CHAR(20),
street CHAR(40),
city CHAR(25),
state CHAR(2),

zipcode CHAR(10),
country CHAR(20)

CREATE TABLE employee (

)s

CREATE TABLE part (

)s

employee id INTEGER,
name CHAR(30),

hire_date DATE

part_id INTEGER,

name CHAR(30),
cost NUMERIC(8,2),
weight FLOAT

CREATE TABLE salesorder (

)s

order_id
customer_id
employee id
part id
order_date
ship_date
payment

INTEGER,
INTEGER, --
INTEGER, --
INTEGER, --
DATE,

DATE,
NUMERIC(8,2)

CHAPTER 6. JOINING TABLES

joins to customer.customer id
joins to employee.employee id
joins to part.part id

Figure 6.3: Creation of company tables

4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884

6.4. PERFORMING JOINS 51

4885 Figure 6.4 shows the insertion of a row into the customes, employee, and part tables. It also shows the
4886 insertion of a row into the salesorder table, using the same customer, employee, and part numbers to link the
igg; salesorder row to the other rows we inserted.* For simplicity, we will use only a single row per table.
4889

4890 test=> INSERT INTO customer VALUES (

4891 test(> 648,

4892 | |

4893 test (> Fleer Gearworks, Inc.',

4894 test(> '1-610-555-782",

4895 test (> '830 Winding Way',

4896 s 1

4897 test(> Millersville',

4898 test (> "AL',

iggg test(> '35041' N

4901 test(> 'USA'

4902 test(>);

iggi INSERT 19815 1

1905 test=> INSERT INTO employee VALUES (

4906 test (> 24,

4907 | |

1908 test(> Lee Meyers',

4909 test(> '10/16/1989"

4910 test(>);

o1 INSERT 19816 1

4913 test=> INSERT INTO part VALUES (

4914 test (> 153,

4915 ,)

4916 test(> Garage Door Spring',

4917 test (> 18.39

4918 test(>);

4919

1920 INSERT 19817 1

4921 test=> INSERT INTO salesorder VALUES(

4922

1923 test(> 14673,

4924 test (> 648,

4925 test(> 24,

4926

1997 test(> 153,

4928 test (> '7/19/1994",

4929 test (> '7/28/1994"

4930 test (> 18.39

4931 es :

4932 test(>);

4933 INSERT 18841 1

4934

4935

4936) o

4937 Figure 6.4: Insertion into company tables

4938

4939

4940

4941 . .

4942 6.4 Performing Joins

4943

4944 . . .) . .)

4945 With data spread across multiple tables, an important issue is how to retrieve the data. Figure 6.5 shows how
4946 to find the customer name for a given order number. It uses two queries. The first gets the customer id for
4947

igig *Technically, the column customer.customer id is a primary key because it is the unique key for each customer row. The column

1950 salesorder.customer_id is a foreign key because it points to another table’s primary key. This is covered in more detail in section 6.13.

52

CHAPTER 6. JOINING TABLES

test=> SELECT customer_id FROM salesorder WHERE order id = 14673;
customer_id

(1 row)

test=> SELECT name FROM customer WHERE customer_ id = 648;
name

Fleer Gearworks, Inc.
(1 row)

Figure 6.5: Finding customer name using two queries

order number 14673. The user then uses the returned customer identification number of 648 in the WHERE
clause of the next query. That query finds the customer name record where the customer _id equals 648.
We can call this two query approach a manual join, because the user manually took the result from the first
query and placed that number into the WHERE clause of the second query.

Fortunately, relational databases can perform this join automatically. Figure 6.6 shows the same join as

figure 6.5 but in a single query. This query shows all the elements necessary to perform the join of two

test=> SELECT customer.name -- query result

test-> FROM customer, salesorder -- query tables

test-> WHERE customer.customer_id = salesorder.customer_id AND -- table join

test-> salesorder.order_id = 14673; -- query restriction
name

Fleer Gearworks, Inc.
(1 row)

Figure 6.6: Finding customer name using one query

tables:

* The two tables involved in the join are specified in the FROM clause.
* The two columns needed to perform the join are specified as equal in the WHERE clause.
* The salesorder table’s order number is tested in the WHERE clause.

e The customer table’s customer name is returned from the SELECT.

Internally, the database performs the join by:

* salesorder.order id = 14673: Find that row in the salesorder table

* salesorder.customer id = customer.customer id: From the row just found, get the customer id. Find

the equal customer_id in the customer table.

¢ customer.name: Return name from the customer table.

4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016

5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082

6.5. THREE AND FOUR TABLE JOINS 53

You can see the database is performing the same steps as our manual join, but much faster.

Notice that figure 6.6 qualifies each column name by prefixing it with the table name, as discussed in
section 6.1. While such prefixing is optional in many cases, in this example it is required because the column
customer_id exists in both tables mentioned in the FROM clause, customer and salesorder. 1f this were not
done, the query would generate an error: ERROR: Column 'customer id' is ambiguous.

You can also perform the join in the opposite direction too. In the previous query, the order number is
supplied, and the customer name is returned. In figure 6.7, the customer name is supplied, and the order
number returned. I have switched the order of items in the FROM clause and in the WHERE clause. The

test=> SELECT salesorder.order id

test-> FROM salesorder, customer

test-> WHERE customer.name = 'Fleer Gearworks, Inc.' AND
test-> salesorder.customer id = customer.customer id;
order_id

Figure 6.7: Finding order number for customer name

ordering of items is not important in these clauses.

6.5 Three and Four Table Joins

You can perform a three-table join as shown in figure 6.8. The first printed column is the customer name.

test=> SELECT customer.name, employee.name
test-> FROM salesorder, customer, employee
test-> WHERE salesorder.customer id = customer.customer id AND

test-> salesorder.employee id = employee.employee id AND
test-> salesorder.order_id = 14673;

name | name
________________________________ F o e ——————————
Fleer Gearworks, Inc. | Lee Meyers
(1 row)

Figure 6.8: Three-table join

The second column is the employee name. Both columns are labeled name. You could use AS to give the
columns unique labels. Figure 6.9 shows a four-table join, using AS to make each column label unique. The
four-table join matches the arrows in figure 6.2, with the arrows of the salesorder table pointing to the other
three tables.

Joins can be performed among tables that are only indirectly related. Suppose you wish to find employees
who have taken orders for each customer. Figure 6.10 shows such a query. Notice that the query displays just
the customer and employee tables. The salesorder table is used to join the two tables but is not displayed. The
DISTINCT keyword is used because multiple orders taken by the same employee for the same customer would
make that employee appear more than once, which was not desired. The second query uses an aggregate to
return a count for each unique customer, employee pair.

CHAPTER 6. JOINING TABLES

5083
5084
test=> SELECT customer.name AS customer name, 5085

test-> employee.name AS employee name, gggg

test-> part.name AS part name 5088
test-> FROM salesorder, customer, employee, part 5089

test-> WHERE salesorder.customer id = customer.customer id AND ggg?

test-> salesorder.employee id = employee.employee id AND 5092
test-> salesorder.part_id = part.part_id AND gggi
test-> salesorder.order_id = 14673; 5095
customer_name | employee name part - 5096

5097

5098
''''''''''''''''''''''''''' et it itielel ittt Attt ittt 5099
__________ 5100

Fleer Gearworks, Inc. | Lee Mey- gig;

ers | Garage Door Spring 5103

(1 row) 5104
5105

5106

) .. 5107

Figure 6.9: Four-table join 5108

5109

5110

5111

5112

5113

5114

test=> SELECT DISTINCT customer.name, employee.name 5115
test-> FROM customer, employee, salesorder 5116

i . 5117
test-> WHERE customer.customer_id = salesorder.customer_id and 5118

test-> salesorder.employee id = employee.employee id 5119

test-> ORDER BY customer.name, employee.name; gii?

name | name 5129
________________________________ o o o eeemcmemee 5123
Fleer Gearworks, Inc. | Lee Meyers gigg
(1 row) 5126
5127
test=> SELECT DISTINCT customer.name, employee.name, COUNT(*) gigg
test-> FROM customer, employee, salesorder 5130

test-> WHERE customer.customer id = salesorder.customer id and 5131
_id ! 5132
test-> salesorder.employee id = employee.employee id 5133

test-> GROUP BY customer.name, employee.name 5134

test-> ORDER BY customer.name, employee.name; gigg
name | name | count 5137

-------------------------------- S S 5138
5139

Fleer Gearworks, Inc. | Lee Meyers | 1 2140
(1 row) 5141
5142

5143

Figure 6.10: Employees who have taken orders for customers. gﬁ‘;

5146

5147

5148

5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214

6.6. ADDITIONAL JOIN POSSIBILITIES 55

Up to this point, we have had only a single row in each table. As an exercise, add additional customes;
employee, and part rows, and add salesorder rows that join to these new entries. You can use figure 6.4 as an
example. You can use any unique identification numbers you wish. Try the queries already shown in this
chapter with your new data.

6.6 Additional Join Possibilities

At this point, all joins have involved the salesorder table in some form. Suppose we wanted to assign an
employee to manage each customer account. If we add an employee_id column to the customer table, the
column could store the identification number of the employee assigned to manage the customer’s account.
Figure 6.11 shows how to perform the join between customer and employee tables. The first query finds the

test=> SELECT employee.name

test-> FROM customer, employee

test-> WHERE customer.employee id = employee.employee id AND
test-> customer.customer _id = 648;

test=> SELECT customer.name

test-> FROM customer, employee

test-> WHERE customer.employee id = employee.employee id AND
test-> employee.employee id = 24

test-> ORDER BY customer.name;

Figure 6.11: Joining customer and employee

employee name assigned to manage customer number 648. The second query shows the customer names
managed by employee 24. Notice the salesorder table is not involved in this query.

Suppose you wanted to assign an employee to be responsible for answering detailed questions about
parts. Add an employee id column to the part table, place valid employee identifiers in the column, and
perform similar queries as shown in figure 6.12. Adding columns to existing tables is covered in section 13.2.

test=> -- find the employee assigned to part number 14673
test=> SELECT employee.name

test-> FROM part, employee

test-> WHERE part.employee id = employee.employee id AND
test-> part.part_id = 153;

test=> -- find the parts assigned to employee 24

test=> SELECT part.name

test-> FROM part, employee

test-> WHERE part.employee id = employee.employee id AND
test-> employee.employee id = 24

test-> ORDER BY name;

Figure 6.12: Joining part and employee

There are cases where a join could be performed with the state column. For example, to check state

56 CHAPTER 6. JOINING TABLES

codes for validity®, a statecode table could be created with all valid state codes. An application could check
the state code entered by the user, and report an error if the state code is not in the statecode table. Another
example would be the need to print the full state name in queries. State names could be stored in a separate
table and joined when the full state name is desired. Figure 17.2 shows an example of a statename table. This

test=> CREATE TABLE statename (code CHAR(2),

test(> name CHAR(30)

test(>);

CREATE

test=> INSERT INTO statename VALUES ('AL', 'Alabama');
INSERT 20629 1

test=> SELECT statename.name AS customer statename
test-> FROM customer, statename

test-> WHERE customer.customer_id = 648 AND
test-> customer.state = statename.code;

Figure 6.13: Statename table
shows two more uses for additional tables:

* Check codes against a list of valid values, i.e. only allow valid state codes

* Store code descriptions, i.e. state code and state name

6.7 Choosing a Join Key

The join key is the value used to link entries between tables. For example, in figure 6.4, 648 is the customer
key, appearing in the customer table to uniquely identify the row, and in the salesorder table to refer to that
specific customer row.

Some people might question whether an identification number is needed. Should the customer name be
used as a join key? Using the customer name as the join key is not good because:

* Numbers are less likely to be entered incorrectly.

* Two customers with the same name would be impossible to distinguish in a join.
* If the customer name changes, all references to that name would have to change.
* Numeric joins are more efficient than long character string joins.

* Numbers require less storage than characters strings.
In the statename table, the two-letter state code is probably a good join key because:

* Two letter codes are easy for users to remember and enter.

* State codes are always unique.

5The United States Postal Service has assigned a unique two-letter code to each U.S. state.

5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280

5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346

6.8. ONE-TO-MANY JOINS 57

* State codes do not change.
* Short two-letter codes are not significantly slower than integers in joins.

* Two-letter codes do not require significantly more storage than integers.

There are basically two choices for join keys, identification numbers and short character codes. If an item
is referenced repeatedly, it is best to use a short character code as a join key. You can display this key to
users and allow them to refer to customers and employees using codes. Users prefer to identify items by
short, fixed-length character codes containing numbers and letters. For example, customers can be identified
by six-character codes, FLEOO1, employees by their initials, BAW, and parts by five-character codes, E7245.
Codes are easy to use and remember. In many cases, users can choose the codes, as long as they are unique.

It is possible to allow users to enter short character codes and still use identification numbers as join
keys. This is done by adding a code column to the table. For the customer table, a new column called code can
be added to hold the customer code. When the user enters a customer code, the query can find the customer
id assigned to the customer code, and use that customer id in joins with other tables. Figure 6.14 shows a
query using a customer code to find all order numbers for that customer.

test=> SELECT order id

test-> FROM customer, salesorder

test-> WHERE customer.code = 'FLEOO1' AND

test-> customer.customer_id = salesorder.customer_id;

Figure 6.14: Using a customer code
In some cases, identification numbers are fine and codes unnecessary:

* Items with short lifespans, e.g. order numbers
* Items without appropriate codes, e.g. payroll batch numbers

* Jtems used internally and not referenced by users

Defining codes for such values would be useless. It is better to allow the database to assign a unique number
to each item. The next chapter covers database support for assigning unique identifiers.

There is no universal rule about when to choose codes or identification numbers. U.S. states are clearly
better keyed on codes, because there are only 50 U.S. states. The codes are short, unique, and well known
by most users. At the other extreme, order numbers are best used without codes because there are too
many of them and codes would be of little use.

6.8 One-to-Many Joins

Up to this point, when two tables were joined, one row in the first table matched exactly one row in the
second table. making the joins one-to-one joins. Imagine if there were more than one salesorder row for
a customer id. Multiple order numbers would be printed. That would be a one-to-many join, where one
customer row joins to more than one salesorder row. Suppose there were no orders made by a customer.
Even though there was a valid customer row, if there were no salesorder row for that customer identification
number, no rows would be returned. We could call that a one-to-none join.’

58

test=> SELECT * FROM animal;

animal_id | name
___________ e ————————
507 | rabbit
508 | cat
(2 rows)

test=> SELECT * FROM vegetable;

animal_id | name
_______ S
507 | lettuce
507 | carrot
507 | nut
(3 rows)

test=> SELECT *
test-> FROM animal, vegetable
test-> WHERE animal.animal_id = vegetable.animal_id;

animal _id | name | animal id | name
_______ j___+_________________+_______:___+_________________
507 | rabbit | 507 | lettuce
507 | rabbit | 507 | carrot
507 | rabbit | 507 | nut
(3 rows)

Figure 6.15: One-to-many join

CHAPTER 6. JOINING TABLES

5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412

5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478

6.9. UNJOINED TABLES 59

Figure 6.15 shows an example. Because the animal table’s 507 rabbit row join to three rows in the
vegetable table, the rabbit row is duplicated three times in the output. This is a one-to-many join. There is
no join for the 508 cat row in vegetable table, so the 508 cat row does not appear in the output. This is an
example of a one-to-none join.

6.9 Unjoined Tables

When joining tables, it is necessary to join each table mentioned in the FROM clause by specifying joins in the
WHERE clause. If you list a table name in the FROM clause, but fail to join it in the WHERE clause, the effect
is to mark that table as unjoined. This causes it to be paired with every row in the query result. Figure 6.16
illustrates this effect using tables from figure 6.15. The SELECT does not join any column from animal to any

test=> SELECT *
test-> FROM animal, vegetable;

animal_id | name | animal_id | name
_______ j___+_________________+_______j___+_________________
507 | rabbit | 507 | Tlettuce
508 | cat | 507 | lettuce
507 | rabbit | 507 | carrot
508 | cat | 507 | carrot
507 | rabbit | 507 | nut
508 | cat | 507 | nut
(6 rows)

Figure 6.16: Unjoined tables

column in vegetable, causing every value in animal to be paired with every value in vegetable. This effect is
called a Cartesian product and is usually not intended. When a query returns many more rows than expected,
look for an unjoined table in the query.

6.10 Table Aliases and Self-Joins

In section 6.1, you saw how to refer to specific tables in the FROM clause using a shorter name. Figure 6.17
shows a rewrite of the query in figure 6.14 using aliases. A c is used as an alias for the customer table, and s

test=> SELECT order_id

test-> FROM customer c, salesorder s
test-> WHERE c.code = 'FLEOO1' AND

test-> c.customer _id = s.customer id;

Figure 6.17: Using table aliases

is used as an alias for the salesorder table. Table aliases are handy in these cases.
However, with table aliases, you can even join a table to itself. Such joins are called self~joins. The
same table is given two different alias names. Each alias then represents a different instance of the table.

®Many database servers support a special type of join called an outer join that allows non-joined data to appear in the query.
Unfortunately, POSTGRESQL does not support outer joins at this time.

60 CHAPTER 6. JOINING TABLES

This might seem like a concept of questionable utility, but it can prove useful. Figure 6.18 shows practical
examples. For simplicity, results are not shown for these queries.

test=> SELECT c2.name

test-> FROM customer c, customer c2
test-> WHERE c.customer_id = 648 AND
test-> c.zipcode = c2.zipcode;

test=> SELECT c2.name, s.order_id
test-> FROM customer c, customer c2, salesorder s
test-> WHERE c.customer_id = 648 AND

test-> c.zipcode = c2.zipcode AND
test-> c2.customer_id = s.customer_id AND
test-> c2.customer_id <> 648;

test=> SELECT c2.name, s.order_id, p.name
test-> FROM customer c, customer c2, salesorder s, part p
test-> WHERE c.customer id = 648 AND

test-> c.zipcode = c2.zipcode AND

test-> c2.customer_id = s.customer id AND
test-> s.part_id = p.part_id AND

test-> c2.customer_id <> 648;

Figure 6.18: Examples of self-joins using table aliases

The first figure uses ¢ as an alias for the customer table, and ¢2 as a secondary alias for customer. It finds
all customers in the same zipcode as customer number 648. The second query finds all customers in the
same zipcode as customer number 648. It then finds the order numbers placed by those customers. We have
restricted the ¢2 table’s customer identification number to not equal 648 because we do not want customer
648 to appear in the result. The third query goes further by retrieving the part numbers associated with
those orders.

6.11 Non-Equijoins

Equijoins are the most common type of join. They use equality comparisons (=) to join tables. Figure 6.19
shows our first non-equijoin. The first query is a non-equijoin because it uses a not-equal (< >) comparison
to perform the join. It returns all customers not in the same country as customer number 648. The second
query uses less-than (<) to perform the join. Instead of finding equal values to join, all rows greater than
the column’s value are joined. The query returns all employees hired after employee number 24. The third
query uses greater-than (>) in a similar way. The query returns all parts that cost less than part number
153. Non-equijoins are not used often, but certain queries can only be performed using them.

6.12 Ordering Multiple Parts

Our customer, employee, part, and salesorder example has a serious limitation. It allows only one part id per
salesorder. In the real world, this would never be acceptable. Having covered many complex join topics in
this chapter, a more complete database layout can be created to allow multiple parts per order.

5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544

5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610

6.12. ORDERING MULTIPLE PARTS

test=> SELECT c2.name

test-> FROM customer c, customer c2
test-> WHERE c.customer id = 648 AND
test-> c.country <> c2.country

test-> ORDER BY c2.name;

test=> SELECT e2.name, e2.hire date

test-> FROM

employee e, employee e2

test-> WHERE e.employee id = 24 AND

test-> e.hire _date < e2.h
test-> ORDER BY e2.hire date, e2

test=> SELECT p2.name, p2.cost
test-> FROM part p, part p2

ire date
.name;

test-> WHERE p.part_id = 153 AND

test-> p.cost > p2.cost
test-> ORDER BY p2.cost;

Figure 6.19: Non-equijoins

61

Figure 6.20 shows a new version of the salesorder table. Notice that the part_id column has been removed.

test=> CREATE TABLE salesorder (

order_id
customer_id
employee id
order_date
ship_date
payment

The customer, employee, and part tables remain unchanged.

INTEGER,
INTEGER,
INTEGER,
DATE,
DATE,

-- joins to customer.customer_id
-- joins to employee.employee id

NUMERIC(8,2)

Figure 6.20: New salesorder table for multiple parts per order

Figure 6.21 shows a new table, orderpart. This table is needed because the original salesorder table could

test=> CREATE TABLE orderpart(
test(>

test(>

test(>

test(>);

CREATE

part_id

order id INTEGER,
INTEGER,
quantity INTEGER DEFAULT 1

Figure 6.21: Orderpart table

hold only one part number per order. Instead of putting part id in the salesorder table, the orderpart table

62 CHAPTER 6. JOINING TABLES

will hold one row for each part number ordered. If five part numbers are in order number 15398, there will
be five rows in the orderpart table with order id equal to 15398.

We have also added a quantity column. If a customer orders seven of the same part number, we put only
one row in the orderpart table, but set the quantity field equal to 7. We have used DEFAULT to set the quantity
to one if no quantity is specified.

Notice there is no price field in the orderpart table. This is because the price is stored in the part table.
Anytime the price is needed, a join is performed to get the price. This allows a part’s price to be changed in
one place, and all references to it automatically updated.”

This new table layout illustrates the master / detail use of tables. The salesorder table is the master
table because it holds information common to each order, such as customer and employee identifiers, and
order date. The orderpart table is the detail table because it contains the specific parts making up the order.
Master/detail tables are a common use of multiple tables.

Figure 6.22 shows a variety of queries using the new orderpart table. The queries are of increasing
complexity. The first query already contains the order number of interest, so there is no reason to use the
salesorder table. It goes directly to the orderpart table to find the parts making up the order, and joins to the
part table for part descriptions. The second query does not have the order number. It only has the customer
id and order date. It must use the salesorder table to find the order number, and then join to the orderpart
and part tables to get order quantities and part information. The third query does not have the customer id,
but instead must join to the customer table to get the customer id for use with the other tables. Notice each
query displays more columns to the user. The final query computes the total cost of the order. It uses an
aggregate to SUM cost times (*) quantity for each part in the order.

6.13 Primary and Foreign Keys

A join is performed by comparing two columns, like customer.customer id and salesorder.customer id. Cus-
tomer.customer id 1s called a primary key because it is the unique (primary) identifier for the customer table.
Salesorder.customer id is called a foreign key because it holds a key to another (foreign) table.

6.14 Summary

Previous chapters covered query tasks. This chapter dealt with technique — the technique of creating an
orderly data layout using multiple tables. Acquiring this skill takes practice. Expect to redesign your first
table layouts many times as you improve them.

Good data layout can make your job easier. Bad data layout can make queries a nightmare. As you create
your first real-world tables, you will soon learn to identify good and bad data designs. Continually review your
table structures and refer to this chapter again for ideas. Do not be afraid to redesign everything. Redesign
is hard, but when done properly, queries become easier to craft.

Relational databases excel in their ability to relate and compare data. Tables can be joined and analyzed
in ways never anticipated. With good data layout and the power of SQL, you can retrieve an unlimited amount
of information from your database.

"In our example, changing part.price would change the price on previous orders of the part. This would be inaccurate. In the
real-world, there would have to be a partprice table to store the part number, price, and effective date for the price.

5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676

5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742

6.14. SUMMARY

test=>
test=>
test->
test->
test->

test=>
test=>
test->
test->
test->
test->
test->

test=>
test=>
test->
test->
test->
test->
test->
test->

test=>
test=>
test->
test->
test->
test->
test->
test->

-- first query
SELECT part.name
FROM orderpart
WHERE orderpart
orderpart

-- second query
SELECT part.name
FROM salesorder,
WHERE salesorder
salesorder
salesorder
orderpart.

-- third query
SELECT part.name
FROM customer,
WHERE customer.
salesorde
salesorde
salesorde
orderpart

-- fourth query
SELECT SUM(part.
FROM customer,
WHERE customer.
salesorde
salesorde
salesorde
orderpart

, part
.part_id = part.part_id AND
.order_id = 15398;

, orderpart.quantity

orderpart, part

.customer _id = 648 AND

.order_date = '7/19/1994' AND
.order_id = orderpart.order id AND
part_id = part.part_id;

, part.cost, orderpart.quantity
salesorder, orderpart, part

name = 'Fleer Gearworks, Inc.' AND
r.order date = '7/19/1994' AND
r.customer_id = customer.customer_id AND
r.order id = orderpart.order id AND
.part_id = part.part_id;

cost * orderpart.quantity)

salesorder, orderpart, part

name = 'Fleer Gearworks, Inc.' AND
r.order date = '7/19/1994' AND
r.customer_id = customer.customer_id AND
r.order_id = orderpart.order id AND
.part_id = part.part_id;

Figure 6.22: Queries involving orderpart table

63

64

CHAPTER 6. JOINING TABLES

5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808

5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874

Chapter 7

Numbering Rows

Unique identification numbers and short character codes allow reference to specific rows in a table. They
were used extensively in the previous chapter. The customer table had a customer id column that held a
unique identification number for each customer. The employee and part tables had similar uniquely numbered
columns. Those columns were important for joins to those tables.

While unique character codes must be supplied by users, unique row numbers can be generated auto-
matically using two methods. This chapter shows how to uniquely number rows in POSTGRESQL.

7.1 Object Identification Numbers (OIDs)

Every row in POSTGRESQL is assigned a unique, normally invisible number called an object identification
number or OID. When the software is initialized with initdb,! a counter is created and set to approximately
seventeen-thousand.” The counter is used to uniquely number every row. Databases can be created and
destroyed, but the counter continues to increase. The counter is used by all databases, so object identification
numbers are always unique. No two rows in any table or in any database have the same object id.?

You have seen object identification numbers already. Object identification numbers are displayed after
every INSERT statement. If you look back at figure 3.4 on page 12, you will see the line INSERT 19053 1.
INSERT is the command that was executed, 19053 is the object identification number assigned to the inserted
row, and 1 is the number of rows inserted. A similar line appears after every INSERT statement. Figure 6.4
on page 51 shows sequential object identification numbers assigned by consecutive INSERT statements.

Normally, a row’s object identification number is displayed only by INSERT queries. However, if the OID
is specified by a non-INSERT query, it will be displayed, as shown in figure 7.1. The SELECT has accessed the
normally invisible OID column. The OID displayed by the INSERT and the OID displayed by the SELECT are the
same.

Even though no OID column is mentioned in CREATE TABLE statements, every POSTGRESQL table has
an invisible column called 0ID. The column only appears if you specifically access it.* The query SELECT *
FROM table name does not display the OID column. SELECT OID, * FROM table_name will display it.

Object identification numbers can be used as primary and foreign key values in joins. Since every row
has a unique object id, there is no need for a separate column to hold the row’s unique number.

For example, in the previous chapter there was a column called customer.customer id. This column held
the customer number. It uniquely identified each row. However, we could have used the row’s object

1See section B for a description of initdb.

2Values less than this are reserved for internal use.

3Technically, OID’S are unique among all databases sharing a common data directory tree.

“There are several other invisible columns. The POSTGRESQL manuals cover their meaning and use.

65

66 CHAPTER 7. NUMBERING ROWS

test=> CREATE TABLE oidtest(age INTEGER);
CREATE

test=> INSERT INTO oidtest VALUES (7);
INSERT 21515 1

test=> SELECT oid, age FROM oidtest;

oid | age
_______ o
21515 | 7
(1 row)

Figure 7.1: OID test

identification number as the unique number for each row. Then, there would be no need to create the column
customer.customer _id. Customer.oid would be the unique customer number.

With this change, a similar change would be needed in the salesorder table. We would rename salesor-
der.customer_id to salesorder.customer o0id because the column now refers to an OID. The column #ype should
be changed also. Salesorder.customer id was defined as type INTEGER. The new salesorder.customer oid
column would hold the OID of the customer who made the order. For this reason, we would change the
column #ype from INTEGER to OID. Figure 7.2 shows a new version of the salesorder table using each row’s
OID as a join key.

test=> CREATE TABLE salesorder (

test (> order_id INTEGER,

test(> customer oid 0ID, -- joins to customer.oid
test(> employee oid 0ID, -- joins to employee.oid
test (> part_oid 0ID, -- joins to part.oid

Figure 7.2: Columns with OIDs

A column of #ype OID is similar to an INTEGER column, but defining it as #ype OID documents that the
column holds OID values. Do not confuse a column of #ype OID with a column znamed OID. Every row has a
normally invisible column zamed OID. A row can have zero, one, or more user-defined columns of fype OID.

A column of type OID is not automatically assigned any special value from the database. Only the column
named OID is specially assigned during INSERT.

Also, the order id column in the salesorder table could be eliminated. The salesorder.oid column could
represent the unique order number.

7.2 Object Identification Number Limitations

This section covers three limitations of object identification numbers.

Non-Sequential Numbering

The global nature of object identification assignment means most OIDs in a table are not sequential. For
example, if you insert a customer today, and another one tomorrow, the two customers will not get sequential
oIDs. The two customer OIDs could differ by thousands. This is because INSERTSs into other tables between

5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940

5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006

7.3. SEQUENCES 67

the two customer inserts increment the object counter. If the OID is not visible to users, this is not a problem.
Non-sequential numbering does not affect query processing. However, if users see and enter these numbers,
it might seem strange customer identification numbers are not sequential and have large gaps in numbering.

Non-Modifiable

An OID is assigned to every row during INSERT. UPDATE cannot modify the system-generated OID of a row.

Not backed up by default

When performing database backups, the system-generated OID of each row is normally not backed up. A flag
must be added to enable the backup of OIDs. See section 20.5 for details.

7.3 Sequences

POSTGRESQL has another way of uniquely numbering rows. They are called sequences. Sequences are named
counters created by users. After creation, the sequence can be assigned to a table as a column default. Using
sequences, unique numbers can be automatically assigned during INSERT.

The advantage of sequences is that there are no gaps in numeric assignment, as happens with OIDs.”
Sequences are ideal as user-visible identification numbers. If a customer is created today, and another
tomorrow, the two customers will have sequential numbers. This is because no other table shares the
sequence counter.

Sequence numbers are usually unique only within a single table. For example, if a table has a unique row
numbered 937, another table might have a row numbered 937 also, assigned by a different sequence counter.

7.4 Creating Sequences

Sequences are not created automatically like OIDs. You must create sequences using the CREATE SEQUENCE
command. Three functions control the sequence counter. They are listed in table 7.1.

| Function ‘ Action ‘
nextval(name’) Returns the next available sequence number, and updates the counter
currval(name’) Returns the sequence number from the previous nextval() call
setval(name’,newval) | Sets the sequence number counter to the specified value

Table 7.1: Sequence number access functions

Figure 7.3 shows an example of sequence creation and sequence function usage. The first command
creates the sequence. Then, various sequence functions are called. Note the SELECTs do not have a FROM
clause. Sequence function calls are not directly tied to any table. This figure shows that:

* nextval() returns ever increasing values
* currval() returns the previous sequence value without incrementing

* setval() sets the sequence counter to a new value

5This is not completely true. Gaps can occur if a query is assigned a sequence number as part of an aborted transaction. See
section 10.2 for a description of aborted transactions.

68

test=> CREATE

CREATE

test=> SELECT
nextval

test=> SELECT
nextval

test=> SELECT
currval

setval

test=> SELECT
nextval

CHAPTER 7. NUMBERING ROWS

SEQUENCE functest seq;

nextval ('functest seq');

nextval ('functest seq');

currval (' functest seq');

setval ('functest seq', 100);

nextval ('functest seq');

Figure 7.3: Examples of sequence function use

6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072

6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138

7.5. USING SEQUENCES TO NUMBER ROWS 69

Currval() returns the sequence number assigned by a prior nextval() call in the current session. It is not
affected by nextval() calls of other users. This allows reliable retrieval of nextval() assigned values in later
queries.

7.5 Using Sequences to Number Rows

Configuring a sequence to uniquely number rows involves several steps:

* Create the sequence.
* Create the table, defining nextval() as the column default.
* During INSERT, do not supply a value for the sequenced column, or use znextval().

Figure 7.4 shows the use of a sequence for unique row numbering in the customer table. The first state-

test=> CREATE SEQUENCE customer seq;

CREATE

test=> CREATE TABLE customer (

test(> customer_id INTEGER DEFAULT nextval('customer seq'),
test(> name CHAR(30)

test(>);

CREATE

test=> INSERT INTO customer VALUES (nextval('customer seq'), 'Bread Makers');
INSERT 19004 1
test=> INSERT INTO customer (name) VALUES ('Wax Carvers');
INSERT 19005 1
test=> INSERT INTO customer (name) VALUES ('Pipe Fitters');
INSERT 19008 1
test=> SELECT * FROM customer;
customer id | name
_________ R
1 | Bread Makers
2 | Wax Carvers
3 | Pipe Fitters
(3 rows)

Figure 7.4: Numbering customer rows using a sequence

ment creates a sequence counter named customer seq. The second command creates the customer table,
and defines nextval(’customer seq’) as the default for the customer id column. The first INSERT manually
supplies the sequence value for the column. The nextval(’customer seq’) function call will return the next
available sequence number, and increment the sequence counter. The second and third INSERTs allow the
nextval(’customer_seq’) DEFAULT be used for the customer id column. Remember, a column’s DEFAULT value
is used only when a value is not supplied by an INSERT statement. This is covered in section 4.4. The SELECT
shows the sequence has sequentially numbered the customer rows.

70 CHAPTER 7. NUMBERING ROWS

7.6 Serial Column Type

There is an easier way to use sequences. If you define a column of type SERIAL, a sequence will be
automatically created, and a proper DEFAULT assigned to the column. Figure 7.5 shows an example of this.
The first NOTICE line indicates a sequence was created for the SERIAL column. Do not be concerned about

test=> CREATE TABLE customer (

test(> customer_id SERIAL,
test(> name CHAR(30)
test(>);

NOTICE: CREATE TABLE will create implicit sequence 'customer customer id -
seq' for SERIAL column 'customer.customer id'
NOTICE: CREATE TABLE/UNIQUE will create implicit index 'customer customer id -
key' for table 'customer'
CREATE
test=> \d customer

Table "customer"

customer_id | int4
name | char(30)
Index: customer customer id key
test=> INSERT INTO customer (name) VALUES ('Car Wash');
INSERT 19152 1
test=> SELECT * FROM customer;
customer_id | name
_____________ S

1 | Car Wash

Figure 7.5: Customer table using SERIAL

the second NOTICE line in the figure. Indexing is covered in section 11.1.

7.7 Manually Numbering Rows

Some people wonder why OIDs and sequences are needed. Why can’t a database user just find the highest
number in use, add one, and use that as the new unique row number? There are several reasons why OIDs
and sequences are preferred:

e Performance
* Concurrency

e Standardization

First, it is usually slow to scan all numbers currently in use to find the next available number. Using a
counter in a separate location is faster. Second, there is the problem of concurrency. If one user gets the
highest number, and another user is looking for the highest number at the same time, the two users might

6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204

6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270

7.8. SUMMARY 71

choose the same next available highest number. Of course, if this happens, the number would not be unique.
Such concurrency problems do not occur when using OIDs or sequences. Third, it is more reliable to use
database-supplied unique number generation than to generate unique numbers manually.

7.8 Summary

Both 0OIDs and sequences allow the automatic unique numbering of rows. OIDs are always created and
numbered, while sequences require more work to configure. Both are valuable tools for uniquely numbering
rOwWS.

72

CHAPTER 7. NUMBERING ROWS

6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336

6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402

Chapter 8

Combining SELECTSs

This book has covered various topics like regular expressions, aggregates, and joins. These are powerful
SQL features that allow the construction of complex queries. However, in some cases, even these tools are
not enough. This chapter shows how SELECTSs can be combined to create even more powerful queries.

8.1 UNION, EXCEPT, INTERSECT Clauses

Sometimes a single SELECT statement cannot produce the desired result. UNION, EXCEPT, and INTERSECT
allow SELECT statements to be chained together, allowing more complex queries to be constructed.

For example, suppose we want to output the friend table’s firstname and lastname in the same column.
Normally two queries would be required, one for each column. However, with UNION, the output of two
SELECTS can be combined in a single query, as shown in figure 8.1. The query combines two columns into a

test=> SELECT firstname

test-> FROM friend

test-> UNION

test-> SELECT Tastname

test-> FROM friend

test-> ORDER BY 1;
firstname

Dick
Gleason
MiTlstone
Ned

Sandy
Tabor
Victor
Weber
Yeager
(10 rows)

Figure 8.1: Combining two columns with UNION

single output column.

73

74 CHAPTER 8. COMBINING SELECTS

UNION allows an unlimited number of SELECT statements to be combined to produce a single result.
Each SELECT must return the same number of columns. If the first SELECT returns two columns, the other
SELECTs must return two columns. The column types must be similar also. If the first SELECT returns an
INTEGER value in the first column, the other SELECTs must return an INTEGER in their first columns.

With UNION, an ORDER BY clause can be used only at the end of the last SELECT. The ordering applies to
the output of the entire query. In the previous figure 8.1, the ORDER BY clause specifies the ordering column
by number. Instead of a number, we could use ORDER BY firstname because UNION’s output labels are the
same as the column labels of the first SELECT.

As another example, suppose we have two tables that hold information about various animals. One table
holds information about aquatic animals, and another contains information about terrestrial animals. Two
separate tables are used because each table records information specific to a class of animal. The aquatic -
animal table holds information meaningful only for aquatic animals, like preferred water temperature. The
terrestrial_animal table holds information meaningful only for terrestrial animals, like running speed. We
could have put the animals in the same table, but it was clearer to keep them separate. In most cases, we
deal with the animal types separately.

However, suppose we need to list all the animals, both aquatic and terrestrial. There is no single SELECT
that will show animals from both tables. We cannot join the tables because there is no join key. Joining is not
desired. We want rows from the terrestrial_animal table and the aquatic_animal table output together in a
single column. Figure 8.2 shows how these two tables can be combined with UNION.

test=> INSERT INTO terrestrial _animal (name) VALUES ('tiger');
INSERT 19122 1

test=> INSERT INTO aquatic_animal (name) VALUES ('swordfish');
INSERT 19123 1

test=> SELECT name

test-> FROM aquatic_animal

test-> UNION
test-> SELECT name
test-> FROM terrestrial animal;

name

swordfish

tiger

(2 rows)

Figure 8.2: Combining two tables with UNION

By default, UNION prevents duplicate rows from being displayed. For example, figure 8.3 inserts penguin
into both tables. However, penguin is not duplicated in the output. To preserve duplicates, you must use
UNION ALL, as shown in figure 8.4.

You can do more complex things when chaining SELECTs. EXCEPT allows all rows to be returned from the
first SELECT except rows that also appear in the second SELECT. Figure 8.5 shows an EXCEPT query. While the
aquatic_animal table contains swordfish and penguin, the query returns only swordfish. Penguin is excluded
from the output because it is returned by the second query. While UNION adds rows to the first SELECT,
EXCEPT subtracts rows from the first SELECT.

INTERSECT returns only rows generated by all SELECTs. Figure 8.6 uses INTERSECT and displays only
penguin. While several animals are returned by the two SELECTS, only penguin is returned by both SELECTSs.

Any number of SELECTs can be linked using these methods. The previous examples allowed multiple

6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468

8.1. UNION, EXCEPT, INTERSECT CLAUSES

gjgg test=> INSERT INTO aquatic_animal (name) VALUES ('penguin');
6471 INSERT 19124 1

6472 test=> INSERT INTO terrestrial animal (name) VALUES ('penguin');
6473

6474 INSERT 19125 1

6475 test=> SELECT name

6476 test-> FROM aquatic animal

6477 test-> UNION -

6478 est-

6479 test-> SELECT name

6480 test-> FROM terrestrial animal;
6481 -

6482 name

6483 = @ mmmmmmmeeemeeeeemmmmmmemeeeeee-
6484 .

g pengu1h

6486 swordfish

6487 tiger

6488

6459 (3 rows)

6490

6491)) _
6492 Figure 8.3: UNION with duplicates
6493

6494

e test=> SELECT name

6497 test-> FROM aquatic_animal

6498 test-> UNION ALL

6499

6500 test-> SELECT name

6501 test-> FROM terrestrial_animal;
6502 name

6503

6504 ~ TTTTTmmmmmmmmmmsssossoso-oooooo-
6505 swordfish

6506 .

6507 p?ngu1n

6508 tiger

6509 penguin

6510

6511 (4 rows)

6512

6513

6514 Figure 8.4: UNION ALL with duplicates
6515

6516

6517

6518 test=> SELECT name

6519 test-> FROM aquatic_animal

6520

6521 test-> EXCEPT

6522 test-> SELECT name

6523 test-> FROM terrestrial animal;
6524 name -

6525

6526 ~ mmmmmm e
6527 swordfish

6528))

6529 (1 row

6530

6531

6532 Figure 8.5: EXCEPT restricts output from the first SELECT
6533

6534

76 CHAPTER 8. COMBINING SELECTS

test=> SELECT name

test-> FROM aquatic_animal

test-> INTERSECT

test-> SELECT name

test-> FROM terrestrial animal;
name

penguin

(1 row)

Figure 8.6: INTERSECT returns only duplicated rows

columns to occupy a single result column. Without the ability to chain SELECTs using UNION, EXCEPT, and
INTERSECT, it would be impossible to generate the desired results. SELECT chaining can do other sophisticated
things, like joining a column to one table in the first SELECT, and joining the same column to another table in
the second SELECT.

8.2 Subqueries

Subqueries are similar to SELECT chaining. While SELECT chaining combines SELECTSs on the same level in a
query, subqueries allow SELECTS to be embedded inside other queries. Subqueries can:

* Take the place of a constant in a comparison
* Take the place of a constant yet vary based on the row being processed

* Return a list of values for use in a comparison

Subqueries as Constants

A subquery, also called a subselect, can take the place of a constant in a query. While a constant never
changes, a subquery’s value is recomputed every time the query is executed.

As an example, we will use the friend table from the previous chapters. Suppose we want to find friends
who are not in the same state as Dick Gleason. We could place his state in the query using the constant string
'NJ', but if he moves to another state, the query would have to be changed. Using his sfate column is more
reliable.

Figure 8.7 shows two ways to generate the correct result. One query uses a self-join to do the comparison
to Dick Gleason’s state. The last query uses a subquery which returns his state as 'NJ'. This value is used by
the upper query. The subquery has taken the place of a constant. Unlike a constant, the value is recomputed
every time the query is executed.

Though we have used table aliases in the subquery for clarity, they are not required. A column name
with no table specification is automatically paired with a table in the current subquery. If no matching table
is found in the current subquery, higher parts of the query are searched for a match. State, firstname, and
lastname in the subquery refer to the instance of the friend table in the subquery. The same column names
in the upper query automatically refer to the friend instance in the upper query. If a column name matches
two tables in the same subquery, an error is returned indicating the column is ambiguous.

Subqueries can eliminate table joins also. For example, consider the mail order parts company in
figures 6.3 and 6.4 on page 50. To find the customer name for order number 14673, we join the salesorder

6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600

6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666

8.2. SUBQUERIES

test=> SELECT
firstname

Victor
(6 rows)

test=> SELECT
test-> FROM
test-> WHERE
test->

test->

* FROM friend ORDER BY firstname;

| Tastname | city
e e ittt +

| Yeager | Plymouth

| Gleason | Ocean City

| Mil1stone | Cedar Creek

| Gleason | Ocean City

| Weber | Boston

| Tabor | Williamsport

fl.firstname, fl.lastname, fl.state
friend fl1, friend f2

fl.state <> f2.state AND
f2.firstname = 'Dick' AND
f2.lastname = 'Gleason'

test-> ORDER BY firstname, lastname;

firstname

Sandy
Victor
(4 rows)

test=> SELECT

| Tastname | state
et e ————————————— Fommm

| Yeager | MA

| Mil1stone | MD

| Weber | MA

| Tabor | PA

fl.firstname, fl.lastname, fl.state

| state | age

| MA | 24
N | 19
| MD | 27
| N | 25
| MA | 33
| PA | 22

test-> FROM friend fl
test-> WHERE fl.state <> (
test(> SELECT f2.state
test(> FROM friend f2
test(> WHERE f2.firstname = 'Dick' AND
test(> f2.lastname = 'Gleason'
test(>)
test-> ORDER BY firstname, Tastname;
firstname | Tastname | state
_________________ S R
Dean | Yeager | MA
Ned | Millstone | MD
Sandy | Weber | MA
Victor | Tabor | PA
(4 rows)

Figure 8.7: Friends not in Dick Gleason’s state

77

78 CHAPTER 8. COMBINING SELECTS

and customer tables. This is shown as the first query in figure 8.8. The second query does not have a join,

test=> SELECT name
test-> FROM customer, salesorder
test-> WHERE customer.customer_id = salesorder.customer_id AND
test-> salesorder.order_id = 14673;
name
Fleer Gearworks, Inc.
(1 row)

test=> SELECT name
test-> FROM customer
test-> WHERE customer.customer_id = (

test(> SELECT salesorder.customer id
test (> FROM salesorder
test(> WHERE order id = 14673
test (>)3
name

Fleer Gearworks, Inc.
(1 row)

Figure 8.8: Subqueries can replace some joins

but instead gets the customer id from a subquery. In general, if a table is involved in only one join, and
no columns from the table appear in the query result, the join can be eliminated and the table moved to a
subquery.

In this example, we have specified salesorder.customer id and customer.customer_id to clearly indicate the
tables being referenced. However, this is not required. We could have used only customer id in both places.
POSTGRESQL finds the first table in the same subquery or higher that contains a matching column name.

Subqueries can be used anywhere a computed value is needed. A subquery has its own FROM and WHERE
clauses. It can have its own aggregates, GROUP BY, and HAVING. A subquery’s only interaction with the upper
query is the value it returns. This allows sophisticated comparisons that would be difficult if the subquery’s
clauses had to be combined with those of the upper query.

Subqueries as Correlated Values

While subqueries can act as constants in queries, subqueries can also act as correlated values. Correlated
values vary based on the row being processed. A normal subquery is evaluated once and its value used by
the upper query. In a correlated subquery, the subquery is evaluated repeatedly for every row processed.

For example, suppose you want to know the name of your oldest friend in each state. You can do this
with HAVING and table aliases, as shown in the first query of figure 8.9. Another way is to execute a subquery
for each row which finds the maximum age for that state. If the maximum age equals the age of the current
row, the row is output, as shown in the second query. The query references the friend table two times, using
aliases fI and f2. The upper query uses fI. The subquery uses f2. The correlating specification is WHERE
fl.state = f2.state. This makes it a correlated subquery because the subquery references a column from
the upper query. Such a subquery cannot be evaluated once and the same result used for all rows. It must

6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732

8.2. SUBQUERIES

6733

6734

6735

6736

6737

6738

6739

6740

6741

6742

6743

6744 test=> SELECT fl.firstname, fl.lastname, fl.age
6745 test-> FROM friend f1, friend 2

6746
6747 test-> WHERE fl.state = f2.state

6748 test-> GROUP BY f2.state, fl.firstname, fl.lastname, fl.age

gzgg test-> HAVING fl.age = max(f2.age)
6751 test-> ORDER BY firstname, lastname;
6752 firstname | Tastname
6753
6754 .
6755 Ned | Mil1stone

6756 Sandy | Gleason

6757
6758 Sandy | Weber

6759 Victor | Tabor
6760 (4 rows)

6761

6762

6763 test=> SELECT fl.firstname, fl.lastname, fl.age
6764 test-> FROM friend f1

6765
6766 test-> WHERE age = (

6767 test (> SELECT MAX(f2.age)

6768 .
6760 test(> FROM friend f2

6770 test (> WHERE fl.state = f2.state
6771 test(>)

6772) .
6773 test-> ORDER BY firstname, lastname;

6774 firstname | Tastname |
6775 e ————— e e e ——————— Fomm e
|
|
|
|

| age
_________________ S SO
| 27
| 25
| 33
| 22

g;;g Ned | Millstone

6778 Sandy | Gleason

6779 Sandy | Weber
6780 .

6781 Victor | Tabor
6782 (4 rows)

6783

6784

6785

6786

6787

6788

6789

6790

6791

6792

6793

6794

6795

6796

6797

6798

Figure 8.9: Correlated subquery

80 CHAPTER 8. COMBINING SELECTS

be evaluated for every row because the upper column value can change.

Subqueries as List of Values

The previous subqueries returned one row of data to the upper query. If any of the previous subqueries
returned more than one row, an error would be generated: ERROR: More than one tuple returned by a
subselect used as an expression. However, it is possible to use subqueries returning multiple rows.

Normal comparison operators like equal and less-than expect a single value on the left and on the right.
For example, equality expects one value on the left of the = and one on the right, i.e. col = 3. Two special
comparisons, IN and NOT IN, allow multiple values to appear on the right-hand side. For example, the test
col IN (1,2,3,4) compares col against four values. If col equals any of the four values, the comparison will
return true and output the row. The test col NOT IN (1,2,3,4) will return true if col does not equal any of
the four values.

An unlimited number of values can be specified on the right-hand side of an IN or NOT IN comparison. In
addition, instead of constants, a subquery can be placed on the right-hand side. The subquery can return
multiple rows. The subquery is evaluated, and its output used like a list of constant values.

Suppose we want all employees who took sales orders on a certain date. We could perform the query two
ways. We could join the employee and salesorder tables, as shown in the first query of figure 8.10. The second

test=> SELECT DISTINCT employee.name
test-> FROM employee, salesorder
test-> WHERE employee.employee id = salesorder.employee id AND

test-> salesorder.order date = '7/19/1994';
name
Lee Meyers
(1 row)

test=> SELECT name
test-> FROM employee
test-> WHERE employee id IN (

test(> SELECT employee_id
test(> FROM salesorder
test(> WHERE order date = '7/19/1994'
test (>);
name
Lee Meyers
(1 row)

Figure 8.10: Employees who took orders

query uses a subquery. The subquery is evaluated, and generates a list of values used by IN to perform
the comparison. The subquery is possible because the salesorder table is involved in a single join, and no
columns from the salesorder table are returned by the query.

A NOT IN comparison returns true if a column’s value is not found. For example, suppose we want to see
all customers who have never ordered a product. We need to find the customers who have no sales orders.
This cannot be done with a join. We need an anti-join, because we want to find all customer rows that do

6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864

6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930

8.2. SUBQUERIES 81

not join to any salesorder row. Figure 8.11 shows the query. The subquery returns a list of customer ids

test=> SELECT name
test-> FROM customer
test-> WHERE customer_id NOT IN (

test(> SELECT customer_id
test(> FROM salesorder
test (>)s

name

(0 rows)

Figure 8.11: Customers who have no orders

representing all customers who have placed orders. The upper query returns all customer names where the
customer_id does not appear in the subquery output.

NoOT IN and Subqueries with NULLs

If a NOT IN subquery returns a NULL row, the NOT IN comparison always returns false. This is because
NOT IN requires the upper column to be not equal to every value returned by the subquery. Every inequality
comparison must return true. However, all comparisons with NULL return false, even inequality comparisons,
so NOT IN returns false. NULL comparisons are covered in section 4.3.

We can prevent NULLs from reaching the upper query by adding IS NOT NULL to the subquery. As an
example, in figure 8.11, if there were any NULL customer_id values, the query would return no rows. We can
prevent this by adding WHERE customer_id IS NOT NULL to the subquery.

An IN subquery does not have this problem with NULLs because IN will return true if it finds any true
equality comparison. NOT IN must find all inequality comparison to be true.

There is another way to analyze subqueries returning NULLs. Suppose a subquery returns three rows,
1, 2, and NULL. The test uppercol NOT IN (subquery) expands to uppercol NOT IN (1,2, NULL). This further
expands to uppercol <> 1 AND uppercol <> 2 AND uppercol <> NULL. The last comparison with NULL is false
because all comparisons with NULL are false, even not equal comparisons. AND returns false if any of its
comparisons return false. Therefore, the NOT IN comparison returns false.

If the test used IN, the comparison would be uppercol = 1 OR uppercol = 2 OR uppercol = NULL. While
the last comparison is false, OR will return true if any of the comparisons is true. It does not require them all
to be true like AND.

Subqueries Returning Multiple Columns

Most subqueries return a single column to the upper query. However, it is possible to handle subqueries
returning more than one column. For example, the test WHERE (7, 3) IN (SELECT coll, col2 FROM subtable)
returns true if the subquery returns a row with 7 in the first column, and 3 in the second column. The test WHERE
(uppercoll, uppercol2) IN (SELECT coll, col2 FROM subtable) performs equality comparisons between the
upper two columns and the subquery’s two columns. This allows multiple columns in the upper query to be
compared with multiple columns in the subquery. Of course, the number of values specified on the left of IN
or NOT IN must be the same as the number of columns returned by the subquery.

82 CHAPTER 8. COMBINING SELECTS

ANY, ALL, and EXISTS Clauses

IN and NOT IN are special cases of the more generic subquery clauses ANY, ALL, and EXISTS. ANY will return
true if the comparison operator is true for any value in the subquery. The test col < ANY(5,7,9) returns true
if col is less than any of the three values. ALL requires all subquery values to compare as true, so col <
ALL(5,7,9) returns true if col is less than all three values. IN is the same as = ANY, and NOT IN is the same
as <> ALL.

Normally, you can use operators like equal and greater-than only with subqueries returning one row.
With ANY and ALL, comparisons can be made with subqueries returning multiple rows. They allow you to
specify whether any or all of the subquery values must compare as true.

EXISTS returns true if the subquery returns any rows, and NOT EXISTS returns true if the subquery returns
no rows. By using a correlated subquery, EXISTS allows complex comparisons of upper query values inside
the subquery. For example, two upper query variables can be compared in the subquery’s WHERE clause.
EXISTS and NOT EXISTS do not compare anything in the upper query, so it does not matter which columns are
returned by the subquery.

For example, figure 8.12 shows the IN subquery from figure 8.10 and the query rewritten using ANY and
EXISTS. Notice the EXISTS subquery uses a correlated subquery to join the employee id columns of the two

SELECT name
FROM employee
WHERE employee id IN (
SELECT employee id
FROM salesorder
WHERE order date = '7/19/1994'
)s

SELECT name
FROM employee
WHERE employee id = ANY (
SELECT employee id
FROM salesorder
WHERE order date = '7/19/1994'
)s

SELECT name
FROM employee
WHERE EXISTS (

SELECT employee id

FROM salesorder

WHERE salesorder.employee id = employee.employee id AND

order_date = '7/19/1994'
)s

Figure 8.12: IN query rewritten using ANY and EXISTS

tables. Figure 8.13 shows the NOT IN query from figure 8.11 and the query rewritten using ALL and NOT
EXISTS.

6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996

6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062

8.3. OUTER JOINS 83

SELECT name

FROM customer

WHERE customer_id NOT IN (
SELECT customer_id
FROM salesorder

)s

SELECT name

FROM customer

WHERE customer_id <> ALL (
SELECT customer_id
FROM salesorder

)s

SELECT name
FROM customer
WHERE NOT EXISTS (
SELECT customer_id
FROM salesorder
WHERE salesorder.customer_id = customer.customer_id

)s
Figure 8.13: NOT IN query rewritten using ALL and EXISTS

Summary

A subquery can represent a fixed value, a correlated value, or a list of values. An unlimited number of
subqueries can be used. Subqueries can be nested inside other subqueries.

In some cases, subqueries simply allow an additional way to phrase a query. In others, a subquery is the
only way to produce the desired result.

8.3 Outer Joins

An outer join is like a normal join, except special handling is performed to prevent unjoined rows from
being suppressed in the result. For example, in the join customer.customer id = salesorder.customer id, only
customers that have sales orders appear in the result. If a customer has no sales orders, he is suppressed
from the output. However, if the salesorder table is used in an outer join, the result will include all customers.
The customer and salesorder tables are joined and output, plus one row for every unjoined customer is output.
In the query, any reference to salesorders columns for these unjoined customers returns NULL.

As of POSTGRESQL 7.0, outer joins are not supported. They can be simulated using subqueries and
UNION ALL, as shown in figure 8.14. The first SELECT performs a normal join of the customer and salesorder
tables. The second SELECT displays customers who have no orders, and displays NULL as their order number.

8.4 Subqueries in Non-SELECT Queries

Subqueries can be used in UPDATE and DELETE statements also. Figure 8.15 shows two examples. The first
query deletes all customers with no sales orders. The second query sets the ship date equal to '11/16/96'

84

SELECT name, order id

FROM customer, salesorder
WHERE ~customer.customer_id
UNION ALL

SELECT name, NULL

FROM customer

WHERE ~customer.customer_id
ORDER BY name;

test=> DELETE FROM customer

CHAPTER 8. COMBINING SELECTS

= salesorder.customer_id

NOT IN (SELECT customer_id FROM salesorder)

Figure 8.14: Simulating outer joins

test-> WHERE customer_id NOT IN (

test(>

test(>

test(>

DELETE 0

test=> UPDATE salesorder

SELECT customer_id
FROM salesorder

)s

test-> SET ship_date = '11/16/96'

test-> WHERE customer id =
test(>

test(>

test(>

test(>

UPDATE 1

(

SELECT customer_id

FROM customer

WHERE name = 'Fleer Gearworks, Inc.

)s

Figure 8.15: Subqueries with UPDATE and DELETE

7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128

7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194

8.5. UPDATE WITH FROM 85

for all orders made by customer Fleer Gearworks, Inc. The numbers after DELETE and UPDATE indicate the
number of rows affected by the queries.

8.5 UPDATE with FROM

UPDATE can have an optional FROM clause, which allows joins to other tables. The FROM clause also allows
the use of columns from other tables in the SET clause. With this capability, columns can be updated with
data from other tables.

Suppose we want to update the salesorder table’s order date column. For some reason, some orders exist
in the system that have order dates earlier than the hire_date of the employee who recorded the sale. For
these rows, we wish to set the order_date equal to the employee’s hire_date. Figure 8.16 shows this query.

test=> UPDATE salesorder

test-> SET order_date = employee.hire date

test-> FROM employee

test-> WHERE salesorder.employee id = employee.employee id AND
test-> salesorder.order date < employee.hire date;
UPDATE 0

Figure 8.16: UPDATE the order_date

The FROM clause allows the use of the employee table in the WHERE and SET clauses. While UPDATE can
use subqueries to control which data rows are updated, only the FROM clause allows columns from other
tables to be used in the SET clause.

8.6 Inserting Data Using SELECT

Up to this point, every INSERT statement has inserted a single row. Each INSERT had a VALUES clause listing
the constants to be inserted. However, there is a second form of the INSERT statement. It allows the output
of a SELECT to be used to insert values into a table.

Suppose we wish to add all of our friends from the friend table to the customer table. Figure 8.17 shows
that instead of a VALUES clause, INSERT can use the output of SELECT to insert data into the table. Each column

test=> INSERT INTO customer (name, city, state, country)

test-> SELECT trim(firstname) || ' ' || lastname, city, state, 'USA'
test-> FROM friend;

INSERT 0 6

Figure 8.17: Using SELECT with INSERT

of the SELECT matches a receiving column in the INSERT. Column names and character string constants can
be used in the SELECT output. The line INSERT 0 6 shows six rows were inserted into the customer table. A
zero object identifier is returned because more than one row was inserted.

Inserting into the customer name column presents an interesting challenge. The friend table stores first
and last names in separate columns. The customer table has a single name column. The only solution is to
combine the firstname and lastname columns, with a space between them. For example, a firstname of 'Dean’
and lastname of 'Yeager' must be inserted into customer.name as 'Dean Yeager'. This is possible using trim()

86 CHAPTER 8. COMBINING SELECTS

and the || operator. Trim() removes trailing spaces. Two pipe symbols, ||, allow character strings to be
joined together to form a single string, a process called concatenation. In this example, trim(firstname), space
("), and lastname are joined using | |.

8.7 Creating Tables Using SELECT

In addition to inserting into existing tables, SELECT has an INTO clause that can create a table and place all its
output into the new table. For example, suppose we want to create a new table called newfriend just like our
friend table, but without an age column. This is easily done with the query in figure 8.18. The SELECT...INTO

test=> SELECT firstname, lastname, city, state
test-> INTO newfriend

test-> FROM friend;

SELECT

test=> \d newfriend

Table "newfriend"
Attribute | Type | Extra
___________ B

firstname | char(15) |

Tastname | char(20) |
city | char(15) |
state | char(2) |

test=> SELECT * FROM newfriend ORDER BY firstname;

firstname | Tastname | city | state

----------------- Fem e e e
Dean | Yeager | Plymouth | MA
Dick | Gleason | Ocean City | NJ

Ned | Millstone | Cedar Creek | MD
Sandy | Gleason | Ocean City | NJ
Sandy | Weber | Boston | MA
Victor | Tabor | Williamsport | PA

(6 rows)

Figure 8.18: Table creation with SELECT
query:
* Creates a table called newfriend
* Uses SELECT’s column labels to name the columns of the new table
* Uses SELECT’s column types as the column types of the new table

SELECT...INTO is CREATE TABLE and SELECT combined in a single statement. The AS clause can be used to
change the column labels and thus control the column names in the new table. The other commands in the
figure show the new table’s structure and contents.

SELECT...INTO fablename can also be written as CREATE TABLE fablename AS SELECT.... The above query
can be rewritten as CREATE TABLE newfriend AS SELECT firstname, lastname, city, state FROM friend.

7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260

7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326

8.8. SUMMARY 87

8.8 Summary

This chapter has shown how to combine queries in ways you probably never anticipated. It showed how
queries could be chained, and placed inside other queries. It showed how FROM can be used by UPDATE, and
how SELECT can create its own tables.

While these features are confusing, they are also very powerful. In most cases, you will need only the
simplest features from this chapter. However, you may get that one-in-a-thousand request that requires one
of the more complicated queries covered in this chapter. Hopefully this chapter was clear enough so you will
recognize that query, and return to this chapter to refresh your memory.

38

CHAPTER 8. COMBINING SELECTS

7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392

7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458

Chapter 9

Data Types

Data types have been used in previous chapters.This chapter covers them in detail.

9.1 Purpose of Data Types

It is tempting to think databases would be easier to use if there were only one data type — a type that could
hold any type of information: numbers, character strings, or dates. While a single data type would certainly
make table creation simpler, there are definite advantages to having different data types:

Consistent Results Columns of a uniform type produce consistent results. Displaying, sorting, aggregates,
and joins deliver consistent results. There is no conflict about how different types are compared or
displayed. Selecting from an INTEGER column always yields INTEGER values.

Data Validation Columns of a uniform type accept only properly formated data. Invalid data is rejected. A
column of type INTEGER will reject a DATE value.

Compact Storage Columns of a uniform type are stored more compactly.

Performance Columns of a uniform type are processed more quickly.

For these reasons, each column in a relational database can hold only one type of data. Data types cannot be
mixed within a column.

This limitation can cause some difficulties. For example, in our friend table, there is an age column of
type INTEGER. Only whole numbers can be placed in that column. The values “I will ask for his age soon” or
“She will not tell me her age” cannot be placed in that column. NULL can represent “I do not know her age.”
The solution is to create an age_comments column of type CHAR() to hold comments which cannot be placed
in the age field.

9.2 Installed Types

POSTGRESQL supports a large number of data types, as shown in table 9.1. Except for the number types, all
entered values must be surrounded by single quotes.

39

90

Category

Type

CHAPTER 9. DATA TYPES

7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472

Description 7473

Character string

TEXT
VARCHAR(length)
CHAR(length)

i 7474
variable storage length 7475

variable storage length with maximum length 7476
fixed storage length, blank-padded to length, internally BPCHAR 7;‘;;

Number

INTEGER
INT2
INT8

OID

NUMERIC(precision, decimal)

FLOAT
FLOAT4

integer, +2 billion range, internally INT4 7479
integer, £32 thousand range 7480
integer, +4 x 1018 range Zigé
object identifier 7483
number, user-defined precision and decimal location 7484
floating-point number, 15-digit precision, internally FLOAT8 Zigg

floating-point number, 6-digit precision 7487

Temporal

DATE

TIME
TIMESTAMP
INTERVAL

date 7488
. 7489
time 7490

date and time 7491
interval of time 7492

Logical

BOOL

493
boolean, true or false 7494

Geometric

POINT
LSEG
PATH
BOX
CIRCLE
POLYGON

point 7495
li t 7496
me segmen 7497

list of points 7498
rectangle 7499

. 7500
circle 7501

polygon 7502

Network

INET
CIDR
MACADDR

IP address with optional netmask ;282

IP network address 7505

Ethernet MAC address 7506
7507

Table 9.1: POSTGRESQL data types 7508

7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524

7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590

9.2. INSTALLED TYPES 91

Character String

Character string types are the most commonly used data types. They can hold any sequence of letters,
digits, punctuation, and other valid characters.! Typical character strings are names, descriptions, and
mailing addresses. Any value can be stored in a character string. However, character strings should be
used only when other data types are inappropriate, since they provide better data validation, more compact
storage, and better performance.

There are three character string data types: TEXT, VARCHAR(length), and CHAR(length). TEXT does not
limit the number of characters stored. VARCHAR(length) limits the length of the field to length characters.
Both TEXT and VARCHAR() store only the number of characters in the string. CHAR(length) is similar to
VARCHAR(), except it always stores exactly length characters. It pads the value with trailing spaces to the
specified length. It provides slightly faster access than TEXT or VARCHAR().

Understanding why character string types are different from other data types can be difficult. For example,
you can store 763 as a character string. In this case, you are storing the symbols 7, 6, and 3, not the numeric
value 763. You cannot add a number to the character string 763 because it does not make sense to add a
number to three symbols. Similarly, the character string 3/8/1992 is eight symbols starting with 3 and ending
with 2. If you store it in a character string data type, it is not a date. You cannot sort it with other values and
expect them to be in chronological order. The string 1/4/1998 is less than 3/8/1992 when these are sorted as
character strings because I is less than 3.

This illustrates why the other data types are valuable. The other types have a predefined format for their
data, and can do more appropriate operations on the stored information.

Still, there is nothing wrong with storing numbers or dates in character strings when appropriate. The
street address 100 Maple Avenue is best stored in a character string type, even though a number is part of
the street address. It makes no sense to store the street number in a separate INTEGER field. Also, part
numbers like G8223-9 must be stored in character strings because of the G and dash. In fact, part numbers
that are always five digits, like 32911 or 00413 should be stored in character strings too. They are not real
numbers, but symbols. Leading zeros cannot be displayed by INTEGER fields, but are easily displayed in
character strings.

Number

Number types allow the storage of numbers. The number types are: INTEGER, INTZ, INT8, OID, NUMERIC(),
FLOAT, and FLOAT4.

INTEGER, INTZ, and INT8 store whole numbers of various ranges. Larger ranges require more storage,
e.g. INT8 requires twice the storage of INTEGER, and is slower.

OID is used to store POSTGRESQL object identifiers. While INTEGER could be used for this purpose, OID
helps document the meaning of the value stored in the column.

NUMERIC(precision, decimal) allows user-defined digits of precision, rounded to decimal places. This type
is slower than the other number types.

FLOAT and FLOAT4 allow storage of floating-point values. Numbers are stored using fifteen (FLOAT) or
six (FLOAT4) digits of precision. The location of the decimal point is stored separately, so large values like
4.78145¢+32 can be represented. FLOAT and FLOAT4 are fast and have compact storage, but can produce
imprecise rounding during computations. When complete accuracy of floating point values is required,
NUMERIC() should be used.

asc is the standard encoding used to map symbols to values. For example, uppercase A maps to the internal value 65.
Lowercase a maps to the value 97. Period (.) maps to 46. Space maps to 32.

92 CHAPTER 9. DATA TYPES

Temporal

Temporal types allow storage of date, time, and time interval information. While these can be stored in
character strings, it is better to use temporal types, for reasons outlined earlier in this chapter.

The four temporal types are: DATE, TIME, TIMESTAMEF, and INTERVAL. DATE allows storage of a single date
consisting of year, month, and day. The format used to input and display dates is controlled by the DATESTYLE
setting covered in section 4.14 on page 38. TIME allows storage of hour, minute, and second, separated by
colons. TIMESTAMP represents storage of both date and time, e.g. 2000-7-12 17:34:29. INTERVAL represents
an interval of time, like 5 hours or 7 days. INTERVAL values are often generated by subtracting two TIMESTAMP
values to find the elapsed time. For example, 1996-12-15 19:00:40 minus 1996—-12-8 14:00:10 results in an
INTERVAL value of 7 05:00:30, which is seven days, five hours, and thirty seconds. Temporal types can also
handle timezone designations.

Logical

The only logical type is BOOLEAN. A BOOLEAN field can store only true or false, and of course NULL too. You
can input true as true, 1, yes, y, or 1. False can be input as false, £ no, n, or 0. While true and false can be input
in a variety of ways, true is always output as ¢ and false as f.

Geometric

The geometric types allow storage of geometric primitives. The geometric types are: POINT, LSEG, PATH,
BOX, CIRCLE, and POLYGON. Table 9.2 shows the geometric types and typical values.

Types Example Notes
POINT 2,7 (x,y) coordinates
LSEG [(0,0),(1,3)] start and stop points of line segment
PATH ((0,0),(3,0),(4,5),(1,6)) | ()1s aclosed path, []is an open path
Box (1,1),(3,3) opposite corner points of a rectangle
CIRCLE <(1,2),60> center point and radius
POLYGON | ((3,1),(3,3),(1,0)) points form closed polygon

Table 9.2: Geometric types

Network

The network types are: INET, CIDR, and MACADDR. INET allows storage of an IP address, with or without
a netmask. A typical INET value with netmask is 172.20.90.150 255.255.255.0. CIDR stores IP network
addresses. It allows a subnet mask to specify the size of the network segment. A typical CIDR value is
172.20.90.150/24. MACADDR stores MAC (Media Access Control) addresses. These are assigned to Ethernet
network cards at the time of manufacture. A typical MACADDR value is 0:50:4:1d.f6:db.

Internal

There are a variety of types used internally. Psql’s \dT command shows all data types.

7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656

7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722

9.3. TYPE CONVERSION USING CAST 93

9.3 Type Conversion using CAST

In most cases, values of one type are converted to another type automatically. In rare circumstances where
you need to explicitly convert one type to another, you can use CAST to perform the conversion. To convert
val to an INTEGER, use CAST(val AS INTEGER). To convert a column date col of type DATE to type TEXT,
use CAST(date _col AS TEXT). You can also perform type casting using double-colons, i.e. date_col::text or
num_val::numeric(10,2).

9.4 Support Functions

Functions allows access to specialized routines from SQL. Functions take one or more arguments, and return
a result.

Suppose you want to uppercase a value or column. There is no command for uppercase, but there is
a function that will do it. POSTGRESQL has a function called upper. Upper takes a single string argument,
and returns the argument in uppercase. The function call upper(col) calls the function upper with col as its
argument, and returns col in uppercase. Figure 9.1 shows an example of the use of the upper function.

test=> SELECT * FROM functest;
name

upper

Figure 9.1: Example of a function call

There are many functions available. Table 9.3 shows the most common ones, organized by the data types
they support. Psql’s \df shows all defined functions and their arguments. Section 16.1 has information about
all psq1 commands.

If you call a function with a type for which it is not defined, you will get an error, as shown in the first
query of figure 9.2. In the first query, 5/8/1971 is a character string, not a date. The second query converts
5/8/1971 to a date so date_part() can be used.

9.5 Support Operators

Operators are similar to functions, and are covered in section 4.13 on page 34. Table 9.4 shows the most
common operators. Psql’s \do shows all defined operators and their arguments.

All data types have the standard comparison operators <, <=, =, >=, >, and <>. Not all operator/type
combinations are defined. For example, if you try to add two DATE values, you will get an error, as shown in
the first query of figure 9.3.

94 CHAPTER 9. DATA TYPES
Type Function Example Returns o
Character | length() length(col) length of col 7794
String character length() character_length(col) length of col, same as length() 7725
octet_length() octet_length(col) length of col, including multi-byte overhead 7726
trim() trim(col) col with leading and trailing spaces removed ;Zg;
trim(BOTH...) trim(BOTH, col) same as trim() 7799
trim(LEADING...) trim(LEADING col) col with leading spaces removed 7730
trim(TRAILING...) trim(TRAILING col) col with trailing spaces removed 7731
trim(...FROM...) trim(str FROM col) col with leading and trailing st» removed 7732
rpad() rpad(col, len) col padded on the right to len characters ;Zgi
rpad() rpad(col, len, str) col padded on the right using str 7735
Ipad() Ipad(col, len) col padded on the left to len characters 7736
Ipad() Ipad(col, len, str) col padded on the left using str 7737
upper() upper(col) col uppercased 7738
lower() lower(col) col lowercased 7723
initcap() initcap(col) col with the first letter capitalized ;Z il
strpos() strpos(col, str) position of str in col 7749
position() position(str IN col) same as strpos() 7743
substr() substr(col, pos) col starting at position pos 7744
substring(...FROM...) substring(col FROM pos) same as substr() above ;Zig
substr() substr(col, pos, len) col starting at position pos for length len 7747
substring(...FROM...FOR...) | substring(col FROM pos FOR len) | same as substr() above 7748
translate() translate(col, from, to) col with from changed to to 7749
to_number() to_number(col, mask) convert col to NUMERIC() based on mask 7750
to_date to_date(col, mask) convert col to DATE based on mask ;Zg;
to_timestamp to_timestamp(col, mask) convert col to TIMESTAMP based on mask 7753
Number round() round(col) round to an integer 7754
round() round(col, len) NUMERIC() col rounded to len decimal places 7755
trunc() trunc(col) truncate to an integer 7756
trunc() trunc(col, len) NUMERIC() col truncated to lex decimal places;;g;
abs() abs(col) absolute value 7759
factorial() factorial(col) factorial 7760
sqrt() sqrt(col) square root 7761
cbrt() chrt(col) cube root 7762
exp() exp(col) exponential 7763
. 7764
In() In(col) natural logarithm 7765
log() log(log) base-10 logarithm 7766
to_char() to_char(col, mask) convert col to a string based on mask 7767
Temporal | date part() date_part(units, col) units part of col 7768
extract(...FROM...) extract(units FROM col) same as date_part() ;Zgg
date_trunc() date_trunc(units, col) col rounded to units 7771
1sfinite() isfinite(col) BOOLEAN indicating if col is a valid date 7772
now() now() TIMESTAMP representing current date and tini@73
timeofday() timeofday() string showing date/time in UNIX format 7774
overlaps() overlaps(cl, ¢2, ¢3, c4) BOOLEAN indicating if col’s overlap in time ;Z;Z
to_char() to_char(col, mask) convert col to string based on mask 7777
Geometric see psql’s \df for a list of geometric functions7778
Network broadcast() broadcast(col) broadcast address of col 7779
host() host(col) host address of col 7780
netmask() netmask(col) netmask of col ;Zg;
masklen() masklen(col) mask length of col 7783
network() network(col) network address of col 7784
NULL nullif() nullif(coll, col2) return NULL if coll equals col2, else return colF85
coalesce() coalesce(coll, col2,...) return first non-NULL argument ;Zgg
7788

Table 9.3: Common functions

7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854

9.5. SUPPORT OPERATORS 95

test=> SELECT date_part('year', '5/8/1971');

ERROR: Function 'date_ part(unknown, unknown)' does not exist
Unable to identify a function that satisfies the given argument types
You may need to add explicit typecasts

test=> SELECT date_part('year', CAST('5/8/1971' AS DATE));

date_part
1971
(1 row)
Figure 9.2: Error generated by undefined function/type combination.
Type Function Example Returns
Character | || coll || col2 append col2 on to the end of coll
String - col ~ pattern BOOLEAN, col matches regular expression pattern
1” col !” pattern BOOLEAN, col does not match regular expression pattern
o col ~* pattern same as ", but case-insensitive
1% col \™* pattern same as !”, but case-insensitive
o col ~~ pattern BOOLEAN, col matches LIKE pattern
LIKE col LIKE pattern same as "~
17" col |”~ pattern BOOLEAN, col does not match LIKE pattern
NOT LIKE col NOT LIKE pattern same as !””
Number ! Icol factorial
+ coll + col2 addition
- coll — col2 subtraction
* coll * col2 multiplication
/ coll / col2 division
% coll % col2 remainder/modulo
" coll ~ col2 coll raised to the power of col2
Temporal | + coll + col2 addition of temporal values
- coll — col2 subtraction of temporal values
(...) OVERLAPS (...) | (c1, c2) OVERLAPS (¢3,c4) | BOOLEAN indicating col’s overlap in time
Geometric see psql’s \do for a list of geometric operators
Network << coll << col2 BOOLEAN indicating if coll is a subnet of col2
<<= coll <<= col2 BOOLEAN indicating if colI is equal or a subnet of col2
>> coll >> col2 BOOLEAN indicating if coll is a supernet of col2
>>= coll >>= col2 BOOLEAN indicating if colI is equal or a supernet of col2

Table 9.4: Common operators

96 CHAPTER 9. DATA TYPES

test=> SELECT CAST('1/1/1992' AS DATE) + CAST('1/1/1993' AS DATE);

ERROR: Unable to identify an operator '+' for types 'date' and 'date'
You will have to retype this query using an explicit cast

test=> SELECT CAST('1/1/1992' AS DATE) + CAST('l year' AS INTERVAL);
?column?

1993-01-01 00:00:00-05
(1 row)

test=> SELECT CAST('1/1/1992' AS TIMESTAMP) + 'l year';
?column?

1993-01-01 00:00:00-05
(1 row)

Figure 9.3: Error generated by undefined operator/type combination

9.6 Support Variables

There are several defined variables. These are shown in table 9.5.

Meaning ‘ Meaning

CURRENT DATE current date

CURRENT_TIME current time

CURRENT _TIMESTAMP | current date and time
CURRENT_USER user connected to the database

Table 9.5: Common variables

9.7 Arrays

Arrays allow a column to store several simple data values. You can store one-dimensional arrays, two-
dimensional arrays, or arrays with any number of dimensions.

An array column is created like an ordinary column, except brackets are used to specify the dimensions of
the array. The number of dimensions and size of each dimension are for documentation purposes only. Values
that do not match the dimensions specified at column creation are not rejected. Figure 9.4 creates a table
with one-, two-, and three-dimensional INTEGER columns. The first and last columns have sizes specified.

test=> CREATE TABLE array_test (

test(> coll INTEGER[5],
test(> col2 INTEGER[]I[],
test(> col3 INTEGER[2][2][]
test(>);

CREATE

Figure 9.4: Creation of array columns

7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7833
7884
7885
7886
7837
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920

7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986

9.7. ARRAYS 97

The first column is a one-dimensional array, also called a list or vector. Values inserted into that column
look like {3,10,9,32,24} or {20,8,9,1,4}. Each value is a list of integers, surrounded by curly braces. The
second column, col2, is a two-dimensional array. Typical values for this column are {{2,9,3},{4,3,5}} or
{{18,6},{32,5}}. Notice double braces are used. The outer brace surrounds two one-dimensional arrays.
You can think of it as a matrix, with the first one-dimensional array representing the first row of the array,
and the second representing the second row of the array. Commas separate the individual elements, and
each pair of braces. The third column of the array test table is a three-dimensional array, holding values like
{{3,1},{1,9}},{{4,5},{82}}}. This is a three-dimensional matrix made up of two 2 x2 matrices. Arrays of
any size can be constructed.

Figure 9.5 shows a query inserting values into array_test, and several queries selecting data from the
table. Brackets are used to access individual array elements.

test=> INSERT INTO array test VALUES (
test(> {1,
test(> "{{1
test(> “{{{
test(>);
INSERT 52694 1
test=> SELECT * FROM array test;

coll col2 | col3

{1,2,3,4,5}
(1 row)

test=> SELECT col1[4] FROM array test;
coll

col2

col3

Figure 9.5: Using arrays

Any data type can be used as an array. If individual elements of the array are accessed or updated
frequently, it is better to use separate columns or tables rather than arrays.

98 CHAPTER 9. DATA TYPES

9.8 Large Objects(BLOBS)

POSTGRESQL cannot store values of more than several thousand bytes using the above data types, nor can
binary data be easily entered within single quotes. Large objects, also called Binary Large Objects or BLOBS,
are used to store very large values and binary data.

Large objects allow storage of any operating system file, like images or large text files, directly into
the database. You load the file into the database using lo_import(), and retrieve the file from the database
using lo_export(). Figure 9.6 shows an example that stores a fruit name and image. Lo import() stores

test=> CREATE TABLE fruit (name CHAR(30), image 0ID);
CREATE
test=> INSERT INTO fruit
test-> VALUES ('peach', To_import('/usr/images/peach.jpg'));
INSERT 27111 1
test=> SELECT Tlo_export(fruit.image, '/tmp/outimage.jpg')
test-> FROM fruit
test-> WHERE name = 'peach';
To_export

(1 row)

test=> SELECT lo_unlink(fruit.image) FROM fruit;
To_unlink

Figure 9.6: Using large images

[usr/images/peach.jpg into the database. The function call returns an OID which is used to refer to the
imported large object. The OID value is stored in fruit.image. Lo_export() uses the OID value to find the large
object stored in the database, and places the image into the new file /tmp/outimage.jpg. The 1 returned by
lo_export() indicates a successful export. Lo_unlink() removes large objects.

Full pathnames must be used with large objects because the database server is running in a different
directory than the psql client. Files are imported and exported by the posigres user, so postgres must have
permission to read the file for lo_import(), and directory write permission for lo_export(). Because large
objects use the local filesystem, users connecting over a network cannot use lo_import and lo_export(). They
can use psql’s \lo_import and \lo_export commands.

9.9 Summary

Care should be used when choosing data types. The many data types give users great flexibility. Wise
decisions about column names and types give the database structure and consistency. It also improves
performance and allows efficient data storage. Do not choose types hastily — you will regret it later.

7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052

8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118

Chapter 10

Transactions and Locks

Up to this point, we have used POSTGRESQL as a sophisticated filing cabinet. However, a database is much
more. It allows users to view and modify information simultaneously. It helps ensure data integrity. This
chapter explores these database capabilities.

10.1 Transactions

Though you may not have heard the term framsaction before, you have already used them. Every sSqQL
query is executed in a transaction. Transactions give databases an all-or-nothing capability when making
modifications.

For example, suppose the query UPDATE trans_test SET col = 3 is in the process of modifying 700 rows.
And suppose, after it has modified 200 rows, the user types control-C, or the computer reset button is pressed.
When the user looks at trans_test, he will see that none of the rows have been updated.

This might surprise you. Because 200 of the 700 rows had already updated, you might suspect 200 rows
had been modified. However, POSTGRESQL uses transactions to guarantee queries are either completed, or
have no effect.

This feature is valuable. Suppose you were executing a query to add $500 to everyone’s salary. And
suppose you kicked the power cord out of the wall while the update was happening. Without transactions, the
query may have updated half the salaries, but not the rest. It would be difficult to know where the UPDATE
stopped. You would wonder, “Which rows were updated, and which ones were not?” You cannot just re-execute
the query, because some people have already received their $500 increase. With transactions, you can check
to see if any of the rows were updated. If one was updated, they all were updated. If not, simply re-execute
the query.

10.2 Multi-Statement Transactions

By default, each SQL query runs in its own transaction. Figures 10.1 and 10.2 show two identical queries.

test=> INSERT INTO trans_test VALUES (1);
INSERT 130057 1

Figure 10.1: INSERT with no explicit transaction

Figure 10.1 shows a typical INSERT query. Before POSTGRESQL starts the INSERT, it begins a transaction. It
performs the INSERT, then commits the transaction. This is done automatically for any query with no explicit

99

100 CHAPTER 10. TRANSACTIONS AND LOCKS

test=> BEGIN WORK;

BEGIN

test=> INSERT INTO trans_test VALUES (1);
INSERT 130058 1

test=> COMMIT WORK;

COMMIT

Figure 10.2: INSERT with explicit transaction

transaction. Figure 10.2 shows an INSERT using an explicit transaction. BEGIN WORK starts the transaction,
and COMMIT WORK commits the transaction. The only difference between the two queries is that there is an
implied BEGIN WORK...COMMIT WORK surrounding the INSERT.

Even more valuable is the ability to bind multiple queries into a single transaction. When this is done,
either all the queries execute to completion, or none of them have any effect. For example, figure 10.3 shows
two INSERTS in a transaction. PostgreSQL guarantees either both INSERTS succeed, or none of them.

test=> BEGIN WORK;

BEGIN

test=> INSERT INTO trans test VALUES (1);
INSERT 130059 1

test=> INSERT INTO trans_test VALUES (2);
INSERT 130060 1

test=> COMMIT WORK;

COMMIT

Figure 10.3: Two INSERTS in a single transaction

For a more complicated example, suppose you have a table of bank account balances, and suppose you
wish to transfer $100 from one account to another account. This is performed using two queries — an
UPDATE to subtract $100 from one account, and an UPDATE to add $100 to another account. The UPDATES
should either both complete, or none of them. If the first UPDATE completes but not the second, the $100
would disappear from the bank records. It would have been subtracted from one account, but never added to
any account. Such errors are very hard to find. Multi-statement transactions prevent them from happening.
Figure 10.4 shows the two queries bound into a single transaction. The transaction forces POSTGRESQL to

test=> BEGIN WORK;

BEGIN

test=> UPDATE bankacct SET balance
UPDATE 1

test=> UPDATE bankacct SET balance = balance + 100 WHERE acctno = '96814';
UPDATE 1

test=> COMMIT WORK;

COMMIT

balance - 100 WHERE acctno '82021"';

Figure 10.4: Multi-statement transaction

perform the queries as a single operation.

8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184

8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250

10.3. VISIBILITY OF COMMITTED TRANSACTIONS 101

When you begin a transaction with BEGIN WORK, you do not have to commit it using COMMIT WORK.
You can close the transaction with ROLLBACK WORK and the transaction will be discarded. The database
is left as though the transaction had never been executed. In figure 10.5, the current transaction is rolled
back, causing the DELETE have no effect. Also, if any query inside a multi-statement transaction cannot be

test=> INSERT INTO rollback test VALUES (1);
INSERT 19369 1

test=> BEGIN WORK;

BEGIN

test=> DELETE FROM rollback test;

DELETE 1

test=> ROLLBACK WORK;

ROLLBACK

test=> SELECT * FROM rollback test;

Figure 10.5: Transaction rollback

executed due to an error, the entire transaction is automatically rolled back.

10.3 Visibility of Committed Transactions

Though we have focused on the all-or-nothing nature of transactions, they have other important benefits.
Only committed transactions are visible to users. Though the current user sees his changes, other users do
not see them until the transaction is committed.

For example, figure 10.1 shows two users issuing queries using the default mode in which every statement
is in its own transaction. Figure 10.2 shows the same query with #ser 1 using a multi-query transaction. User

User 1 ‘ User 2 ‘ Notes
SELECT (*) FROM trans_test | returns 0
INSERT INTO trans_test VALUES (1) add row to trans_test
SELECT (*) FROM trans_test returns 1

SELECT (*) FROM trans_test | returns 1

Table 10.1: Visibility of single-query transactions

1 sees the changes made by his transaction. However, user 2 does not see the changes until #ser I commits
the transaction.

This is another advantage of transactions. They insulate users from seeing uncommitted transactions.
Users never see a partially committed view of the database.

As another example, consider the bank account query where we transfered $100 from one bank account
to another. Suppose we were calculating the total amount of money in all bank accounts at the same time
the $100 was being transfered. If we did not see a consistent view of the database, we could have seen the
$100 removed from the account, but not see the $100 added. Our bank account total would be wrong. A
consistent database view means we either see the $100 in its original account, or we see it in its new account.

102 CHAPTER 10. TRANSACTIONS AND LOCKS

User 1 User 2 Notes
BEGIN WORK User 1 starts a transaction
SELECT (*) FROM trans_test | returns 0
INSERT INTO trans_test VALUES (1) add row to trans_test
SELECT (*) FROM trans_test returns 1

SELECT (*) FROM trans_test | returns 0
COMMIT WORK

SELECT (*) FROM trans_test | returns 1

Table 10.2: Visibility using multi-query transactions

Without this feature, we would have to make sure no one was making bank account transfers while we were
calculating the amount of money in all accounts.

While this is a contrived example, real-world database users INSERT, UPDATE, and DELETE data all at
the same time, while others SELECT data. All this activity is orchestrated by the database so each user can
operate in a secure manner, knowing other users will not affect their results in an unpredictable way.

10.4 Read Committed and Serializable Isolation Levels

The previous section illustrated that users only see committed transactions. This does not address what
happens if someone commits a transaction while you are in your own transaction. There are cases where
you need to control if other transaction commits are seen by your transaction.

POSTGRESQL’s default isolation level, READ COMMITTED, allows you to see other transaction commits
while your transaction is open. Figure 10.6 illustrates this effect. First, the transaction does a SELECT

test=> BEGIN WORK;

BEGIN

test=> SELECT COUNT(*) FROM trans_test;
count

test=> --

test=> -- someone commits INSERT INTO trans test
test=> --

test=> SELECT COUNT(*) FROM trans_test;

test=> COMMIT WORK;
COMMIT

Figure 10.6: Read-committed isolation level

COUNT(*). Then, while sitting at a psq1 prompt, someone INSERTS into the table. The next SELECT COUNT(¥)

8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316

8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382

10.5. LOCKING 103

shows the newly INSERTED row. When another user commits a transaction, it is seen by the current
transaction, even if it is committed affer the current transaction started.

You can prevent your transaction from seeing changes made to the database. SET TRANSACTION ISOLATION
LEVEL SERIALIZABLE changes the isolation level of the current transaction. SERIALIZABLE isolation prevents
the current transaction from seeing commits made by other transactions. Any commit made after the start of
the first query of the transaction is not visible. Figure 10.7 shows an example of a SERIALIZABLE transaction.

test=> BEGIN WORK;

BEGIN

test=> SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET VARIABLE

test=> SELECT COUNT(*) FROM trans_test;

count

test=> --

test=> -- someone commits INSERT INTO trans test
test=> --

test=> SELECT COUNT(*) FROM trans_test;

test=> COMMIT WORKj;
COMMIT

Figure 10.7: Serializable isolation level

SERIALIZABLE isolation provides a stable view of the database for SELECT transactions. For transactions
containing UPDATE and DELETE queries, SERIALIZABLE mode is more complicated. SERIALIZABLE isolation
forces the database to execute all transactions as though they were run serially, one after another, even if
they are run concurrently. If two concurrent transactions attempt to update the same row, serializability is
impossible. When this happens, POSTGRESQL forces one transaction to roll back.

For SELECT-only transactions, SERIALIZABLE isolation level should be used when you do not want to see
other transaction commits during your transaction. For UPDATE and DELETE transactions, SERIALIZABLE
isolation prevents concurrent modification of the same data row, and should be used with caution.

10.5 Locking

Exclusive locks, also called write locks, prevent other users from modifying a row or an entire table. Rows
modified by UPDATE and DELETE are exclusively locked automatically for the duration of the transaction. This
prevents other users from making changes to the row until the transaction is either committed or rolled
back.

For example, table 10.3 shows two simultaneous UPDATE transactions affecting the same row. One trans-

104 CHAPTER 10. TRANSACTIONS AND LOCKS

Transaction 1 | Transaction 2 Notes
BEGIN WORK BEGIN WORK Start both transactions
UPDATE row 64 Transaction 1 exclusively locks row 64
UPDATE row 64 | Transaction 2 must wait to see if first transaction commits
COMMIT WORK Transaction 1 commits. Transaction 2 returns from UPDATE.
COMMIT WORK | Transaction 2 commits

Table 10.3: Waiting for a lock

action must wait to see if the other transaction commits or rolls back. If these had been using SERIALIZABLE
isolation level, transaction 2 would have been rolled back automatically if transaction 1 committed.

The only time users must wait for other users is when they are trying to modify the same row. If they
modify different rows, there is no waiting. SELECT queries never have to wait.

Locking is done automatically by the database. However, there are cases when locking must be controlled
manually. For example, figure 10.8 shows a query that first SELECTs a row, then performs an UPDATE. The

test=> BEGIN WORK;

BEGIN

test=> SELECT *

test-> FROM Tock test

test-> WHERE name = 'James';

id | name

_____ e e e e e
521 | James

(1 row)

test=> --

test=> -- the SELECTed row is not Tocked
test=> --

test=> UPDATE lock_test

test-> SET name = 'Jim'

test-> WHERE name = 'James';

UPDATE 1

test=> COMMIT WORK;

COMMIT

Figure 10.8: SELECT with no locking

problem is another user can modify the James row between the SELECT and UPDATE. To prevent this, you
can use SERIALIZABLE isolation. However, in this mode, one of the UPDATEs would fail. A better solution is to
use SELECT...FOR UPDATE to lock the selected rows. Figure 10.9 shows the same query using SELECT...FOR
UPDATE. Another user cannot modify the James row between the SELECT...FOR UPDATE and UPDATE. In fact,
the row remains locked until the transaction ends.

You can also manually control locking using the LOCK command. It allows specification of a transaction’s
lock type and scope. See the LOCK manual page for more information.

8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448

8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514

10.6. DEADLOCKS

test=> BEGIN WORK;

BEGIN

test=> SELECT *
test-> FROM lock_test

test-> WHERE

name = 'James'

test-> FOR UPDATE;

id |

521 | James
(1 row)

test=> --

105

test=> -- the SELECTed row is locked

test=> --

test=> UPDATE lock test
test-> SET name = 'Jim'

test-> WHERE
UPDATE 1

name = 'James';

test=> COMMIT WORK;

COMMIT

Figure 10.9: SELECT...FOR UPDATE

10.6 Deadlocks

It is possible to create an unrecoverable lock condition, called a deadlock. Figure 10.4 illustrates how two
transactions become deadlocked. In this example, each transaction holds a lock and is waiting for the other

Transaction 1 Transaction2 Notes

BEGIN WORK BEGIN WORK Start both transactions

UPDATE row 64 | UPDATE row 83 Independent rows write locked

UPDATE row 83 Holds waiting for transaction 2 to release write lock
UPDATE row 64 Attempt to get write lock held by transaction 1

COMMIT WORK

auto-ROLLBACK WORK

Deadlock detected — transaction 2 automatically rolled back
Transaction 1 returns from UPDATE and commits

Table 10.4: Deadlock

transaction’s lock to be released. One transaction must be rolled back by POSTGRESQL because the two
transactions will wait forever. Obviously, if they had acquired locks in the same order no deadlock would

occur.

10.7 Summary

Single-user database queries are concerned with getting the job done. Multi-user queries must be designed
to gracefully handle multiple users accessing the data.

Multi-user interaction can be very confusing. The database is constantly changing. In a multi-user
environment, improperly constructed queries can randomly fail when users perform simultaneous operations.

106 CHAPTER 10. TRANSACTIONS AND LOCKS

Queries cannot assume that rows from previous transactions still exist.

By understanding POSTGRESQLS multi-user behavior, you are now prepared to create robust queries.
Overlapping transactions and locking must always be considered. POSTGRESQL has a powerful set of features
to allow the construction of reliable multi-user queries.

8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580

8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646

Chapter 11

Performance

In an ideal world, users would never need to be concerned about performance. The system would tune itself.
However, databases do not live in an ideal world. An untuned database can be thousands of times slower
than a tuned one, so it pays to take steps to improve performance. This chapter shows how to get optimal
performance from your database.

11.1 Indexes

When accessing a table, POSTGRESQL normally reads from the beginning of the table to the end, looking for
relevant rows. With an index, POSTGRESQL can quickly find specific values in the index, and go directly to
matching rows. Indexes allow fast retrieval of specific rows from a table.

For example, consider the query SELECT * FROM customer WHERE col = 43. Without an index, POST-
GRESQL must scan the entire table looking for rows where col equals 43. With an index on col, POSTGRESQL
can go directly to rows where col equals 43, bypassing all other rows.

For a large table, it can take minutes to check every row. Using an index, finding a specific row takes
fractions of a second.

Internally, POSTGRESQL stores data in operating system files. Each table has its own file. Data rows are
stored one after another in the file. An index is a separate file that is sorted by one or more columns. It
contains pointers into the table file, allowing rapid access to specific values in the table.

However, POSTGRESQL does not create indexes automatically. Users should create them for columns
frequently used in WHERE clauses.

Indexes are created using the CREATE INDEX command, as shown in figure 11.1. In this example,

test=> CREATE INDEX customer custid_idx ON customer (customer id);
CREATE

Figure 11.1: Example of CREATE INDEX

customer _custid_idx is the name of the index, customer is the table being indexed, and customer id is the
column being indexed. You can use any name for the index, but it is good to use the table and column names
as part of the index name, i.e. customer customer id_idx or i_customer custid. This index is only useful for
finding rows in customer for specific customer ids. It cannot help when accessing other columns because
indexes are sorted by a specific column.

You can create as many indexes as you wish. Of course, an index on a seldom used column is a waste of
disk space. Also, performance can suffer with too many indexes because row changes require an update to
each index.

107

108 CHAPTER 11. PERFORMANCE

It is possible to create an index spanning multiple columns. Multi-column indexes are sorted by the first
indexed column. When the first column has several equal values, sorting continues using the second indexed
column. Multi-column indexes are only useful on columns with many duplicate values.

The command CREATE INDEX customer_age_gender idx ON customer (age, gender) creates an index which
is sorted by age, and when several age rows have the same value, then sorted on gender. This index can be
used by the query SELECT * FROM customer WHERE age = 36 AND gender = ’F’ and the query SELECT * FROM
customer WHERE age = 36.

However, index customer_age _gender idx is useless if you wish to find rows based only on gender. The
gender component of the index can be used only after the age value has been specified. The query SELECT *
FROM customer WHERE gender = 'F’ cannot use the index because there is no restriction on age, which is the
first part of the index.

Indexes can be useful for columns involved in joins too. An index can even be used to speed up some
ORDER BY clauses.

Indexes are removed using the DROP INDEX command. See the CREATE INDEX and DROP_INDEX manual
pages for more information.

11.2 Unique Indexes

Unique indexes are like ordinary indexes, except they prevent duplicate values from occurring in the table.
For example, figure 11.2 shows the creation of a table and a unique index. The index is unique because the

test=> CREATE TABLE duptest (channel INTEGER);

CREATE

test=> CREATE UNIQUE INDEX duptest channel idx ON duptest (channel);

CREATE

test=> INSERT INTO duptest VALUES (1);

INSERT 130220 1

test=> INSERT INTO duptest VALUES (1);

ERROR: Cannot insert a duplicate key into unique index duptest channel idx

Figure 11.2: Example of a unique index

keyword UNIQUE was used. The remaining queries try to insert a duplicate value. The unique index prevents
this and displays an appropriate error message.

Sometimes unique indexes are created only to prevent duplicate values, and not for performance reasons.
Multi-column unique indexes ensure the combination of indexed columns remains unique. Unique indexes
do allow multiple NULL values. Unique indexes speed data access and prevent duplicates.

11.3 Cluster

The CLUSTER command reorders the table file to match the ordering of an index. This is a specialized
command that is valuable when performance is critical, and the indexed column has many duplicate values.

For example, suppose column customer.age has many duplicate values, and the query SELECT * FROM
customer WHERE age = 98 is executed. An index on age allows rapid retrieval of the row locations from the
index, but if there are thousands of matching rows, they may be scattered in the table file, requiring many
disk accesses to retrieve them. CLUSTER reorders the table, placing duplicate values next to each other. This
speeds access for large queries accessing many duplicate values.

8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712

8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778

11.4. VACUUM 109

CLUSTER even helps with range queries like col >= 3 AND col <= 5. CLUSTER places these rows next to
each other on disk, speeding indexed lookups.
CLUSTER can also speed ORDER BY processing. See the CLUSTER manual page for more information.

11.4 Vacuum

When POSTGRESQL updates a row, it keeps the old copy of the row in the table file and writes a new one.
The old row is marked as expired, and used by other transactions still viewing the database in its prior state.
Deletions are similarly marked as expired, but not removed from the table file.

The VACUUM command removes expired rows from the file. While it removes them, it moves rows from
the end of the table into the expired spots, thereby compacting the table file.

The vACUUM command should be run periodically to clean out expired rows. For tables that are heavily
modified, it is useful to run VACUUM every night in an automated manner. For tables with few modifications,
VACUUM should be run only periodically. VACUUM exclusively locks the table while processing.

There are two ways to run VACUUM. VACUUM alone vacuums all tables in the database. VACUUM fablename
vacuums a single table.

11.5 Vacuum Analyze

The VACUUM ANALYZE command is like VACUUM, except it also collects statistics about each column’s pro-
portion of duplicate values and the maximum and minium values. This information is used by POSTGRESQL
when deciding how to efficiently execute complex queries. VACUUM ANALYZE should be run when a table is
initially loaded, and when the table data dramatically changes.

The VACUUM manual page shows all of the VACUUM options.

11.6 EXPLAIN

EXPLAIN causes POSTGRESQL to display how a query will be executed, rather than executing it. For example,
figure 11.3 shows a SELECT query preceeded by the word EXPLAIN. In the figure, POSTGRESQL reports a

test=> EXPLAIN SELECT customer_id FROM customer;
NOTICE: QUERY PLAN:

Seq Scan on customer (cost=0.00..15.00 rows=1000 width=4)

EXPLAIN

Figure 11.3: Using EXPLAIN

sequential scan will be used on customer, meaning it will scan the entire table. Cost is an estimate of the work
required to execute the query. The numbers are only meaningful for comparison. Rows indicates the number
of rows it expects to return. Width is the number of bytes per row.

Figure 11.4 shows more interesting examples of EXPLAIN. The first EXPLAIN shows a SELECT with the
restriction customer _id = 55. This is again a sequential scan, but the restriction causes POSTGRESQL to
estimate ten rows will be returned. A VACUUM ANALYZE is run, causing the next query to properly estimate
one row will be returned instead of ten. An index is created, and the query rerun. This time, an index scan

110 CHAPTER 11. PERFORMANCE

8779
8780
8781
8782
8783
8784
8785

test=> EXPLAIN SELECT customer id FROM customer WHERE customer id = 55; gggg

NOTICE: QUERY PLAN: 8788
8789
8790
8791
8792
EXPLAIN 8733

8794
test=> VACUUM ANALYZE customer; 8795

VACUUM 8796

test=> EXPLAIN SELECT customer_id FROM customer WHERE customer_id = 55; ggg;

NOTICE: QUERY PLAN: 8799
8800
8801
8802
8803

EXPLAIN 8804

test=> CREATE UNIQUE INDEX customer custid idx ON customer (customer id); gggg

CREATE 8807
test=> EXPLAIN SELECT customer id FROM customer WHERE customer id = 55; 8808

09
NOTICE: QUERY PLAN: 2210

8811
Index Scan using customer_custid idx on customer (cost=0.00..2.01 rows=1 width=4) ggig
8814
EXPLAIN 8815

test=> EXPLAIN SELECT customer_id FROM customer; ggig

NOTICE: QUERY PLAN: 8818
8819
8820
8821
8822

EXPLAIN 8823

test=> EXPLAIN SELECT * FROM customer ORDER BY customer_ id; gggg

NOTICE: QUERY PLAN: 8826
8827

. s . 8828

Index Scan using customer custid idx on customer (cost=0.00..42.00 rows=1000 width=4) 8899
8830

8831

EXPLAIN 3839
8833

8834

Figure 11.4: More complex EXPLAIN examples 8835

8836

8837

8838

8839

8840

8841

8842

8843

8844

Seq Scan on customer (cost=0.00..22.50 rows=10 width=4)

Seq Scan on customer (cost=0.00..17.50 rows=1 width=4)

Seq Scan on customer (cost=0.00..15.00 rows=1000 width=4)

8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910

11.7. SUMMARY 111

is used, allowing POSTGRESQL to go directly to the rows where customer _id equals 55. The next one shows
a query with no WHERE restriction. POSTGRESQL realizes the index is of no use and performs a sequential
scan. The last query has an ORDER BY that matches an index, so POSTGRESQL uses an index scan.

Even more complex queries can be studied using EXPLAIN, as shown in figure 11.5. In this example,

test=> EXPLAIN SELECT * FROM tabl, tabZ WHERE coll = col2;
NOTICE: QUERY PLAN:

Merge Join (cost=139.66..164.66 rows=10000 width=8)
-> Sort (cost=69.83..69.83 rows=1000 width=4)
-> Seq Scan on tab2 (cost=0.00..20.00 rows=1000 width=4)
-> Sort (cost=69.83..69.83 rows=1000 width=4)
-> Seq Scan on tabl (cost=0.00..20.00 rows=1000 width=4)

EXPLAIN

Figure 11.5: EXPLAIN example using joins

tabl and tab2 are joined on coll and col2. Each table is sequentially scanned, and the result sorted. The two
results are then merge joined to produce output. POSTGRESQL also supports kash join and nested loop join
methods. POSTGRESQL chooses the join method it believes to be the fastest.

11.7 Summary

There are a variety of tools available to speed up POSTGRESQL queries. While their use is not required, they
can produce huge improvements in query speed. Section 20.8 outlines more steps database administrators
can take to improve performance.

112

CHAPTER 11. PERFORMANCE

8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976

8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042

Chapter 12

Controlling Results

When a SELECT query is issued from psq], it travels to the POSTGRESQL server, is executed, and the result
sent back to psql to be displayed. POSTGRESQL allows fine-grained control over which rows are returned.
This chapter explores the methods available.

12.1 LiMIT

The LIMIT and OFFSET clauses of SELECT allow the user to specify which rows should be returned. For
example, suppose customer has 1000 rows with customer id values from 1 to 1000. Figure 12.1 shows
queries using LIMIT and LIMIT...OFFSET. The first query sorts the table by customer id and uses LIMIT to

test=> SELECT customer_id FROM customer ORDER BY customer id LIMIT 3;
customer_id

(3 rows)

test=> SELECT customer_id FROM customer ORDER BY customer id LIMIT 3 OFFSET 997;
customer_id
998
999
1000
(3 rows)

Figure 12.1: Examples of LIMIT and LIMIT/OFFSET

return the first three rows. The second query is similar, except it skips to the 997th row before returning
three rows.

Notice each query uses ORDER BY. While this is not required, LIMIT without ORDER BY returns random
rows from the query, which is useless.

LMIT improves performance because it reduces the number of rows returned to the client. If an index
matches the ORDER BY, sometimes LIMIT can even produce correct results without executing the entire
query.

113

114 CHAPTER 12. CONTROLLING RESULTS

12.2 Cursors

Ordinarily, all rows generated by a SELECT are returned to the client. Cursors allow a SELECT query to be
named, and individual result rows fetched as needed by the client.

Figure 12.2 shows an example of cursor usage. Notice cursor activity must take place inside a transaction.
Cursors are declared using DECLARE...CURSOR FOR SELECT.... Result rows are retrieved using FETCH. MOVE
allows the user to move the cursor position. CLOSE releases all rows stored in the cursor. See the DECLARE,
FETCH, MOVE, and CLOSE manual pages for more information.

12.3 Summary

LIMIT specifies which rows to return. Cursors allow dynamic row retrieval. The difference between LIMIT
and cursors is that LIMIT specifies the rows as part of the SELECT, while cursors allow dynamic fetching of
rows. LIMIT and cursors offer new ways to tailor your queries so you get exactly the results you desire.

9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108

12.3. SUMMARY 115

test=> BEGIN WORK;
9109
9111 test=> DECLARE customer_cursor CURSOR FOR

o1a test-> SELECT customer_id FROM customer;

9114 SELECT
9115 test=> FETCH 1 FROM customer cursor;

9116 .
9117 customer_id

0118 mmmmmmmmmmmen
9119)
9120

9121 (1 row)

9122

gigi test=> FETCH 1 FROM customer_cursor;
9125 Customer‘_id

9126 mmmmmmmmmmeo

9127 2

9128

9129 (1 row)

9130
9131 _
9132 test=> FETCH 2 FROM customer cursor;
9133 customer_id

9134 e

9135
9136
9137 4

9138 (2 rows)

9139

9140

9141 test=> FETCH -1 FROM customer_cursor;
9142 customer id

9143 -
9144 TTTTTTTETTTTS
9145 3
9146
9147
9148

9149 test=> FETCH -1 FROM customer_cursor;

9150 .
9151 customer_id

9152 mmmmmmmmmmee-
o154 2
9155 (1 row)

9156

gig; test=> MOVE 10 FROM customer_ cursor;
9159 MOVE

9160 test=> FETCH 1 FROM customer_cursor;
9161]

9162 customer _id

9163 = mmmmemmmmmeme-e-
9164 13

9165
0166 (1 row)

9167 test=> CLOSE customer_cursor;
9168 CLOSE

9169
9170 test=> COMMIT WORKj;

9171 COMMIT
9172
9173
9174

(1 row)

Figure 12.2: Cursor usage

116

CHAPTER 12. CONTROLLING RESULTS

9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240

9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306

Chapter 13

Table Management

This chapter covers a variety of topics involved in managing SQL tables.

13.1 Temporary Tables

Temporary tables are short-lived tables. They exist only for the duration of a database session. When a
database session terminates, its temporary tables are automatically destroyed. Figure 13.1 illustrates this.
In the figure, CREATE TEMPORARY TABLE creates a temporary table. On psql exit, the temporary table is
destroyed. Restarting psql shows the temporary table no longer exists.

Temporary tables are visible only to the session that creates them. They are invisible to other users. In
fact, several users can create temporary tables with the same name, and each user sees only their version
of the table. Table 13.1 shows an example of this. Temporary tables will even mask ordinary tables with the

User 1 ‘ User 2
CREATE TEMPORARY TABLE temptest (col INTEGER) | CREATE TEMPORARY TABLE femptest (col INTEGER)
INSERT INTO femptest VALUES (1) INSERT INTO femptest VALUES (2)
SELECT col FROM femptest returns 1 SELECT col FROM temptest returns 2

Table 13.1: Temporary table isolation

same name.

Temporary tables are ideal for holding intermediate data used by the current SQL session. For example,
suppose you need to do many SELECTSs on the result of a complex query. An efficient way to do this is to
execute the complex query once, and store the result in a temporary table.

Figure 13.2 shows an example of this. It uses SELECT ... INTO TEMPORARY TABLE to collect all Pennsylvania
customers into a temporary table. It also creates a temporary index on the temporary table. Customer -
pennsylvania can then be used in subsequent SELECT queries. Multiple users can do this at the same time
with the same temporary names without fear of collision.

13.2 ALTER TABLE
ALTER TABLE allows the following operations:

e rename tables

* rename columns

117

118 CHAPTER 13. TABLE MANAGEMENT

9307
9308

$ psql test 9309

Welcome to psql, the PostgreSQL interactive terminal. ggi?

9312

Type: \copyright for distribution terms ggii
\h for help with SQL commands 9315

\? for help on internal slash commands 9316
\g or terminate with semicolon to execute query ggi;
\q to qlﬂt 9319

9320

test=> CREATE TEMPORARY TABLE temptest(col INTEGER); gggé

CREATE 0323
test=> SELECT * FROM temptest; 9324
col 9325
9326

""" 9327
(0 rows) 9328
9329

9330

test=> \q 9331
$ psql test gggg
Welcome to psql, the PostgreSQL interactive terminal. 0334
9335

Type: \copyright for distribution terms gggg

\h for help with SQL commands 0338
\? for help on internal slash commands 9339

\g or terminate with semicolon to execute query ggig

\q to quit 9342

9343

test=> SELECT * FROM temptest; o
ERROR: Relation 'temptest' does not exist 9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
test=> SELECT * 9357
test-> INTO TEMPORARY customer_pennsylvania 9358

test-> FROM customer 9359
9360

test-> WHERE state = 'PA'; 9361
SELECT 9362

test=> CREATE index customer penna_custid_idx ON customer pennsylvania (customer_id); gggi

CREATE 9365
9366
9367
9368
9369
9370
9371
9372

Figure 13.1: Temporary table auto-destruction

Figure 13.2: Example of temporary table use

9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438

13.3. GRANT AND REVOKE 119

¢ add columns
¢ add column defaults

e remove column defaults

Figure 13.3 shows examples of all of these.

test=> CREATE TABLE altertest (coll INTEGER);

CREATE

test=> ALTER TABLE altertest RENAME TO alterdemo;
ALTER

test=> ALTER TABLE alterdemo RENAME COLUMN coll TO democol;
ALTER
test=> ALTER TABLE alterdemo ADD COLUMN col2 INTEGER;
ALTER
test=> -- show renamed table, renamed column, and new column
test=> \d alterdemo
Table "alterdemo"

Attribute | Type | Modifier

___________ B N S,

democol | integer

col2 | integer

test=> ALTER TABLE alterdemo ALTER COLUMN col2 SET DEFAULT 0;
ALTER
test=> -- show new default value
test=> \d alterdemo
Table "alterdemo"
Attribute | Type | Modifier

___________ e e e et ————————
democol | integer

col2 | integer | default 0

test=> ALTER TABLE alterdemo ALTER COLUMN col2 DROP DEFAULT;

ALTER

Figure 13.3: ALTER TABLE examples

13.3 GRANT and REVOKE

When a table is created, only the owner can access it. If the owner wants others to have access, the table’s
permissions must be changed using the GRANT command. Figure 13.4 shows some examples of GRANT.
Available privileges are SELECT, UPDATE, DELETE, RULE, and ALL. Rules are covered later in section 13.6.

REVOKE removes permissions from a table. See the GRANT and REVOKE manual pages for more informa-
tion.

120 CHAPTER 13. TABLE MANAGEMENT

test=> CREATE TABLE permtest (col INTEGER);

CREATE

test=> -- now only the owner can use permtest

test->

test=> GRANT SELECT ON permtest TO meyers;

CHANGE

test=> -- now user 'meyers' can do SELECTs on permtest
test=>

test=> GRANT ALL ON permtest TO PUBLIC;

CHANGE

test=> -- now all users can perform all operations on permtest
test=>

Figure 13.4: Examples of the GRANT command

13.4 Inheritance

Inheritance allows the creation of a new table related to an existing table. Figure 13.5 shows the creation of
an inherited table. Using inheritance, the child table gets all the columns of the parent, plus the additional

test=> CREATE TABLE parent test (coll INTEGER);
CREATE
test=> CREATE TABLE child_test (col2 INTEGER) INHERITS (parent test);
CREATE
test=> \d parent_test
Table "parent_test"
Attribute | Type | Modifier
___________ It K
coll | integer

test=> \d child_test

Table "child test"
Attribute | Type | Modifier
___________ o et ———————
coll | integer
col2 | integer

Figure 13.5: Creation of inherited tables

columns it defines. In the example, child_test gets coll from parent test, plus the column col2.

Inheritance also links rows in parent and child tables. If the parent table is referenced with an asterisk
suffix, rows from the parent and all children are accessed. Figure 13.6 shows insertion into two tables related
by inheritance. The figure then shows that while parent test access only the parent test rows, parent test*
accesses both parent test and child test rows. Parent test™ accesses only columns common to all tables.
Child_test.col2 is not in the parent table so it is not displayed. Figure 13.7 shows inherited tables can be
layered on top of each other.

9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504

9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570

13.4. INHERITANCE 121

test=> INSERT INTO parent test VALUES (1);
INSERT 18837 1
test=> INSERT INTO child test VALUES (2,3);
INSERT 18838 1
test=> SELECT * FROM parent test;

coll

test=> SELECT * FROM child test;
coll | col2
______ o
2 | 3
(1 row)

test=> SELECT * FROM parent_test*;
coll

Figure 13.6: Accessing inherited tables

test=> CREATE TABLE grandchild_test (col3 INTEGER) INHERITS (child_test);
CREATE
test=> INSERT INTO grandchild_test VALUES (4, 5, 6);
INSERT 18853 1
test=> SELECT * FROM parent_test*;
coll

test=> SELECT * FROM child test*;

coll | col2
______ Fommm e
2 | 3
41 5
(2 rows)

Figure 13.7: Inheritance in layers

122 CHAPTER 13. TABLE MANAGEMENT

Consider a practical example that records information about employees and managers. Table employee can
hold information about non-managerial employees. Manager can hold information about managers. Manager
can inherit all the columns from employee, and have additional columns. You can then access non-managerial
employees using employee, managers using manager, and all employees including managers using employee ™.

13.5 Views

Views are pseudo-tables. They are not real tables, but appear as ordinary tables to SELECT. Views can
represent a subset of a real table. A view can select certain columns or certain rows from an ordinary table.
Views can even represent joined tables. Because views have separate permissions, they can be used to
restrict table access so users see only specific rows or columns of a table.

Views are created using the CREATE VIEW command. Figure 13.8 shows the creation of several views.
The view customer_ohio selects only customers from Ohio. SELECTSs on it will show only Ohio customers.

test=> CREATE VIEW customer ohio AS

test-> SELECT *

test-> FROM customer

test-> WHERE state = 'OH';

CREATE 18908 1

test=>

test=> -- let sanders see only Ohio customers

test=> test=> GRANT SELECT ON customer ohio TO sanders;
CHANGE

test=>

test=> -- create view to show only certain columns

test=> CREATE VIEW customer_address AS

test-> SELECT customer_id, name, street, city, state, zipcode, country
test-> FROM customer;

CREATE 18909 1

test=>

test=> -- create view that combines fields from two tables
test=> CREATE VIEW customer_finance AS

test-> SELECT customer.customer id, customer.name, finance.credit Timit
test-> FROM customer, finance

test-> WHERE customer.customer_id = finance.customer_id;
CREATE 18910 1

Figure 13.8: Examples of views

User sanders is then given SELECT access to the view. Customer address will show only address information.
Customer_finance is a join of customer and finance, showing columns from both tables.

DROP VIEW removes a view. Because views are not ordinary tables, INSERTS, UPDATES, and DELETES on
views have no effect. The next section shows how rules can correct this.

9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636

9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702

13.6. RULES 123

13.6 Rules

Rules allow actions to take place when a table is accessed. Rules can modify the effect of SELECT, INSERT,
UPDATE, and DELETE.
Figure 13.9 shows a rule that prevents INSERTSs into a table. The INSERT rule is named ruletest insert and

test=> CREATE TABLE ruletest (col INTEGER);

CREATE

test=> CREATE RULE ruletest_insert AS -- rule name

test-> ON INSERT TO ruletest -- INSERT rule

test-> DO INSTEAD -- DO INSTEAD-type rule
test-> NOTHING; -- ACTION is NOTHING

CREATE 18932 1

test=> INSERT INTO ruletest VALUES (1);
test=> SELECT * FROM ruletest;

col

Figure 13.9: Rule that prevents INSERT

the action is NOTHING. NOTHING is a special rule keyword that does nothing.

There are two types of rules. DO rules perform SQL commands in addition to the submitted query. Do
INSTEAD rules replace the user query with the rule action.

Figure 13.10 shows how rules can track table changes. The figure creates service_request to hold current
service requests, and service_request_log to record changes in the service request table. The figure also
creates two DO rules on service_request. Rule service request update causes an INSERT into service_request log
each time service request is updated. The special keyword old is used to insert the pre-UPDATE column
values into service_request log. The keyword new would refer to the new query values. The second rule
tracks deletions to service_request by inserting into service_request log. To distinguish updates from deletes
in service_request_log, updates are inserted with a mod_type of 'U’, and deletes with a mod_type of 'D’.

DEFAULT was used for the username and timestamp fields. A column’s default value is used when an
INSERT does not supply a value for the column. In this example, defaults allow auto-assignment of these
values on INSERT to service_request, and on rule INSERTS to service_request log.

Figure 13.11 shows these rules in use. A row is inserted, updated, and deleted from service_request. A
SELECT on service_request log shows the UPDATE rule recorded the pre-UPDATE values, a U in mod_type, and
the user, date and time of the UPDATE. The DELETE appears similarly.

While views ignore INSERT, UPDATE and DELETE, rules can be used to properly handle them. Figure 13.12
shows the creation of a table and view on the table. The figure also illustrates views ignore INSERTs. UPDATES
and DELETES are similarly ignored.

Figure 13.13 shows the creation of DO INSTEAD rules to properly handle INSERT, UPDATE, and DELETE.
This is done by changing INSERT, UPDATE, and DELETE queries on the view to queries on realtable. Notice
new 1s used by the INSERT rule to reference the new value to be inserted. In UPDATE and DELETE, old is used
to reference old values. Figure 13.14 shows the view now properly handles modifications. It would be wise
to add an index on col because the rules do lookups on that column.

SELECT rules can also be created. Views are implemented internally as SELECT rules. Rules can even be
applied to only certain rows. Rules are removed with the DROP RULE command. See the CREATE RULE and
DROP_RULE manual pages for more information.

124

CHAPTER 13. TABLE MANAGEMENT

test=> CREATE TABLE service_request (customer_id INTEGER,

test-> description text,

test-> cre_user text DEFAULT CURRENT USER,

test-> cre_timestamp timestamp DEFAULT CURRENT TIMESTAMP);
CREATE

test=> CREATE TABLE service request log (

test-> customer_id INTEGER,

test-> description text,

test-> mod_type char(1),

test-> mod_user text DEFAULT CURRENT USER,
test-> mod_timestamp timestamp DEFAULT CURRENT -
TIMESTAMP) ;

CREATE

test=> CREATE RULE service request update AS -- UPDATE rule

test-> ON UPDATE TO service request

test-> DO

test-> INSERT INTO service request _log (customer id, description, mod_type)
test-> VALUES (old.customer_id, old.description, 'U');

CREATE 19670 1

test=> CREATE RULE service request delete AS -- DELETE rule

test-> ON DELETE TO service request

test-> DO

test-> INSERT INTO service request _log (customer id, description, mod_type)
test-> VALUES (old.customer_id, old.description, 'D');

CREATE 19671 1

Figure 13.10: Rules to log table changes

9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768

9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834

13.6. RULES

test=> INSERT INTO service request (customer id, description)
test-> VALUES (72321, 'Fix printing press');

INSERT 18808 1

test=> UPDATE service request

test-> SET description = 'Fix large printing press'
test-> WHERE customer id = 72321;

UPDATE 1

test=> DELETE FROM service request

test-> WHERE customer id = 72321;

DELETE 1

test=> SELECT *

test-> FROM service request Tlog

test-> WHERE customer id = 72321;

customer_id | description | mod_type | mod_user | mod_timestamp
------------- e i Rt itttk
72321 | Fix printing press | U | williams | 2000-04-09 07:13:07-04
72321 | Fix large printing press | D | matheson | 2000-04-10 12:47:20-04
(2 rows)

Figure 13.11: Use of rule to log table changes

test=> CREATE TABLE realtable (col INTEGER);
CREATE
test=> CREATE VIEW view realtable AS SELECT * FROM realtable;
CREATE 407890 1
test=> INSERT INTO realtable VALUES (1);
INSERT 407891 1
test=> INSERT INTO view realtable VALUES (2);
INSERT 407893 1
test=> SELECT * FROM realtable;
col

test=> SELECT * FROM view realtable;
col

Figure 13.12: Views ignore table modifications

125

126 CHAPTER 13. TABLE MANAGEMENT

test=> CREATE RULE view realtable insert AS -- INSERT rule
test-> ON INSERT TO view realtable

test-> DO INSTEAD

test-> INSERT INTO realtable

test-> VALUES (new.col);

CREATE 407894 1

test=>

test=> CREATE RULE view realtable update AS -- UPDATE rule
test-> ON UPDATE TO view_realtable

test-> DO INSTEAD

test-> UPDATE realtable

test-> SET col = new.col

test-> WHERE col = old.col;

CREATE 407901 1

test=>

test=> CREATE RULE view realtable delete AS -- DELETE rule
test-> ON DELETE TO view realtable

test-> DO INSTEAD

test-> DELETE FROM realtable

test-> WHERE col = old.col;

CREATE 407902 1

Figure 13.13: Rules to handle view modifications

Creating a rule whose action performs the same command on the same table causes an infinite loop.
POSTGRESQL will call the rule again and again from the rule action. For example, if an UPDATE rule on ruletest
has a rule action that also performs an UPDATE on rulefest, an infinite loop is created. POSTGRESQL will detect
the infinite loop and return an error.

Fortunately, POSTGRESQL also supports triggers. Triggers allow actions to be performed when a table is
modified. They can perform actions that cannot be implemented using rules. See section 18.4 for information
about using triggers.

13.7 LISTEN and NOTIFY

POSTGRESQL allows users to send signals to each other using LISTEN and NOTIFY. For example, suppose a
user wants to receive notification when a table is updated. He can register the table name using the LISTEN
command. If someone updates the table and then issues a NOTIFY command, all registered listeners will be
notified. For more information, see the LISTEN and NOTIFY manual pages.

13.8 Summary

This chapter has covered features that give administrators and users new capabilities in managing database
tables. The next chapter covers restrictions that can be placed on table columns to improve data management.

9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900

9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966

13.8. SUMMARY

test=> INSERT INTO view realtable VALUES (3);

INSERT 407895 1

test=> SELECT * FROM view realtable;

col

test=> UPDATE view_realtable

test-> SET col = 4;
UPDATE 2

test=> SELECT * FROM view realtable;

col

test=> DELETE FROM view realtable;

DELETE 2

test=> SELECT * FROM view realtable;

col

Figure 13.14: Rules handle view modifications

127

128

CHAPTER 13. TABLE MANAGEMENT

9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032

10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098

Chapter 14

Constraints

Constraints keep user data constrained. They help prevent invalid data from being entered into the database.
Defining a data type for a column is a constraint itself. A column of type DATE constrains the column to valid
dates.

This chapter covers a variety of constraints. We have already shown DEFAULT can be specified at table
creation. Constraints are defined at table creation in a similar way.

14.1 Not NULL

The constraint NOT NULL prevents NULLs from appearing in a column. Figure 14.1 shows the creation of a
table with a NOT NULL constraint. Insertion of a NULL value, or an INSERT that would set col2 to NULL, will

test=> CREATE TABLE not null test (

test(> coll INTEGER,

test(> col2 INTEGER NOT NULL
test(>)s

CREATE

test=> INSERT INTO not null test

test-> VALUES (1, NULL);

ERROR: ExecAppend: Fail to add null value in not null attribute col2
test=> INSERT INTO not_null_test (coll)

test-> VALUES (1);

ERROR: ExecAppend: Fail to add null value in not null attribute col2
test=> INSERT INTO not null test VALUES (1, 1);

INSERT 174368 1

test=> UPDATE not null test SET col2 = NULL;

ERROR: ExecReplace: Fail to add null value in not null attribute col2

Figure 14.1: NOT NULL constraint

cause the INSERT to fail. The figure shows UPDATE of a NULL value also fails.

Figure 14.2 adds a DEFAULT value for col2. This allows INSERTs that do not specify a value for col2, as
illustrated in the figure.

129

130 CHAPTER 14. CONSTRAINTS

test=> CREATE TABLE not null with default test (

test(> coll INTEGER,

test(> col2 INTEGER NOT NULL DEFAULT 5
test (>);

CREATE

test=> INSERT INTO not null with default test (coll)
test-> VALUES (1);

INSERT 148520 1

test=> SELECT *

test-> FROM not null with default test;

coll | col2
______ o

1| 5
(1 row)

Figure 14.2: NOT NULL with DEFAULT constraint

14.2 UNIQUE

The UNIQUE constraint prevents duplicate values from appearing in the column. UNIQUE columns can contain
multiple NULL values however. UNIQUE is implemented by creating a unique index on the column. Figure 14.3
shows that UNIQUE prevents duplicates. CREATE TABLE displays the name of the unique index it creates. The

test=> CREATE TABLE uniquetest (coll INTEGER UNIQUE);
NOTICE: CREATE TABLE/UNIQUE will create implicit index 'uniquetest coll -
key' for table 'uniquetest'
CREATE
test=> \d uniquetest
Table "uniquetest"

Attribute | Type | Modifier

___________ O

coll | integer

Index: uniquetest coll key

test=> INSERT INTO uniquetest VALUES (1);

INSERT 148620 1

test=> INSERT INTO uniquetest VALUES (1);

ERROR: Cannot insert a duplicate key into unique index uniquetest coll key
test=> INSERT INTO uniquetest VALUES (NULL);

INSERT 148622 1

test=> INSERT INTO uniquetest VALUES (NULL);

INSERT

Figure 14.3: Unique column constraint

figure also shows multiple NULL values can be inserted into a UNIQUE column.
If a UNIQUE constraint is made up of more than one column, UNIQUE cannot be used as a column constraint.

10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164

10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230

14.3. PRIMARY KEY 131

Instead, a separate UNIQUE line is required to specify the columns that make up the constraint. This is called a
UNIQUE table constraint. Figure 14.4 shows a multi-column UNIQUE constraint. While coll or col2 themselves

test=> CREATE TABLE uniquetest2 (

test(> coll INTEGER,
test(> col2 INTEGER,
test(> UNIQUE (coll, col2)
test(>)

NOTICE: CREATE TABLE/UNIQUE will create implicit index 'uniquetest2 coll -
key' for table 'uniquetest2'

Figure 14.4: Multi-column unique constraint

may not be unique, the constraint requires the combination of coll and col2 to be unique. For example, in
a table that contains the driver’s license numbers of people in various states, two people in different states
may have the same license number, but the combination of their state and license number should always be
unique.

14.3 PRIMARY KEY

The PRIMARY KEY constraint marks the column that uniquely identifies each row. It is a combination of
UNIQUE and NOT NULL constraints. UNIQUE prevents duplicates, and NOT NULL prevents NULL values in the
column. Figure 14.5 shows the creation of a PRIMARY KEY column. Notice an index is created automatically,

test=> CREATE TABLE primarytest (col INTEGER PRIMARY KEY);
NOTICE: CREATE TABLE/PRIMARY KEY will create implicit index 'primarytest -
pkey' for table 'primarytest'
CREATE
test=> \d primarytest
Table "primarytest"

Attribute | Type | Modifier

___________ O

col | integer | not null

Index: primarytest pkey

Figure 14.5: Creation of PRIMARY KEY column

and the column defined as NOT NULL.

Just as with UNIQUE, a multi-column PRIMARY KEY constraint must be specified on a separate line.
Figure 14.6 shows an example of this. It shows coll and col2 are combined to form a primary key.

There cannot be more than one PRIMARY KEY specification per table. PRIMARY KEYs have special meaning
when using foreign keys, which are covered in the next section.

14.4 FOREIGN KEY/REFERENCES

Foreign keys are more complex than primary keys. Primary keys make a column UNIQUE and NOT NULL.
Foreign keys constrain based on columns in other tables. They are called foreign keys because the constraints

132 CHAPTER 14. CONSTRAINTS

test=> CREATE TABLE primarytest2 (

test(> coll INTEGER,

test(> col2 INTEGER,

test(> PRIMARY KEY(coll, col2)
test(>)

NOTICE: CREATE TABLE/PRIMARY KEY will create implicit index 'primarytest2 -
pkey' for table 'primarytest2'
CREATE

Figure 14.6: Example of a multi-column primary key

are foreign or outside the table.

For example, suppose a table contains customer addresses, and part of that address is the United States
two-character state code. If a table existed with all valid state codes, a foreign key constraint could be created
to prevent invalid state codes from being entered.

Figure 14.7 shows the creation of a primary key/foreign key relationship. Foreign key constraints are

test=> CREATE TABLE statename (code CHAR(2) PRIMARY KEY,
test(> name CHAR(30)

test(>);

CREATE

test=> INSERT INTO statename VALUES ('AL', 'Alabama');
INSERT 18934 1

test=> CREATE TABLE customer (

test(> customer_id INTEGER,

test(> name CHAR(30),

test(> telephone CHAR(20),

test(> street CHAR(40),

test(> city CHAR(25),

test(> state CHAR(2) REFERENCES statename,
test(> zipcode CHAR(10),

test(> country CHAR(20)

test(>);

CREATE

Figure 14.7: Foreign key creation

created by using REFERENCES to refer to the PRIMARY KEY of another table. Foreign keys link the tables
together and prevent invalid data from being inserted or updated.

Figure 14.8 shows how foreign keys constrain column values. AL is a primary key value in statename, so
the INSERT is accepted. XX is not a primary key value in statename, so the INSERT is rejected by the foreign
key constraint.

Figure 14.9 shows the creation of the company tables from figure 6.3, page 50, using primary and foreign
keys.

There are a variety of foreign key options listed below that make foreign keys even more powerful.

10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296

10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362

14.4. FOREIGN KEY/REFERENCES

test=> INSERT INTO customer (state)

test-> VALUES ('AL');

INSERT 148732 1

test=> INSERT INTO customer (state)

test-> VALUES ('XX');

<unnamed> referential integrity violation -
key referenced from customer not found in statename

ERROR:

Figure 14.8: Foreign key constraints

test=> CREATE TABLE customer (

test(>

test=>
test(>
test(>
test(>
test(>
CREATE
test=>
test(>
test(>
test(>
test(>
test(>
CREATE
test=>

)s

customer_id INTEGER PRIMARY KEY,

name CHAR(30),
telephone CHAR(20),
street CHAR(40),
city CHAR(25),
state CHAR(2),

zipcode CHAR(10),
country CHAR(20)

CREATE TABLE employee (

)s

employee id INTEGER PRIMARY KEY,
name CHAR(30),
hire date DATE

CREATE TABLE part (

)s

part_id INTEGER PRIMARY KEY,

name CHAR(30),
cost NUMERIC(8,2),
weight FLOAT

CREATE TABLE salesorder (

)s

order_id INTEGER,

customer _id INTEGER REFERENCES customer,
employee id INTEGER REFERENCES employee,
part id INTEGER REFERENCES part,
order date DATE,

ship_date DATE,

payment NUMERIC(8,2)

Figure 14.9: Creation of company tables using primary and foreign keys

133

134 CHAPTER 14. CONSTRAINTS

Modification of Primary Key Row

If a foreign key constraint references a row as its primary key, and the primary key row is updated or deleted,
the default foreign key action is to prevent the operation. Foreign key options ON UPDATE and ON DELETE
allow a different action to be taken. Figure 14.10 shows the use of these options. The new customer table’s

test=> CREATE TABLE customer (

test(> customer_id INTEGER,

test(> name CHAR(30),

test(> telephone CHAR(20),

test(> street CHAR(40),

test(> city CHAR(25),

test(> state CHAR(2) REFERENCES statename
test(> ON UPDATE CASCADE
test (> ON DELETE SET NULL,
test(> zipcode CHAR(10),

test(> country CHAR(20)

test(>);

CREATE

Figure 14.10: Customer table with foreign key actions

ON UPDATE CASCADE specifies that if statename’s PRIMARY KEY is updated, customer.state should be updated
with the new value too. The foreign key ON DELETE SET NULL option specifies that if someone tries to delete
a statename row that is referenced by another table, the delete should set the foreign key to NULL.

The possible ON UPDATE and ON DELETE actions are:

NO ACTION UPDATEs and DELETES to the PRIMARY KEY are prohibited if referenced by a foreign key row.
This is the default.

CASCADE UPDATES to the PRIMARY KEY cause UPDATES to all foreign key columns that reference it. DELETEs
on the PRIMARY KEY cause DELETEs of all foreign key rows that reference it.

SET NULL UPDATEs and DELETESs to the PRIMARY KEY row cause the foreign key to be set to NULL.

SET DEFAULT UPDATEs and DELETES to the PRIMARY KEY row cause the foreign key to be set to its DEFAULT.

Figure 14.11 illustrates the use of CASCADE and NO ACTION rules. The figure first shows the creation of
primarytest which was used in figure 14.5. It then creates a foreigntest table with ON UPDATE CASCADE and ON
DELETE NO ACTION. NO ACTION is the default, so ON DELETE NO ACTION was not required. The figure inserts
a single row into each table, then shows an UPDATE on primarytest cascades to UPDATE foreigntest. The figure
also shows that the primarytest row cannot be deleted unless the foreign key row is deleted first. Foreign
key actions offer great flexibility in controlling how primary key changes affect foreign key rows.

Multi-Column Primary Keys

In order to specify a multi-column primary key, it was necessary to use PRIMARY KEY on a separate line in
the CREATE TABLE statement. Multi-column foreign keys have the same requirement. Using primarytest2
from figure 14.6, figure 14.12 shows how to create a multi-column foreign key. FOREIGN KEY (col, ...) must
be used to label multi-column foreign key table constraints.

10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428

14.4. FOREIGN KEY/REFERENCES 135

10429

10430

10431

10432

10433 test=> CREATE TABLE primarytest (col INTEGER PRIMARY KEY);
. NOTICE: CREATE TABLE/PRIMARY KEY will create implicit index 'primarytest -
10436 pkey' for table 'primarytest'

10437 CREATE

10438)

10439 test=> CREATE TABLE foreigntest (

10440 test(> col2 INTEGER REFERENCES primarytest
o test(> ON UPDATE CASCADE

10443 test(> ON DELETE NO ACTION

10444 test (>)s

o NOTICE: CREATE TABLE will create implicit trigger(s) for FOREIGN KEY check(s)
10447 CREATE

10448 test=> INSERT INTO primarytest values (1);

o INSERT 148835 1

10451 test=> INSERT INTO foreigntest values (1);

10452 INSERT 148836 1

10453 teste>

10454 es

10455 test=> -- CASCADE UPDATE is performed

10456 test=>

10457 _ . -

10458 test=> UPDATE primarytest SET col = 2;

10459 UPDATE 1

10460 test=> SELECT * FROM foreigntest;

10461

10462 col2

10463 mmeee-

10464 2

10465

10466 (1 row)

10467

10468 _

10469 test=>

10470 test=> -- NO ACTION prevents deletion

10471 test=>

o test=> DELETE FROM primarytest;

10474 ERROR: <unnamed> referential integrity violation -

igigg key in primarytest still referenced from foreigntest

10477 test=>

10478 test=> -- By deleting the foreign key first, the DELETE succeeds
10479 test=>

10480 ,

10481 test=> DELETE FROM foreigntest;

10482 DELETE 1

10483 test=> DELETE FROM primarytest;

10484 ?

10485 DELETE 1

10486

10487

igﬁg Figure 14.11: Foreign key actions
10490

10491

10492

10493

10494

136 CHAPTER 14. CONSTRAINTS

test=> CREATE TABLE primarytest2 (

test(> coll INTEGER,

test(> col2 INTEGER,

test(> PRIMARY KEY(coll, col2)
test(>)

NOTICE: CREATE TABLE/PRIMARY KEY will create implicit index 'primarytest2 -
pkey' for table 'primarytest2'

CREATE

test=> CREATE TABLE foreigntest2 (col3 INTEGER,

test(> col4 INTEGER,

test(> FOREIGN KEY (col3, col4) REFERENCES primarytest2
test->)

NOTICE: CREATE TABLE will create implicit trigger(s) for FOREIGN KEY check(s)
CREATE

Figure 14.12: Example of a multi-column foreign key

Handling of NULL Values in the Foreign Key

A NULL value cannot reference a primary key. A single-column foreign key is either NULL or matches a
primary key. In a multi-column foreign key, there are cases where only part of a foreign key can be NULL.
The default behavior allows some columns in a multi-column foreign key to be NULL and some not NULL.

Using MATCH FULL in a multi-column foreign key constraint requires all columns in the key to be NULL
or all columns to be not NULL. Figure 14.13 illustrates this. First, the tables from previous figure 14.12 are
used to show that the default allows one column of a foreign key to be set to NULL. Table matchtest is created
with the MATCH FULL foreign key constraint option. MATCH FULL allows all key columns to be set to NULL,
but rejects the setting of only some multi-column key values to NULL.

Frequency of Foreign Key Checking

By default, foreign key constraints are checked at the end of each INSERT, UPDATE, and DELETE query. This
means if you perform a set of complex table modifications, foreign key constraints must remain valid at all
times. For example, using the tables in figure 14.7, if there is a new state, and a new customer in the new
state, the new state must be added to statername before the customer is added to customer.

In some cases, it is not possible to keep foreign key constraints valid between queries. For example, if two
tables are foreign keys for each other, it may not be possible to INSERT into one table without having the other
table row already present. A solution is to use the DEFERRABLE foreign key option and SET CONSTRAINTS so
foreign key constraints are checked only at transaction commit. Using these, a multi-query transaction can
make table modifications that violate foreign key constraints inside the transaction as long as the foreign key
constraints are met at transactions commit. Figure 14.14 illustrates this. This is a contrived example because
the proper way to perform this query is to INSERT into primarytest first, then INSERT into defertest. However,
in complex situations, this reordering might not be possible, and DEFERRABLE and SET CONSTRAINTS should
be used to defer foreign key constraints. A foreign key may also be configured as INITIALLY DEFERRED causing
the constraint to be checked only at transaction commit by default.

Constraints can even be named. Constraint names appear in constraint violation messages, and can be
used by SET CONSTRAINTS. See the CREATE_TABLE and SET manual pages for more information.

10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560

10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626

14.4. FOREIGN KEY/REFERENCES

test=>
test->
INSERT
test=>
test->
INSERT
test=>
test->
UPDATE
test=>
test(>
test(>
test(>
test(>
test(>

NOTICE:

CREATE
test=>
test->
UPDATE
test=>
test->
ERROR:

INSERT INTO primarytest2
VALUES (1,2);
148816 1
INSERT INTO foreigntest2
VALUES (1,2);
148817 1
UPDATE foreigntest?2
SET col4 = NULL;
1
CREATE TABLE matchtest (
col3 INTEGER,
col4 INTEGER,
FOREIGN KEY (col13, col4) REFERENCES primarytest2
MATCH FULL
)s
CREATE TABLE will create implicit trigger(s) for FOREIGN KEY check(s)

UPDATE matchtest

SET col3 = NULL, col4 = NULL;

1

UPDATE matchtest

SET col4 = NULL;

<unnamed> referential integrity violation -

MATCH FULL doesn't allow mixing of NULL and NON-NULL key values

Figure 14.13: MATCH FULL foreign key

137

138 CHAPTER 14. CONSTRAINTS

10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
test=> CREATE TABLE defertest(10639

10640
test (> col2 INTEGER REFERENCES primary- 10641

test test(> DEFERRABLE 10642

10644

NOTICE: CREATE TABLE will create implicit trigger(s) for FOREIGN KEY check(s) 10645
CREATE 10646

test=> BEGIN; }ggg

BEGIN 10649

test=> -- INSERT is attempted in non-DEFERRABLE mode 10650

10651
test=> 10652

test=> INSERT INTO defertest VALUES (5); 10653
ERROR: <unnamed> referential integrity violation - 10654

10655
key referenced from defertest not found in primarytest 10656

test=> COMMIT; 10657

COMMIT 10658
10659

test=> BEGIN; 10660
BEGIN 10661

test=> -- all foreign key constraints are set to DEFERRED igggg

test=> 10664
test=> SET CONSTRAINTS ALL DEFERRED; 10665

10666
SET CONSTRAINTS 10667

test=> INSERT INTO defertest VALUES (5); 10668
INSERT 148946 1 10669

test=> INSERT INTO primarytest VALUES (5); oo

INSERT 148947 1 10672

test=> COMMIT; igg;ﬁ
COMMIT 10675
10676

10677

Figure 14.14: DEFERRABLE foreign key constraint iggzg

10680

10681

10682

10683

10684

10685

10686

10687

10688

10689

10690

10691

10692

10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758

14.5. CHECK 139

14.5 CHECK

The CHECK constraint enforces column value restrictions. CHECK constraints can restrict a column to a set
of values, only positive numbers, or reasonable dates. Figure 14.15 shows an example of CHECK constraints.
This is a modified version of the friend table from figure 3.2, page 10. This figure has many CHECK clauses:

test=> CREATE TABLE friend2 (

test(> firstname CHAR(15),

test(> lastname CHAR(20),

test(> city CHAR(15),

test(> state CHAR(2) CHECK (Tength(trim(state)) = 2),
test(> age INTEGER CHECK (age >= 0),

test(> gender CHAR(1) CHECK (gender IN ('M','F")),
test(> Tast met DATE CHECK (Tast met BETWEEN '1950-01-01'
test (> AND CURRENT _DATE),

test(> CHECK (upper(trim(firstname)) != 'AL' OR

test(> upper(trim(Tastname)) != 'RIVERS')

test(>);

CREATE

test=> INSERT INTO friend2
test-> VALUES ('A1', 'Rivers', 'Wibbleville', 'J', -35, 'S', '1931-09-23');
ERROR: ExecAppend: rejected due to CHECK constraint friend2 last met

Figure 14.15: CHECK constraints

state Forces the column to be two characters long. CHAR() pads the field with spaces, so state must be
trim()-ed of trailing spaces before the length() is computed.

age Forces the column to hold only positive values.
gender Forces the column to hold either M or F.
last_met Forces the column to be between January 1, 1950 and the current date.

table Forces the table to only accept rows where firstname is not AL or lastname is not RIVERS. The effect
of this rule is to prevent Al Rivers from being entered into the table. His name will be rejected if it is in
uppercase, lowercase, or mixed case. This must be done as a table-level CHECK constraint. Comparing
firstname to AL at the column level would have prevented all AL's from being entered, which was not
desired. The desired restriction is a combination of firstname and lastname.

The figure then tries to INSERT a row that violates all CHECK constraints. Though the CHECK failed on the
friend2 last met constraint, if that were corrected, the other constraints would prevent the insertion. By
default, CHECK allows NULL values.

14.6 Summary

This chapter covered a variety of constraints that help keep user data constrained within specified limits.
With small databases, constraints are of marginal benefit. With databases holding millions of rows, constraints
help keep database information organized and complete.

140

CHAPTER 14. CONSTRAINTS

10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824

10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890

Chapter 15

Importing and Exporting Data

Copy allows rapid loading and unloading of user tables. COPY can write the contents of a table to an ASCII
file, and it can load a table from an ASCII file. These files can be used for backup or to transfer data between
POSTGRESQL and other applications.

The first section of this chapter shows how COPY can be used to unload and load database tables. The
remainder of the chapter covers topics of interest to those using COPY to share data with other applications.
The last section contains tips for using COPY.

15.1 Using COPY

CopPy...TO allows the contents of a table to be copied out to a file. The file can later be read in using
COPY...FROM.

Figure 15.1 illustrates this. It shows the creation of a table with columns of various types. Two rows are
then inserted into copytest. SELECT shows the contents of the table, and COPY...TO writes the table to file
[tmp/copytest.out. The rows are then deleted, and COPY...FROM reloads the table, as shown by the last SELECT.

Copy provides a quick way to load and unload tables. It is used for database backup, as covered in
section 20.5. The following sections cover various COPY features that are important when reading or writing
COPY files in other applications.

15.2 CoPry File Format

COPY...TO can export data to be loaded into other applications, and COPY...FROM can import data from other
applications. If you are constructing a file to be used by COPY, or you are reading a COPY file in another
application, it is important to understand COPY’s file format.

Figure 15.2 shows the contents of the COPY file from figure 15.1. First, \q exits psql to an operating
system prompt. Then, the UNIX cat' command displays the file /tmp/copytest.out. The file contains one line for
every row in the table. Columns in the file are separated by TABs. These TABs are called delimiters because
they delimit or separate columns.

However, TABs are hard to see. They look like multiple spaces. The next command processes the file
using sed 2 to display TABs as <TAB>. This clearly shows the TABs in the file. Notice TABs are different from
spaces.

The columns do not line up as they do in psql. This is because the columns are of different lengths. The
value of fextcol in the first line is longer than value in the the second line. The lack of alignment is expected

'Non-UNIX operating system users would use the fype command.
2Sed is an operating system command that replaces one string with another. See the sed(1) manual page for more information.

141

142 CHAPTER 15. IMPORTING AND EXPORTING DATA

test=> CREATE TABLE copytest (}gggé
test (> intcol INTEGER, 10893
test(> numcol NUMERIC(16,2), 10894
10895

test(> textcol TEXT, 10896
test (> boolcol BOOLEAN 10897
test(>); 10898
10899

CREATE 10900
test=> INSERT INTO copytest 10901
test-> VALUES (1, 23.99, 'fresh spring water', 't'); igggg
INSERT 174656 1 10904
test=> INSERT INTO copytest 10905
test-> VALUES (2, 55.23, 'bottled soda', 't'); o
INSERT 174657 1 10908
test=> SELECT * FROM copytest; 10909
. 10910
intcol | numcol | textcol | boolcol 10911
-------- L et 10912
1] 23.99 | fresh spring water | t }gg}i

2 | 55.23 | bottled soda | t 10915

(2 rows) 10916
10917

, , 10918

test=> COPY copytest TO '/tmp/copytest.out'; 10919
COPY 10920
test=> DELETE FROM copytest; 10921
10922

DELETE 2 10923
test=> COPY copytest FROM '/tmp/copytest.out'; 10924
COPY 10925
10926

test=> SELECT * FROM copytest; 10927
intcol | numcol | textcol | boolcol 10928
________ e e 10929
10930

1| 23.99 | fresh spring water | t 10931

2 | 55.23 | bottled soda | t 10932

10933

(2 rows) 10934
10935

10936

Figure 15.1: Example of COPY...TO and COPY...FROM 10937

10938

10939

10940

test=> \q 10941
$ cat /tmp/copytest.out iggig
1 23.99 fresh spring water t 10944
2 55.23 bottled soda t 10945
10946

) 10947

$ sed 's/ /<TAB>/g' /tmp/copytest.out # the gap between / / is a TAB 10948
1<TAB>23.99<TAB>fresh spring water<TAB>t 10949
2<TAB>55.23<TAB>bottled soda<TAB>t o
10952

10953

Figure 15.2: Example of COPY...FROM 10954

10955

10956

10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022

15.3. DELIMITERS 143

because the COPY file is designed for easy processing, with one TAB between each column. It is not designed
for display purposes.

15.3 DELIMITERS

The default TAB column delimiter can be changed. COPY has a USING DELIMITERS option that sets the column
delimiter. Figure 15.3 shows that setting the delimiter to a pipe symbol (|) causes the output file to use pipes
to separate columns.

test=> COPY copytest TO '/tmp/copytest.out' USING DELIMITERS '|';
CoPY

test=> \q

$ cat /tmp/copytest.out

1/23.99|fresh spring water|t

2|55.23|bottled soda|t

Figure 15.3: Example of COPY...TO...USING DELIMITERS

If a coPY file does not use the default TAB column delimiter, COPY...FROM must use the proper USING
DELIMITERS option. Figure 15.3 shows that if a file uses pipes rather than TABs as column delimiters,
COPY...FROM must specify pipes as delimiters. The first COPY...FROM fails because it cannot find a TAB to

test=> DELETE FROM copytest;

DELETE 2

test=>

test=> COPY copytest FROM '/tmp/copytest.out';

ERROR: copy: line 1, pg atoi: error in "1]23.99|fresh spring water|t": can-
not parse "|23.99|fresh spring water|t"

test=>

test=> COPY copytest FROM '/tmp/copytest.out' USING DELIMITERS '|';

COoPY

Figure 15.4: Example of COPY...FROM...USING DELIMITERS

separate the columns. The second COPY...FROM succeeds because the proper delimiter for the file was used.

15.4 CoPY without files

CoPY can be used without files. COPY can use the same input and output locations used by psql. The special
name stdin represents the psql input, and stdout represents the psql output. Figure 15.5 shows how stdin
can be used to supply COPY input directly from your keyboard. For clarity, text typed by the user is in bold.
The gaps in second line typed by the user were generated by pressing the TAB key. The user types \. to exit
COPY...FROM. COPY to stdout displays the COPY output on your screen. This can be useful when using psql
in automated scripts.

144 CHAPTER 15. IMPORTING AND EXPORTING DATA

test=> COPY copytest FROM stdin;

Enter data to be copied followed by a newline.

End with a backslash and a period on a line by itself.
test> 3 77.43 coffee f

test> \.

test=> COPY copytest TO stdout;

1 23.99 fresh spring water t
2 55.23 bottled soda t

3 77.43 coffee f

test=>

Figure 15.5: COPY using stdin and stdout

15.5 Backslashes and NULLSs

There is potential confusion if the character used as a column delimiter also exists in user data. If they
appeared the same in the file, COPY...FROM would be unable to determine if the character was a delimiter or
user data.

Copy avoids any confusion by specially marking delimiters appearing in user data. It preceedes them
with a backslash (\). If pipe is the delimiter, COPY...TO uses pipes (|) for delimiters, and backslash-pipes
(\|) for pipes in user data. Figure 15.6 shows an example of this. Each column is separated by a pipe, but

test=> DELETE FROM copytest;

DELETE 3

test=> INSERT INTO copytest

test-> VALUES (4, 837.20, 'abc|def', NULL);

INSERT 174786 1

test=> COPY copytest TO stdout USING DELIMITERS '|';
41837.20|abc\|def|\N

Figure 15.6: COPY backslash handling

the pipe that appears in user data is output as abc \ |def.

Backslash causes any character that follows it to be treated specially. Because of this, a backslash in user
data must be output as two backslashes, \\.

Another special backslash in this figure the use of \V to represent NULL. This prevents NULLs from being
confused with user values.

The default NULL representation can be changed using WITH NULL AS. The command COPY copytest TO
’/tmp/copytest.out’ WITH NULL AS 2’ will output NULLs as a question marks. However, this will make a user
column containing a single question mark indistinguishable from a NULL in the file. To output NULLs as blank
columns, use the command COPY copytest TO ’/tmp/copytest.out’ WITH NULL AS ’’. To treat empty columns as
NULLS on input, use COPY copytest FROM ’/tmp/copytest.out” WITH NULL AS *’.

Table 15.1 summarizes the delimiter, NULL, and backslash handling of COPY. The first two lines in the
table show that preceeding a character with a backslash prevents the character from being interpreted as a
delimiter. The next line shows that \IN means NULL when using the default NULL representation.

The other backslash entries show simple representations for common characters. The last line shows
double-backslash is required to represent a literal backslash.

11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088

11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154

15.6. COPY TIPS 145

Backslash string Meaning

\ TAB TAB if using default delimiter TAB

\| pipe if using pipe as the delimiter

\N NULL if using the default NULL output
\b backspace

\f form feed

\n newline

\r carriage return

\t tab

\v vertical tab

\### character represented by octal number # # #
\\ backslash

Table 15.1: Backslashes understood by COPY

15.6 Copry Tips

Full pathnames must be used with the COPY command because the database server is running in a different
directory than the psql client. Files are read and written by the posigres user, so postgres must have permission
to read the file for COPY...FROM, and directory write permission for COPY...TO. Because COPY uses the local
file system, users connecting over a network cannot use filenames. They can use stdin and stdout, or psql’s
\copy command.

By default, the system-generated OID column is not written out, and loaded rows are given new OID’s.
COPY...WITH OIDS allows OID’s to be written and read.

Copy writes only entire tables. To COPY only part of a table, use SELECT...INTO TEMPORARY TABLE with
an appropriate WHERE clause and then COPY the temporary table to a file.

See the COPY manual page for more detailed information.

15.7 Summary

COPY can be thought of as a crude INSERT and SELECT. It imports and exports data in a very generic format.
This makes it ideal for use by other applications and for backup purposes.

146

CHAPTER 15. IMPORTING AND EXPORTING DATA

11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220

11221

11222

11223

11224

11225

11226

11227

ez Chapter 16
11229

11230

11231

11232

ws Database Query Tools
11234

11235

11236

11237

ﬂﬁﬁg This chapter covers two popular POSTGRESQL database query tools, psql and pgaccess.
11240

11241

e 16.1 PsqL

11243

11244) : . . o .
11245 The following sections summarize the capabilities of psql. The psql manual has detailed information about

11246 each item. See chapter 2 for an introduction to psql.
11247

11248

11249 Query Buffer Commands
11250

ﬂ;g; Table 16.1 shows the commands used to control the psql query buffer. There is one item of particular
11253)
11954 Function Command Argument
11255 Print \p

ﬂggg Execute \g or; file or |command

11258 Quit \q
11259 Clear \r

11260 .
L1261 Edit \e file

11262 Backslash help \?
11263 SQL help \h topic

11264 .
L1265 Include file \i file

11266 Output to file/command | \o file or |command
11267 Write buffer to file \w file

ﬂggg Show/save query history | \s file

11270 Run subshell \! command

11271

ﬂggg Table 16.1: psql query buffer commands

11274))) .\

11275 interest, edit (\e). This allows editing of the query buffer. The \e command loads the contents of the query
11276 buffer into the default editor. When the user exits the editor, the editor contents are reloaded into the query
ﬂzzg buffer, ready for execution. The environment variable EDITOR specifies the default editor.

11279
11280
11281
ﬂggg A list of general psql commands is shown in table 16.2. Psql has a local copy interface that allows copy
11284 operations using files local to the computer running psql, rather than local to the computer running the

ﬂ;gg database server. Later sections cover the use of \set, \unset, and \pset.

General Commands

147

148 CHAPTER 16. DATABASE QUERY TOOLS

Operation Command
Connect to another database \connect dbname
Copy tablefile to/from database | \copy fablename to |from filename
Set a variable \set variable or \set variable value
Unset a variable \unset variable
Set output format \pset option or \pset option value

Echo \echo string or \echo ‘command®
Echo to \o output \gecho string or \qecho ‘command®
Copyright \copyright

Change character encoding \encoding newencoding

Table 16.2: psql general commands

Output Format Options

The \pset command controls the output format used by psql. Table 16.3 shows all the formatting commands
and figure 16.1 shows examples of their use. In the figure, \pset tuples only causes psql to show only data

Format Parameter Options
Field alignment format unaligned, aligned, html, or latex
Field separator fieldsep separator
One field per line | expanded
Rows only tuples_only
Row separator recordsep separator
Table title title title
Table border border 0,1,or2
Display NULLs null null_string
HTML table tags | tableattr tags
Page output pager command

Table 16.3: psql \pset options

rows, suppressing table headings and row counts. Tuples only does not take a second argument. It is an
on/off parameter. The first \pset tuples_only turns it on, and another one turns it off. The second \pset in the
figure causes psql to display NULL as (null).

Output Format Shortcuts

In addition to using \pset, some output format options have shortcuts as shown in table 16.4.

Variables

The \set command sets a variable, and \unsef removes a variable. Variables are accessed by preceeding the
variable name with a colon. The \set command used alone lists all defined variables.

Figure 16.2 shows the use of psql variables. The first variable assigned is num_var. It is accessed
in the SELECT query by preceeding the variable name with a colon. The second \set command places the
word SELECT into a variable, and uses that variable to perform a SELECT query. The next example uses
backslash-quotes (\') to create a string that contains single-quotes. This variable can then be used in place of
a quoted string in queries. Date_var shows that grave accents () allow a command to be run and the result

11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352

11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418

16.1. PSQL

test=> SELECT NULL;
?column?

(1 row)

test=> \pset tuples only
Showing only tuples.
test=> SELECT NULL;

test=> \pset null '(null)"’
Null display is "(null)".
test=> SELECT NULL;

(null)

Figure 16.1: Example of \pset

Modifies Command | Argument
Field alignment | \a
Field separator \f separator
One field per line | \x
Rows only \t
Table title \C title
Enable HTML \H
HTML table tags | \T tags

Table 16.4: psql output format shortcuts

149

150

CHAPTER 16. DATABASE QUERY TOOLS

test=> \set num_var 4
test=> SELECT :num_var;
?column?

(1 row)

test=> \set operation SELECT
test=> :operation :num_var;
?column?

(1 row)

test=> \set str_var '\'My long string\"'
test=> \echo :str_var
'My Tong string'
test=> SELECT :str var;
?2column?
My Tong string
(1 row)

test=> \set date_var “date"
test=> \echo :date var
Thu Aug 11 20:54:21 EDT 1994

test=> \set date_var2 '\''“date”'\"’
test=> \echo :date_var2
‘Thu Aug 11 20:54:24 EDT 1994’
test=> SELECT :date var2;

?column?

Thu Aug 11 20:54:24 EDT 1994
(1 row)

Figure 16.2: psql variables

11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484

11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550

16.1. PSQL 151

placed into a variable. In this case, the output of the UNIX date command is captured and placed into the
variable. The assignment to dafe_var2 combines the use of backslash-quotes and grave accents to run the date
command and surround it with single quotes. The final SELECT shows that date_var2 holds a quoted date
string that can be used in queries.

Psql predefines a number of variables. They are listed in table 16.5. The variables in the first group

Meaning ‘ Variable Name | Argument
Database DBNAME
Multibyte encoding ENCODING
Host HOST
Previously assigned OID | LASTOID
Port PORT
User USER
Echo queries ECHO all
Echo \d* queries ECHO_HIDDEN noexec
History control HISTCONTROL ignorespace, ignoredups, or ignoreboth
History size HISTSIZE command_count
Terminate on end-of-file | IGNOREEOF eof count
\lobject transactions LO_TRANSACTION rollback, commit, nothing
Stop on query errors ON_ERROR_STOP
Command prompt PROMPT1, PROMPT2, PROMPT3 | string
Suppress output QUIET
Single line mode SINGLELINE
Single step mode SINGLESTEP

Table 16.5: psql predefined variables

contain useful information. The rest affect the behavior of psq1. Some of the predefined variables do not take
an argument. They are activated using \sef, and deactivated using \unset.

Listing Commands

You can find a great deal of information about the current database using psql’s listing commands, as shown in
table 16.6. They show information about tables, indexes, functions, and other objects defined in the database.

Most listing commands take an optional name parameter. This parameter can be specified as a regular
expression. For example, \dt sec displays all table names beginning with sec, and \dt .*x.* shows all table
names containing an x. Regular expressions are covered in section 4.10.

When using listing commands, the descriptions of data types and functions are called comments. POST-
GRESQL predefines many comments, and the COMMENT command allows users to define their own. The \dd
command and others display these comments. See the COMMENT manual page for more information.

Many of the commands allow an optional plus sign, which shows additional information. For example,
\dT lists all data types, while \dT+ includes the size of each type. \df+ shows addition information about
functions. When using the other commands, a plus sign causes the comments for the object to be displayed.

Large Object Commands

Psql has a local large object interface that allows large object operations using files local to the computer
running psql, rather than local to the computer running the database server. Table 16.4 shows the local large
object commands supported by psql.

152 CHAPTER 16. DATABASE QUERY TOOLS

Listing Command | Argument

Table, index, view, or sequence | \d name
Tables \dt name
Indexes \di name
Sequences \ds name
Views \dv name
Permissions \zor\dp | name
System tables \dS name
Large Objects \dl name
Types \dT name
Functions \df name
Operators \do name
Aggregates \da name
Comments \dd name
Databases \l

Table 16.6: psql listing commands

Large Objects | Command | Argument

Import \lo_import | file
Export \lo_export | oid file
Unlink \lo_unlink | oid
List \lo_list

Table 16.7: psql large object commands

PSQL command-line arguments and startup file

You can change the behavior of psql when starting the psql session. Psql is normally started from the
command line with psql followed by the database name. However, psql accepts extra arguments between
psql and the database name which modify psql’s behavior. For example, psql -f file test will read commands
from file, rather than from the keyboard. Table 16.8 summarizes psql’s command-line options. Consult the
psql manual page for more detailed information.

Another way to change the behavior of psql on startup is to create a file called .psqglrc in your home
directory. Each time psq1 starts, it executes any backslash or SQL commands in that file.

16.2 PGACCESS

Pgaccess 1s a graphical database tool. It It is used for accessing tables, queries, views, sequences, functions,
reports, forms, scripts, users, and schemas. PGACCESS is written using the POSTGRESQL TCL/TK interface.
The PGACCESS source code is in pgsql/src/bin/pgaccess.

Figure 16.3 shows the opening pgaccess window. The tabs on the left show the items that can be accessed.
The menu at the top allows database actions, table import/export, and object creation, deletion, and renaming.

Figure 16.4 shows the table window. This window allows table rows to be viewed and modified.
Pgaccess has many help screens which cover its capabilities in more detail.

11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616

11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682

16.2. PGACCESS

Option Capability | Argument | Additional argument
Database (optional) -d database
Hostname -h hostname
Connection Port -p port
User -U user
Force password prompt -W
Version -V
Field alignment -A
Field separator -F separator
Record separator -R separator
Rows only -t
Extended output format -X
Controlling Output | Echo \d* queries -E
Quiet mode -q
HTML output -H
HTML table tags -T tags
Set \pset options -P option or option =value
List databases -1
Disable readline -n
Echo all queries from scripts | -a
Echo queries -e
Execute query -C query
Get queries from file -f file
Automation Output to file -0 file
Single-step mode -s
Single-line mode -S
Suppress reading “/.psqglrc X
Set variable -v var or var=value

Table 16.8: psql command-line arguments

PostgreSQL access

Figure 16.3: Pgaccess opening window

Datahase Ohject Help
Mew: Open | Design |
account K
Tables aggtest
. alltypes
BUEATDS alterdemao
Wiews array_test
———— Ichild_test
Sequences copytest
Functiong LIS
_ T defertest
Reports duptest
———— |employes
Forms foreigntest
R foreigntest?
Scripts fiend
Users friendz
— [fruit
Schema grandchild_test
matchtest
localhost E§L________________________J

153

154 CHAPTER 16. DATABASE QUERY TOOLS

11683
Sort field Filter conditions Reload | Close 11684

firstname lasthame city state 11685

Mike Nichols Tampa
Mark Middleton Indionopolis 11686
Jack BLr ger 11687

11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
)) 11703
Figure 16.4: Pgaccess table window 11704

11705

11706

16.3 Summary 11707
11708

. 11709
This chapter covered psql and pgaccess. These are the most popular POSTGRESQL query tools. 11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748

* * *

11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814

Chapter 17

Programming Interfaces

Psql is ideal for interactively entering SQL commands, and for running automated scripts. However, psql is
not ideal for writing applications. Fortunately, POSTGRESQL has interfaces for many programming languages.
Programming languages have variables, functions, conditional evaluation, looping, and complex input/output
routines. These are required for writing good applications.

Table 17.1 shows the programming interfaces supported by POSTGRESQL. These language interfaces

Interface | Language | Processing Advantages
LIBPQ C compiled native interface
LIBPGEASY | C compiled simplified C
ECPG C compiled ANSI embedded sQL C
LIBPQ++ | C++ compiled object-oriented C
ODBC ODBC compiled application connectivity
JDBC JAVA both portability
PERL PERL interpreted | text processing
PGTCLSH | TCL/TK interpreted | interfacing, windowing
PYTHON PYTHON interpreted | object oriented
PHP HTML interpreted | dynamic web pages

Table 17.1: Interface summary

allow applications to pass queries to POSTGRESQL and receive results. The compiled languages execute
faster, but are harder to program than the interpreted ones.

This chapter will show the same application using each interface. The application is a very simple one
that prompts the user for a United States state code, and outputs the state name that goes with the code.
Figure 17.1 shows the sample application being run. For clarity, the text typed by the user is in bold. The

Enter a state code: AL
Alabama

Figure 17.1: Sample application being run

program displays a prompt, the user types AL, and the program displays Alabama. Though state codes are
unique, the application is written to allow multiple query return values. The application uses the statename
table, which is recreated in figure 17.2.

Additional information about POSTGRESQL interfaces is available in the Programmer’s Manual mentioned
in section A.3.

155

156 CHAPTER 17. PROGRAMMING INTERFACES

test=> CREATE TABLE statename (code CHAR(2) PRIMARY KEY, 11815
test(> name CHAR(30) 11816
test(>); 11817

11818
CREATE 11819

test=> INSERT INTO statename VALUES ('AL', 'Alabama'); 11820
INSERT 18934 1 et
test=> INSERT INTO statename VALUES ('AK', 'Alaska'); 11223
INSERT 18934 1 11824

11825

11826

11827

) 11828

Figure 17.2: Statename table 11829

11830

11831

17.1 C Language Interface (LIBPQ) 11832
11833

.)) 11834
Libpq is the native C interface to POSTGRESQL. Psql and most other interfaces use libpq internally for 11235
database access. 11836
Figure 17.3 shows how libpq is used. The application code communicates with the user’s terminal and ﬂgg;
11839
11840

User 11841
Terminal 11842

11843

/ \ 11844
11845

11846
PostgreSQL 11847
11848
Application Database 11849
Code 11850
Server 11851

11852
Libpg \\\\¥44474444¥’/// 11853

11854
11855
11856
11857
11858
11859
Figure 17.3: Libpq data flow ﬂgg(l)
11862

uses libpq for database access. Libpqg sends queries to the database server and and retrieves results. ﬂggi
Figure 17.4 shows the sample program using libpq to access POSTGRESQL. These are the tasks performed 11865

by the sample program: 11866
11867

o Establish database connection 11868
11869
11870
11871
. 11872
* Form an appropriate SQL query 11873
11874

* Pass the SQL query to libpq 11875
11876

* POSTGRESQL executes the query 11877
11878

* Retrieve the query results from libpg ﬂg;g

Queries —=

~— Results

* Prompt for and read the state code

11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946

17.1. C LANGUAGE INTERFACE (LIBPQ)

/*
* 1libpg sample program

*/

#include <stdio.h>
#include <stdlib.h>

1ibpg header file */

holds state code entered by user */
holds constructed SQL query */
holds database connection */

holds query result */

connect to the database */

did the database connection fail? */

#include "libpg-fe.h" /*
int
main()
{
char state_code[3]; /*
char query string[256]; /*
PGconn *conn; /*
PGresult *res; /*
int is
conn = PQconnectdb("dbname=test"); /*
if (PQstatus(conn) == CONNECTION_BAD) /*
{
fprintf(stderr, "Connection to database failed.\n");
fprintf(stderr, "%s", PQerrorMessage(conn));
exit(1);
}
printf("Enter a state code: "); /*

scanf("%2s", state code);

sprintf(query string, /*
"SELECT name \
FROM statename \
WHERE code = '%s'", state code);

res = PQexec(conn, query string); /*
if (PQresultStatus(res) != PGRES_TUPLES OK) /*
{

fprintf(stderr, "SELECT query failed.\n");
PQclear(res);
PQfinish(conn);

exit(1);
1
for (i = 0; i < PQntuples(res); i++) /*
printf("%s\n", PQgetvalue(res, i, 0)); /*
PQclear(res); /*
PQfinish(conn); /*
return 0;

prompt user for a state code */

create an SQL query string */

send the query */

did the query fail? */

Toop through all rows returned */
print the value returned */

free result */

disconnect from the database */

Figure 17.4: Libpq sample program

157

158 CHAPTER 17. PROGRAMMING INTERFACES

* Display results to the user

¢ Terminate database connection

All interaction with the database is done using /ibpq functions. The libpg functions called by the sample
program are:

PQconnectdb() Connects to the database

PQexec() Sends the query to the database

PQntuples() Returns number of rows (tuples) in the result
PQgetvalue() Returns a specific row and column of the result
PQclear() Frees resources used by the result

PQfinish() Closes database connection

These are the most common libpq functions. The Programmer’s Manual covers all libpg functions and shows
additional examples.

17.2 Pgeasy(LIBPGEASY)

Libpgeasy is a simplified C interface. It hides some of the complexity of libpqg. Figure 17.5 shows a libpgeasy
version of the same application. No error checking is required because libpgeasy automatically terminates
the program if an error occurs. This can be changed using on_error_continue().

17.3 Embedded C (ECPG)

Rather than using function calls to perform SQL queries, ecpg allows SQL commands to be embedded ina C
program. The ecpg preprocessor converts lines marked by EXEC SQL to native SQL calls. The resulting file is
then compiled as a C program.

Figure 17.6 shows an ecpg version of the same application. Ecpg implements the ANSI embedded SQL C
standard, which is supported by many database systems.

174 C++ (LIBPQ++)

Libpg++ is POSTGRESQL’s C++ interface. Figure 17.7 shows the same application using libpg+ +.
Libpg++ allows database access using object methods rather than function calls.

17.5 Compiling Programs

The above interfaces are based on C or C++. Each interface requires certain include and library files to
generate an executable version of the program.

Interface include files are usually installed in /usr/local/pgsql/include. The compiler flag -I is needed so
the compiler searches that directory for include files, i.e. -I/usr/local/pgsql/include.

Interface libraries are usually installed in /usv/local/pgsql/lib. The compiler flag -L is needed so the
compiler searches that directory for library files, i.e. -L/usr/local/pgsql/1ib.

11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012

12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078

17.5. COMPILING PROGRAMS

/*

libpgeasy sample program

#include <stdio.h>
#include <libpg-fe.h>
#include <libpgeasy.h>

int

main()

{
char state_code[3];
char query_string[256];
char state_name[31];

connectdb("dbname=test");

printf("Enter a state code: ");
scanf("%2s", state code);

sprintf(query_string,

"SELECT name \

FROM statename \

WHERE code = '%s'", state code);
doquery(query string);

while (fetch(state name) != END OF TUPLES)
printf("%s\n", state name);

disconnectdb();

return 0;

/*

/*
/*
/*
/*

/*

/*

/*
/*

/*

1ibpgeasy header file */

holds state code entered by user */
holds constructed SQL query */
holds returned state name */

connect to the database */

prompt user for a state code */

create an SQL query string */

send the query */

Toop through all rows returned */
print the value returned */

disconnect from the database */

Figure 17.5: libpgeasy sample program

159

160 CHAPTER 17. PROGRAMMING INTERFACES

*
/* 12079
ecpg samp]e program 12080
*/ 12081
12082
#include <stdio.h> 12083
12084
12085
12086
12087
EXEC SQL WHENEVER SQLERROR sqlprint; 12088
12089
12090
. 12091
main() 12092
{ 12093
EXEC SQL BEGIN DECLARE SECTION; 12094

char state_code[3]; /* holds state code entered by user */ 12095

char *state name = NULL; /* holds value returned by query */ 12096
- . 12097
char query_string[256]; /* holds constructed SQL query */ 12098

EXEC SQL END DECLARE SECTION; 12099
12100

EXEC SQL CONNECT TO test; /* connect to the database */ 12101
12102

et . 12103
printf("Enter a state code: "); /* prompt user for a state code */ 12104

scanf("%2s", state code); 12105
12106

sprintf(query string, /* create an SQL query string */ 12107
"SELECT name \ 12108

12109
FROM statename \ 12110

WHERE code = '%s'", state code); 12111
12112
EXEC SQL PREPARE s _statename FROM :query string; 12113

EXEC SQL DECLARE c_statename CURSOR FOR s_statename;/* DECLARE a cursor */ igiig

12116

EXEC SQL OPEN c_statename; /* send the query */ 12117
12118

EXEC SQL WHENEVER NOT FOUND DO BREAK; 12119
12120

while (1) /* loop through all rows returned */ 12121
12122

{ 12123
EXEC SQL FETCH IN c_statename INTO :state name; 12124

printf("%s\n", state name); /* print the value returned */ 12125

state name = NULL; 12126
- 12127

} 12128
12129

free(state name); /* free result */ 12130
12131
12132
12133
12134
EXEC SQL COMMIT; 12135
12136

EXEC SQL DISCONNECT; /* disconnect from the database */ 12137
12138

12139

return 0; 12140

1 12141
12142
12143
12144

EXEC SQL INCLUDE sqlca; /* ecpg header file */

int

EXEC SQL CLOSE c_statename; /* CLOSE the cursor */

Figure 17.6: Ecpg sample program

12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210

17.5. COMPILING PROGRAMS 161

/*
* libpg++ sample program
*/
#include <iostream.h>
#include <libpg++.h> // libpg++ header file
int main()
{
char state _code[3]; // holds state code entered by user
char query string[256]; // holds constructed SQL query
PgDatabase data("dbname=test"); // connects to the database
if (data.ConnectionBad()) // did the database connection fail?

{

cerr << "Connection to database failed." << end]
<< "Error returned: " << data.ErrorMessage() << endl;
exit(1);

cout << "Enter a state code: "; // prompt user for a state code
cin.get(state code, 3, '\n');

sprintf(query string, // create an SQL query string
"SELECT name \
FROM statename \
WHERE code = '%s'", state code);

if (!data.ExecTuplesOk(query string)) // send the query
{

cerr << "SELECT query failed." << endl;

exit(1);
}
for (int i=0; i < data.Tuples(); i++) // loop through all rows returned
cout << data.GetValue(i,0) << endl; // print the value returned
return 0;

Figure 17.7: Libpg+ + sample program

162 CHAPTER 17. PROGRAMMING INTERFACES

The compiler flag -1 is needed so the compiler links to a specific library file. To link to libpg.a or libpg.so,
the flag -1pq is needed. The -/ flag knows the file begins with lib, so -11ibpq is not required, just -1pq.
The commands to compile myapp for various interfaces are listed below:

libpq cc -I/usr/local/pgsql/include -o myapp myapp.c -L/usr/local/pgsql/Tib -1pq
libpgeasy cc -I/usr/local/pgsql/include -o myapp myapp.c -L/usr/Tocal/pgsql/Tib -1pgeasy

ecpg ecpg myapp.pgc
cc -I/usr/local/pgsql/include -o myapp myapp.c -L/usr/Tocal/pgsql/1ib -Tecpg

libpq++ cc++ -I/usr/local/pgsql/include -o myapp myapp.cpp -L/usr/local/pgsql/1ib -1pg++

Notice each interface has its own library. Ecpg requires the ecpg preprocessor to be run before compilation.
Libpg+ + requires a different compiler to be used.

17.6 Assignment to Program Variables

POSTGRESQL is a network-capable database. This means the database server and user application can be run
on different computers. Because character strings have the same representation on all computers, they are
used for communication between the user program and database server. Queries are submitted as character
strings, and results are passed back as character strings. This allows reliable communication even if the two
computers are quite different.

The sample programs perform SELECTs on a CHAR(30) column. Because query results are returned as
character strings, returned values can be assigned directly to program variables. However, non-character
string columns, like INTEGER and FLOAT, cannot be assigned directly to integer or floating-point variables. A
conversion might be required.

For example, using libpg or libpg++, a SELECT on an INTEGER column does not return an integer from
the database, but a character string that must be converted to an integer by the application, An INTEGER is
returned as the string ‘983’ rather than the integer value 983. To assign this to an integer variable, the C
library function atoi() must be used, i.e. var = atoi(colval).

One exception to this is BINARY cursors, which return binary representations of column values. Results
from BINARY cursors can be assigned directly to program variables. However, because they return column
values in binary format, the application and database server must be running on the same computer, or
computers with the same CPU architecture. See the DECLARE manual page for more information on BINARY
cursors.

Libpgeasy uses fetch() to return values directly into program variables. Fefch() should place results into
character string variables, or use BINARY cursors if possible.

Ecpg automatically converts data returned by POSTGRESQL to the proper format before assignment to
program variables.

The interpreted languages covered later have #ype-less variables, so they do not have this problem.

17.7 ODBC

ODBC (Open Database Connectivity) is an interface used by some applications and application-building tools
to access SQL databases. ODBC is a middle-ware layer that is not meant for programming directly, but for
communicating with other applications.

The ODBC source code is located in pgsql/src/interfaces/odbc. It can be compiled on UNIX and non-UNIX
operating systems.

12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276

12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342

17.8. JAVA (JDBC) 163

17.8 JAVA (JDBC)

Figure 17.8 shows a JAVA version of the same application.

The JAVA interface source code is located in pgsql/src/interfaces/jdbc. Once the interface is compiled, the
file postgresql.jar should be copied to the directory containing the other jar files. The full path name of
postgresql.jar must then be added to the CLASSPATH environment variable.

JAVA programs are compiled using javac and run using java. JAVA is both a compiled and interpreted
language. It is compiled for speed, but interpreted when executed so any computer can run the compiled
program.

17.9 Scripting Languages
The previous interfaces used compiled languages. Compiled languages require user programs to be compiled
into CPU instructions.

The remaining interfaces are scripting languages. Scripting languages execute slower than compiled
languages, but have several advantages:

* No compile required
* More powerful commands
* Automatic creation of variables

* Variables can hold any type of data

17.10 PERL

Figure 17.9 shows the same application in PERL. PERL is good for writing scripts and small applications. It is
popular for processing text files and generating dynamic web pages using CGI (Common Gateway Interface).
A PERL/DBI interface is also available

17.11 TcCL/TK (PGTCLSH/PGTKSH)

Figure 17.10 shows a TCL version of the same application. TCL’s specialty is accessing other toolkits and
applications.

The TK graphical interface toolkit is one example. It is used by TCL when writing graphical applications.
The TK toolkit has become so popular that other scripting languages use it as their graphical interface library.

17.12 PYTHON (PYGRESQL)

PYTHON is an object-oriented scripting language. It is considered to be a well-designed language, with code
that is easy to read and maintain. Figure 17.11 shows the same application written in PYTHON. The PYTHON
interface source code is located in pgsql/src/interfaces/python.

164

/*

CHAPTER 17. PROGRAMMING INTERFACES

* Java sample program

*/

import java.io.*;
import java.sql.*;

public class sample

{

Connection conn; // holds database connection
Statement stmt; // holds SQL statement
String state_code; // holds state code entered by user

public sample() throws ClassNotFoundException, FileNotFoundException, IOException, SQLExcep-

tion

{

Class.forName("org.postgresql.Driver"); // load database interface

// connect to the database
conn = DriverManager.getConnection("jdbc:postgresql:test", "testuser", "");
stmt = conn.createStatement();

System.out.print("Enter a state code: "); // prompt user for a state code
System.out.flush();

BufferedReader r = new BufferedReader(new InputStreamReader(System.in));
state_code = r.readLine();

ResultSet res = stmt.executeQuery(// send the query
"SELECT name " +
"FROM statename " +
"WHERE code = '" + state code + "'");

if(res != null)
{
while(res.next())
{
String state name = res.getString(1);
System.out.printin(state_name);

}
res.close();
stmt.close();
conn.close();

public static void main(String args[])

{

try {
sample test = new sample();

} catch(Exception exc)

{
System.err.printin("Exception caught.\n" + exc);
exc.printStackTrace();

Figure 17.8: JAVA sample program

12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408

17.12. PYTHON (PYGRESQL) 165

12409 #!/usr/local/bin/perl

12410 #

12411 # perl sample program
12412 #

12413
12414
12415
12416
12417 $conn = Pg::connectdb("dbname=test"); # connect to the database

12418 # did the database connection fail?

igi;g die $conn->errorMessage unless PGRES CONNECTION OK eq $conn->status;

12421

12422 print "Enter a state code: "; # prompt user for a state code
12423 $state code = <STDIN>;

12424 chomp $state code;

12425 -

12426
12427 $result = $conn->exec(# send the query

12428 "SELECT name \

12429 FROM statename \

12430 WHERE code = '$state code'");
12431
12432
12433
12434
12435 while (@Grow = $result->fetchrow) { # Toop through all rows returned
12436 print @row, "\n"; # print the value returned

12437 }

12438

12439

12440

12441 Figure 17.9: PERL sample program

12442

12443 #1/usr/local/pgsql/bin/pgtclsh

12444 #
12445 #
12446

12447 #
12448
12449 set conn [pg_connect test] ;# connect to the database
12450

1;32; puts -nonewline "Enter a state code: " ;# prompt user for a state code

12453 flush stdout

12454 gets stdin state_code

12455 ;# send the query
12456 set res [pg_exec $conn \

12457 "SELECT name \

12458
12459 FROM statename \

12460 WHERE code = '$state code'"]
12461

12462 set ntups [pg result $res -numTuples]
12463 -

igigg for {set i 0} {$i < $ntups} {incr i} { ;# loop through all rows returned

12466 puts stdout [Tindex [pg result $res -getTuple $i] 0] ;# print the value returned

12467

12468 }
12469
12470
12471
12472
12473 Figure 17.10: TCL sample program
12474

use Pg; # load database routines

did the query fail?
die $conn->errorMessage unless PGRES_TUPLES 0K eq $result->resultStatus;

pgtclsh sample program

pg_disconnect $conn s# disconnect from the database

166 CHAPTER 17. PROGRAMMING INTERFACES

#! /usr/local/bin/python

#

python sample program

#

import sys

from pg import DB # load database routines

conn = DB('test') # connect to the database
sys.stdout.write('Enter a state code: ') # prompt user for a state code

state_code = sys.stdin.readline()
state_code = state code[:-1]

for name in conn.query(# send the query
"SELECT name \
FROM statename \
WHERE code = '"+state code+"'").getresult():
sys.stdout.write('%s\n' % name) # print the value returned

Figure 17.11: PYTHON sample program

17.13 PHP

PHP allows web browser access to POSTGRESQL. Using PHP, database commands can be embedded in web
pages.

Two web pages are required for the sample application — one for data entry and another for display.
Figure 17.12 shows a web page that allows entry of a state code. Figure 17.13 shows a second web page that

<l--

-- PHP sample program -- Input

-

<HTML>
<BODY>
<!-- prompt user for a state code -->

<FORM ACTION="<? echo $SCRIPT NAME ?>/pg/sample2.phtml?state code" method="POST">
Client Number:
<INPUT TYPE="text" name="state code" value="<? echo $state code ?>"

maxlength=2 size=2>

<INPUT TYPE="submit" value="Continue">
</FORM>
</BODY>
</HTML>

Figure 17.12: PHP sample program — Input

performs a SELECT and displays the results. Normal web page commands (HTML tags) begin with < and end
with >. PHP code begins with <? and ends with ?>.
The PHP interface is not shipped with POSTGRESQL. It can be downloaded from http://www.php.net.

12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540

http://www.php.net

12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606

17.13. PHP

<l--

-- PHP sample program -- Output

-

<HTML>
<BODY>
<?
$database - pg_ConneCt("", uu’ nu’ nu’ "test");
if (!$database)
{
echo "Connection to database failed.";
exit;
}
$result = pg Exec($database,
"SELECT name " .
"FROM statename " .
"WHERE code = '§state code'");
for ($i = 0; $i < pg NumRows($result); $i++)
{
echo pg Result($result,$i,0);
echo "
";
}
7>
</BODY>
</HTML>

connect to the database

did the database connection fail?

send the query

loop through all rows returned

print the value returned

Figure 17.13: PHP sample program — Output

167

168 CHAPTER 17. PROGRAMMING INTERFACES

17.14 Installing Scripting Languages

The interpreted languages above require a database interface to be installed into the language. This is done
by either recompiling the language, or dynamically loading the interface into the language. The following
gives details about each interface:

PERL Use loads the POSTGRESQL interface into the PERL interpreter.

TCL/TK TCL/TK offers three interface options:

* Pre-built TCL interpreter called pgtcish
* Pre-built TCL/TK interpreter called pgtksh, like TCL/TK’s wish
* Loadable library called libpgtcl

PYTHON Import loads the POSTGRESQL interface into the PYTHON interpreter.

PHP PHP must be recompiled to access POSTGRESQL.

17.15 Summary

All interface source code is located in pgsql/src/interfaces. Each interface includes sample source code for use
in writing your own programs.

These interfaces allow the creation of professional database applications. Each interface has advantages.
Some are easier, some faster, some more popular, and some work better in certain environments. The choice
of an interface is often difficult. Hopefully this chapter will make that choice easier.

12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672

12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738

Chapter 18

Functions and Triggers

The previous chapter focused on client-side programming — programs that run on the user’s computer and
interact with the POSTGRESQL database. Server-side functions, sometimes called stored procedures, run
inside the database server rather than in the client application.

There are some good uses for server-side functions. For example, if a function is used by many
applications, it can be embedded into the database server. Each application, then, no longer needs a copy of
the function. Whenever it is needed, it can be called by the client. Unlike client-side functions, server-side
functions can be called from inside SQL queries. Also, functions centrally installed in the server are easily
modified. When a function is changed, client applications immediately start using the new version.

Figure 9.3 on page 94 lists many pre-installed server-side functions, like upper() and date_part(). This
chapter shows how to create your own. This chapter also covers special server-side functions called triggers
which are called automatically when a table is modified.

18.1 Functions

Server-side functions can be written in several languages:

* SQL
* PL/PGSQL
* PL/TCL

* PL/PERL
e C

SQL and PL/PGSQL functions will be covered in this chapter. C functions are more complex and will be covered
in chapter 19.

18.2 SqQL Functions

SQL functions allow queries to be named and stored in the database for later access. This section shows a
variety of SQL functions of increasing complexity.

Functions are created using the CREATE FUNCTION command and removed with DROP FUNCTION. CREATE
FUNCTION requires the following information:

169

170 CHAPTER 18. FUNCTIONS AND TRIGGERS

¢ Function name

Number of function arguments
* Data type of each argument

* Function return type

* Function action

* Language used by function action

Figure 18.1 shows the creation of a simple SQL function to convert from Fahrenheit to centigrade. It supplies

test=> CREATE FUNCTION ftoc(float)
test-> RETURNS float
test-> AS 'SELECT ($1 - 32.0) * 5.0 / 9.0;"
test-> LANGUAGE 'sql';
CREATE
test=> SELECT ftoc(68);
ftoc

Figure 18.1: SQL ftoc function
the following information to CREATE FUNCTION:

* Function name is ffoc

* Function takes one argument of type float

* Function returns a float

* Function action is SELECT ($1 - 32.0) *5.0/ 9.0;

* Function language is SQL

Most functions only return one value. SQL functions can return multiple values using SETOE. Function
actions can contain INSERTS, UPDATES, and DELETESs too. Function actions can also contain multiple queries
separated by semicolons.

The function action in ffoc() uses SELECT to perform a computation. It does not access any tables. The
$1 in the SELECT is automatically replaced by the first argument of the function call. If there were a second
argument, it would be represented as $2.

Constants in the function contain decimal points so floating-point computations are performed. Without
them, division would be performed using integers. For example, the query SELECT 1/4 returns 0, while
SELECT 1.0/4.0 returns 0.25.

When the query SELECT ftoc(68) is executed, it calls ffoc(). Ftoc() replaces $1 with 68, and the computation
in ftoc() 1s executed. In a sense, this is a SELECT inside a SELECT. The outer SELECT calls ffoc(), and ftoc()
uses its own SELECT to perform the computation.

Figure 18.2 shows an SQL server-side function to compute tax. The casts to NUMERIC(8,2) are required

12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804

12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870

18.2. SQL FUNCTIONS 171

test=> CREATE FUNCTION tax(numeric)
test-> RETURNS numeric
test-> AS 'SELECT ($1 * 0.06::numeric(8,2))::numeric(8,2);"
test-> LANGUAGE 'sql';
CREATE
test=> SELECT tax(100);
tax

Figure 18.2: SQL tax function

because the result of the computation must be rounded to two decimal places. This function uses the more
compact double-colon form of type-casting, rather than CAST. See section 9.3 for more information about
type casting. SELECT fax(100) performs a simple computation, similar to ffoc().

One powerful use of server-side functions is their use in SQL queries. Figure 18.3 shows the use of
tax() with the part table from figure 6.3. In this figure, three rows are inserted into the table, then a SELECT

test=> CREATE TABLE part (

test(> part_id INTEGER,
test(> name CHAR(30),
test(> cost NUMERIC(8,2),
test (> weight FLOAT

test(>);

CREATE

test=> INSERT INTO part VALUES (637, 'cable', 14.29, 5);
INSERT 20867 1

test=> INSERT INTO part VALUES (638, 'sticker', 0.84, 1);
INSERT 20868 1

test=> INSERT INTO part VALUES (639, 'bulb', 3.68, 3);
INSERT 20869 1

test=> SELECT part_id,

test-> name,

test-> cost,

test-> tax(cost),

test-> cost + tax(cost) AS total

test-> FROM part
test-> ORDER BY part_id;
part_id | name | cost | tax | total

638 | sticker 0.84 | 0.05 | 0.89
639 | bulb 3.68 | 0.22 | 3.90
(3 rows)

+

637 | cable | 14.29 | 0.86 | 15.15
|
|

Figure 18.3: Recreation of the part table

172 CHAPTER 18. FUNCTIONS AND TRIGGERS

displays columns from the part table with additional computed columns showing tax and cost plus tax.
Figure 18.4 shows a more complex function that computes shipping charges. The function uses CASE to

test=> CREATE FUNCTION shipping(numeric)
test-> RETURNS numeric
test-> AS 'SELECT CASE

test'> WHEN $1 < 2 THEN CAST(3.00 AS numeric(8,2))
test'> WHEN $1 >= 2 AND $1 < 4 THEN CAST(5.00 AS numeric(8,2))
test'> WHEN $1 >= 4 THEN CAST(6.00 AS numeric(8,2))
test'> END; '

test-> LANGUAGE 'sql';

CREATE

test=> SELECT part_id,

test-> trim(name) AS name,

test-> cost,

test-> tax(cost),

test-> cost + tax(cost) AS subtotal,

test-> shipping(weight),

test-> cost + tax(cost) + shipping(weight) AS total

test-> FROM part
test-> ORDER BY part id;

part id | name | cost | tax | subtotal | shipping | total
----- j---+---------+-—-—-—-+-—-—-—+—-—-------+----------+-------
637 | cable | 14.29 | 0.86 | 15.15 | 6.00 | 21.15
638 | sticker | 0.84 | 0.05 | 0.89 | 3.00 | 3.89
639 | bulb | 3.68 | 0.22 | 3.90 | 5.00 | 8.90
(3 rows)

Figure 18.4: SQL shipping function

compute shipping charges based on weight. The figure calls shipping() to generate a detailed analysis of the
tax and shipping charges associated with each part. It prints the part number, name, cost, tax, subtotal of
cost plus tax, shipping charge, and total of cost, tax, and shipping charge. The SELECT uses t7im() to remove
trailing spaces and narrow the displayed result.

If tax rate or shipping charges change, it is easy to change the function to reflect the new rates. Simply
use DROP FUNCTION to remove the function, and recreate it with new values. All user applications will
automatically start using the new version because the computations are embedded in the database, not in
user applications.

Server-side functions can also access database tables. Figure 18.5 shows an SQL function that internally
accesses the statename table. It looks up the proper state name for the state code supplied to the function.

Figure 18.6 shows two queries which yield identical results. The first query joins the customer and
statename tables. The second query does a SELECT on customes, and for each row, getstatename() is called to
find the customer’s state name. These two queries yield the same result only if each customer row joins
to exactly one statename row. If there were customer rows that did not join to any statename row, or joined
to many statename rows, the results would be different. Also, because the second query executes the SQL
function for every row in customer, it is slower.

12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936

18.2. SQL FUNCTIONS 173

12937
12938
12939

12940 test=> CREATE FUNCTION getstatename(text)

12941
12942 test-> RETURNS text

12943 test-> AS 'SELECT CAST(name AS TEXT)
12944 test-> FROM statename

12945
12946 test-> WHERE code = $1;'

12947 test-> LANGUAGE 'sql';

12948 CREATE
12949

12950 test=> SELECT getstatename('AL');

12951 getstatename
12952

12953
12954 Alabama

12955 (1 row)

12956

12957

12958 . .

12959 Figure 18.5: SQL function getstatename
12960

12961

12962

12963

12964

12965

12966

12967

12968 test=> SELECT customer.name, statename.name
i;ggg test-> FROM customer, statename

12971 test-> WHERE customer.state = statename.code
12972 test-> ORDER BY customer.name;

12973 name |

12974

12975 ~ TUmTmmmmmmmmssmmmmm—emmomoo--e- Fommmmm oo
12976 Fleer Gearworks, Inc. | Alabama

12977 . .
12978 Mark Middleton | Indiana

12979 Mike Nichols | Florida

12980 (3 rows)

12981

12982

12983 test=> SELECT customer.name, getstatename(customer.state)
igggg test-> FROM customer

12986 test-> ORDER BY customer.name;
12987 name |
12988 o +
12989

12990 Fleer Gearworks, Inc. | Alabama

12991 Mark Middleton | Indiana

12992 .) i

12993 Mike Nichols | Florida

12994 (3 rows)

12995

12996

Egg; Figure 18.6: Getting state name using join and function
12999

13000

13001

13002

getstatename

174 CHAPTER 18. FUNCTIONS AND TRIGGERS

18.3 PL/PGSQL Functions

PL/PGSQL is another language for server-side functions. It is a true programming language. While SQL
functions only allow argument substitution, PL/PGSQL has features like variables, conditional evaluation, and
looping.

PL/PGSQL is not installed in each database by default. To use it in database fest, it must be installed by
running createlang plpgsql test from the operating system prompt.

Figure 18.7 shows a PL/PGSQL version of the SQL function getstatename from figure 18.5. The only
differences are the addition of BEGIN...END and the language definition as PL/PGSQL.

test=> CREATE FUNCTION getstatename2(text)
test-> RETURNS text
test-> AS 'BEGIN

test'> SELECT CAST(name AS TEXT)
test'> FROM statename
test'> WHERE code = $1;

test'> END; '
test-> LANGUAGE 'plpgsql';
CREATE

Figure 18.7: PL/PGSQL version of getstatename

Figure 18.8 shows a more complicated PL/PGSQL function. It accepts a fext argument, and returns the
argument in uppercase, with a space between each character. This is used in the next SELECT to display a
report heading. This function illustrates the use of variables and WHILE loops in PL/PGSQL.

Figure 18.9 shows a much more complicated PL/PGSQL function. This function takes a state name as a
parameter and finds the proper state code. Because state names are longer than state codes, they are often
misspelled. This function deals with misspellings by performing lookups in several ways. First, it attempts
to find an exact match. If that fails, it searches for a unique state name that matches the first 2,4, or 6
characters, up to the length of the supplied string. If a unique state is not found, an empty string (’’) is
returned. Figure 18.10 shows several getstatecode() function calls.

Getstatecode() illustrates several unique PL/PGSQL features:

%TYPE Data type that matches a database column.
RECORD Data type that stores the result of a SELECT.

SELECT INTO A special form of SELECT that allows query results to be placed into variables. It should not
be confused with SELECT * INTO.

FOUND Predefined BOOLEAN variable that represents the status of the previous SELECT INTO.
RETURN Exits and returns a value from the function.

Many other PL/PGSQL features are covered in the User’s Manual mentioned in section A.3.

Figure 18.11 shows a PL/PGSQL function that provides a server-side interface for maintaining the statename
table. Function change_statename performs INSERT, UPDATE, and DELETE operations on the sfatename table.
Change_statename() is called with a state code and state name. If the state code is not in the table, it iS
inserted. If it already exists, the state name is updated. If the function is called with an empty state name
(’7), the state is deleted from the table. The function returns true (*t)) if statename was changed, and false
() if the statename table was unmodified. Figure 18.12 shows examples of its use.

13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068

13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134

18.3. PL/PGSQL FUNCTIONS

test=> CREATE FUNCTION spread(text)
test-> RETURNS text
test-> AS 'DECLARE

test'> str text;

test'> ret text;

test'> i integer;

test'> len integer;

test'>

test'> BEGIN

test'> str := upper($1);

test'> ret := '"'"; -- start with zero Tength
test'> i = 1;

test'> len := length(str);

test'> WHILE i <= len LOOP

test'> ret := ret || substr(str, i, 1) || "' '';
test'> i=di+ 1

test'> END LOOP;

test'> RETURN ret;

test'> END; '

test-> LANGUAGE 'plpgsql';

CREATE

test=> SELECT spread('Major Financial Report');
spread

MAJOR FINANCIAL REPORT

(1 row)

Figure 18.8: PL/PGSQL spread function

175

176 CHAPTER 18. FUNCTIONS AND TRIGGERS

test=> CREATE FUNCTION getstatecode(text) 13135
13136

test-> RETlIJRNS text 13137
test-> AS 'DECLARE 13138
test'> state str statename.name%TYPE; 13139
' . 13140
test'> statename_rec record; 13141
test'> i integer; 13142
test'> Ten integer; i%ﬁ
test'> matches record; 13145
test'> search_str text; 13146
test's 13147
| 13148
test'> BEGIN 13149
test'> state str := initcap($1); -- capitalization match column 13150
| . : } 13151
test'> 1.en := Tength(trim($1)); 13152
test'> i =23 13153
test'> 13154
test'> SELECT INTO statename_rec * -- first try for an exact match gigg
test'> FROM statename 13157
test'> WHERE name = state str; 13158
test's IF FOUND - 13159
13160

test'> THEN RETURN statename rec.code; 13161
test'> END IF; 13162
| 13163
test'> 13164
test'> WHILE i <= len LOOP -- test 2,4,6,... chars for match 13165
test'> search str = trim(substr(state_str, 1, 1)) || "'%"'"; gigg
test'> SELECT INTO matches COUNT(*) 13168
test'> FROM statename 13169
| . 13170
test'> WHERE name LIKE search_str; 13171
test'> 13172
test'> IF matches.count = 0 -- no matches, failure 13173
, . 13174
test'> THEN RETURN NULL; 13175
test'> END IF; 13176
test'> IF matches.count = 1 -- exactly one match, return it 13177
test'> THEN 13178
€s 13179
test'> SELECT INTO statename_rec * 13180
test'> FROM statename gig;
test'> WHERE name LIKE search_str; 13183
test'> IF FOUND 13184
test'> THEN RETURN statename rec.code; e
test'> END IF; 13187
test'> END IF; 13188
. L 13189
test'> i=1i+ 2; -- >1 match, try 2 more chars 13190
test'> END LOOP; 13191
test'> RETURN ''"'' 13192
, . 13193
test'> END; 13194
test-> LANGUAGE 'pTpgsql'; 13195
13196

13197

13198

Figure 18.9: PL/PGSQL getstatecode function 13199

13200

18.3. PL/PGSQL FUNCTIONS 177

13201

13202

13203

13204

13205

13206

13207

13208

13209

13210

13211

13212

13213

13214

13215

13216 test=> SELECT getstatecode('Alabama');
13217 getstatecode

13218
13219 TTTTTETTETTETS
13220 AL

13221
13222
13223

13224 test=> SELECT getstatecode('ALAB');

13225
13226 getstatecode

13227 mmmmmmmmmmme-
13228 AL

13229

13230 (1 row)

13231

igggg test=> SELECT getstatecode('Al');
13234 getstatecode

13235 emmmmmmmmemme

13236

13237 AL

13238 (1 row)

13239
iggi? test=> SELECT getstatecode('Ail');
13242 getstatecode
13243
13244

13245

13246 (1 row)

13247

13248

13249

13250

13251

13252

13253

13254

13255

13256

13257

13258

13259

13260

13261

13262

13263

13264

13265

13266

(1 row)

Figure 18.10: Calls to gefstatecode function

178

CHAPTER 18. FUNCTIONS AND TRIGGERS

test=> CREATE FUNCTION change statename(char(2), char(30))

test-> RETURNS boolean
test-> AS 'DECLARE

-- no state code, failure

-- is INSERT or UPDATE?

-- is state not in table?

-- is DELETE

test'> state_code ALIAS FOR §$1;

test'> state_name ALIAS FOR $2;

test'> statename_rec RECORD;

test'>

test'> BEGIN

test'> IF Tength(state code) = 0

test'> THEN RETURN ''f'';

test'> ELSE

test'> IF length(state name) != 0

test'> THEN

test'> SELECT INTO statename rec *
test'> FROM statename

test'> WHERE code = state_code;

test'> IF NOT FOUND

test'> THEN INSERT INTO statename
test'> VALUES (state code, state name);
test'> ELSE UPDATE statename

test'> SET name = state name
test'> WHERE code = state code;
test'> END IF;

test'> RETURN ''t'';

test'> ELSE

test'> SELECT INTO statename rec *
test'> FROM statename

test'> WHERE code = state_code;

test'> IF FOUND

test'> THEN DELETE FROM statename
test'> WHERE code = state code;
test'> RETURN ''t'';

test'> ELSE RETURN ''f'';

test'> END IF;

test'> END IF;

test'> END IF;

test'> END; '

test-> LANGUAGE 'plpgsql';

Figure 18.11: PL/PGSQL change_statename function

13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332

13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398

18.3. PL/PGSQL FUNCTIONS

test=> DELETE FROM statename;

DELETE 1

test=> SELECT change statename('AL','Alabama');

change_statename

test=> SELECT * FROM statename;

code |

______ e

AL | Alabama
(1 row)

name

test=> SELECT change statename('AL','Bermuda');

change_statename

test=> SELECT * FROM statename;

code |

______ e

AL | Bermuda
(1 row)

name

test=> SELECT change statename('AL','');

change_statename

test=> SELECT change statename('AL','');

change statename

-- row was already deleted

Figure 18.12: Example of change_statename()

179

180 CHAPTER 18. FUNCTIONS AND TRIGGERS

18.4 Triggers

Rules allow SQL queries to be executed when a table is accessed. They are covered in section 13.6. Triggers
offer another way to perform actions on INSERT, UPDATE, or DELETE. Triggers are ideal for checking or
modifying a column value before it is added to the database.

Triggers and rules are implemented differently. Triggers call server-side functions for each modified row
while rules rewrite user queries or add additional queries. Triggers are ideal for checking or modifying a row
before it is added to the database. Rules are ideal when the action affects other tables.

Triggers allow special server-side functions to be called every time a row is modified. These special
functions can be written in any server-side language except SQL. These functions control the action taken
by the query. They can reject certain values, or modify them before they are added to the database. Triggers
that return NULL cause the operation that caused the trigger to be ignored.

Server-side trigger functions are special because they have predefined variables to access the row that
caused the trigger. For INSERT triggers, the variable new represents the row being inserted. For DELETE, the
variable old represents the row being deleted. For UPDATE, triggers can access the pre-UPDATE row using old
and the post-UPDATE row using z#ew. These are the same as the old and new variables in rules.

Figure 18.13 shows the creation of a special server-side trigger function called trigger insert update -
statename. This function uses the new RECORD variable to:

* Reject a state code that is not exactly two alphabetic characters
* Reject a state name that contains non-alphabetic characters

* Reject a state name less than three characters in length

* Uppercase the state code

* (Capitalize the state name

When invalid data is entered, RAISE EXCEPTION aborts the current query and displays an appropriate error
message. Validity checks can also be performed using CHECK constraints covered in section 14.5.

Uppercase and capitalization occur by simply assigning values to the new variable. The function return
type is opaque because new is returned by the function.

CREATE TRIGGER causes trigger insert_update_statename() to be called every time a row is inserted or
updated in statename. The remaining queries in the figure show three rejected INSERTS, and a successful
INSERT that is properly uppercased and capitalized by the function.

Trigger functions can be quite complicated. They can perform loops, SQL queries, and any operation
supported in server-side functions. See the CREATE TRIGGER and DROP_TRIGGER manual pages for additional
information.

18.5 Summary

Server-side functions allow programs to be embedded into the database. These programs can be accessed
from client applications, and used in database queries. Moving code into the server allows for increased
efficiency, maintainability, and consistency. Triggers are special server-side functions called when a table is
modified.

13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464

13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530

18.5. SUMMARY

181

test=> CREATE FUNCTION trigger insert update statename()
test-> RETURNS opaque
test-> AS 'BEGIN

test'>
test'>
test'>
test'>
test'>
test'>
test'>
test'>
test'>
test'>
test'>
test'>
test'>
test->
CREATE

test=>
test->
test->
test->
test->
CREATE

test=>
DELETE
test=>
ERROR:
test=>
ERROR:
test=>
ERROR:
test=>
INSERT
test=>

IF new.code !~ ''"[A-Za-z][A-Za-z]$""'

THEN RAISE EXCEPTION ''Code must be two alphabetic characters.'';
END IF;

IF new.name !~ ''"[A-Za-z]*$"'

THEN RAISE EXCEPTION ''Name must be only alphabetic characters.'';
END IF;

IF length(trim(new.name)) < 3

THEN RAISE EXCEPTION ''Name must be longer than two characters.'';
END IF;

new.code = upper(new.code);
new.name = initcap(new.name);
RETURN new;

-- uppercase statename.code
-- capitalize statename.name

END; '
LANGUAGE 'plpgsql’;

CREATE
BEFORE

TRIGGER trigger statename
INSERT OR UPDATE

ON statename
FOR EACH ROW
EXECUTE PROCEDURE trigger insert update statename();

DELETE
1
INSERT
State
INSERT
State
INSERT
State
INSERT
292898
SELECT

FROM statename;

INTO statename VALUES ('a', 'alabama');
code must be two alphabetic characters.
INTO statename VALUES ('al', 'alabama2');
name must be only alphabetic characters.
INTO statename VALUES ('al', 'al');
name must Tonger than two characters.
INTO statename VALUES ('al', 'alabama');
1
* FROM statename;

name

AL | Alabama

(1 row)

Figure 18.13: Trigger creation

182

CHAPTER 18. FUNCTIONS AND TRIGGERS

13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596

13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662

Chapter 19

Extending POSTGRESQL Using C

While POSTGRESQL has a large number of functions, operators, data types, and aggregates, there are cases
when users need to create their own. The previous chapter already showed how to create functions in
languages other than C. This chapter covers C functions and the creation of custom operators, data types,
and aggregates that behave just like the ones already in POSTGRESQL.

Extending POSTGRESQL in this way involves several steps:

* Write C code to implement the new functionality
* Compile the C code into an object file that contains CPU instructions
* Issue CREATE FUNCTION commands to register the new functions

* Issue the proper commands if creating operators, data types, or aggregates:

— CREATE OPERATOR
— CREATE TYPE

— CREATE AGGREGATE

The full details of extending POSTGRESQL are beyond the scope of this book. This chapter is just an overview.
The Programmer’s Manual mentioned in section A.3 has more detailed information.

19.1 Writing C code

The best way to add a new function, operator, data type, or aggregate is to start with a copy of a file from the
POSTGRESQL source directory pgsql/src/backend/utils/adt. Start with a file that has functions similar to the
ones you need. Make sure your new function names are unique.

For example, the previous chapter had a ffoc() SQL function that converted Fahrenheit to centigrade.
Figure 19.1 shows a C function that converts centigrade to Fahrenheit.

While writing C functions, you may find it necessary to execute SQL queries from inside the function.
The Server Programming Interface (SPI) allows C functions to execute SQL queries and process results from
within C functions.

183

184 CHAPTER 19. EXTENDING POSTGRESQL USING C

#include "postgres.h"
double *ctof(double *deg)
{

double *ret = palloc(sizeof(double));

*ret = (*deg * 9.0 / 5.0) + 32.0;
return ret;

Figure 19.1: C ctof function

19.2 Compile the C code

The next step is to compile your C file into an object file that contains CPU instructions.

In fact, a special object file must be created that can be dynamically linked into the POSTGRESQL server.
Many operating systems require special flags to create an object file that can be dynamically linked. The best
way to find the required flags is to go to pgsql/src/test/regress and type make clean and then make regress.so.'
This will display the compile commands used to generate the dynamically linkable object file 7egress.so. The
-I compile flags allow searching for include files. Some of the other flags are used for generating dynamic
object files. Use those flags to compile your C code into a dynamically linkable object file. You may need to
consult your operating system documentation for assistance in locating the proper flags.

19.3 Register the New Functions

Now that a dynamically linkable object file has been created, its functions must be registered with POST-
GRESQL. The CREATE FUNCTION command registers a new function by storing information in the database.
Figure 19.2 shows the CREATE FUNCTION command for ctof. Ctof takes a float argument and returns a float.

test=> CREATE FUNCTION ctof(float)
test-> RETURNS float

test-> AS '/users/pgman/sample/ctof.so’
test-> LANGUAGE 'C';

CREATE

Figure 19.2: Create function ctof

The SQL data type float is the same as the C type double used in ctof() above. The dynamically linkable object
files is /users/pgman/sample/ctof-so and it is written in the C language.

A single object file can contain many functions. You must use CREATE FUNCTION to register each function
you want to access from POSTGRESQL. CREATE FUNCTION also allows non-object files to be used as functions.
This is covered in chapter 18.

With the functions registered, they can be called just like POSTGRESQL internal functions. Figure 19.3
shows the cfof() function used in a SELECT statement. See CREATE_FUNCTION for more information.

1Some operating systems may need to use gmake rather than make. Also, some operating systems will use regress.o rather than
76g7esS.S0.

13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728

13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794

19.4. OPTIONALLY CREATE OPERATORS, TYPES, AND AGGREGATES 185

test=> SELECT ctof(20);
ctof

Figure 19.3: Calling function ctof

19.4 Optionally Create Operators, Types, and Aggregates

Operators, types, and aggregates are built using functions. CREATE OPERATOR, CREATE TYPE, and CREATE
AGGREGATE register that a set of functions should behave as an operator, type, or aggregate. They name
the new operator, type, or aggregate, and call the supplied functions whenever that name is accessed. See
CREATE_OPERATOR, CREATE_TYPE, and CREATE AGGREGATE for more information.

19.5 Summary

Extending POSTGRESQL is a complicated process. This chapter has covered only the basic concepts. As
mentioned earlier, the Programmer’s Manual mentioned in section A.3 has more detailed information.

186

CHAPTER 19. EXTENDING POSTGRESQL USING C

13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860

13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926

Chapter 20

Administration

This chapter covers a variety of administrative tasks. The chapter assumes POSTGRESQL is installed and
running. If it is not, see appendix B.

20.1 Files

When POSTGRESQL is installed, it creates files in its home directory, typically /usr/local/pgsql. This directory
contains all the files needed by POSTGRESQL. It contains various subdirectories:

/bin This contains POSTGRESQL command-line programs, like psql.

/data This contains configuration files and tables shared by all databases. For example, pg_shadow is a table
shared by all databases.

/data/base This contains a subdirectory for each database. Using the du and 1s commands, administrators
can display the amount of disk space used by each database, table, or index.

/doc This contains POSTGRESQL documentation and manual pages.
/include This contains include files used by various programming languages.

/lib This contains libraries used by various programming languages. It also contains files used during
initialization and sample configuration files that can be copied to /data and modified.

20.2 Creating Users

New users are created by running createuser from an operating system prompt. Initially, only the POST-
GRESQL super-user, typically posigres, can create new users. Other users can be given permission to create
new users and databases.

POSTGRESQL usernames do not have to exist as operating system users. For installations using database
password authentication, a createuser flag is available so passwords can be assigned.

Users are removed with dropuser. CREATE USER, ALTER USER, and DROP USER commands are available in
SQL.

POSTGRESQL also allows the creation of groups using CREATE GROUP in SQL. GRANT permissions can be
specified using these groups.

Figure 20.1 shows examples of user administration commands. It creates one user from the command
line, a second user in psql, and alters a user. It then creates a group, and gives table permissions to the

187

188 CHAPTER 20. ADMINISTRATION

13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
$ createuser demouserl 13940

Shall the new user be allowed to create databases? (y/n) n iggi;

Shall the new user be allowed to create more new users? (y/n) n 13943
CREATE USER 13944

13945
$ psql test 13946

Welcome to psql, the PostgreSQL interactive terminal. 13947
13948
Type: \copyright for distribution terms }gggg

\h for help with SQL commands 13951

\? for help on internal slash commands 13952

\g or terminate with semicolon to execute query igggi

\q to quit 13955

13956

13957

test=> CREATE USER demouser?; 13958
CREATE USER 13959

test=> ALTER USER demouser2 CREATEDB; ggg‘;

ALTER USER 13962
test=> CREATE GROUP demogroup WITH USER demouserl, demouser2; 13963

13964
CREATE GROUP 13965

test=> CREATE TABLE grouptest (col INTEGER); 13966
CREATE 13967

test=> GRANT ALL on grouptest TO GROUP demogroup; o

CHANGE 13970
test=> \connect test demouser2 1327;
You are now connected to database test as user demouser2. 139;3
test=> \gq 13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992

Figure 20.1: Examples of user administration

13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058

20.3. CREATING DATABASES 189

group. Finally it reconnects to the database as a different user. This was possible because the site has local
users configured with trust access. This is covered in section 20.4.

These commands can only be performed by a user with create user privileges. More information about
each command can be found in the manual pages.

20.3 Creating Databases

New databases are created by running createdb from an operating system prompt. Initially, only the POST-
GRESQL super-user can create new databases. Other users can be given permission to create new databases.
Createdb creates a new database by making a copy of the templatel database. Templatel is made when
POSTGRESQL is first initialized. Any modifications to femplatel will appear in newly created databases.
Databases are removed with dropdb. CREATE DATABASE and DROP DATABASE commands are also available
in SQL.
Figure 20.2 shows a database created from the command line and another one created in psql. A database

$ createdb demodbl

CREATE DATABASE

$ psql test

Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\q to quit

test=> CREATE DATABASE demodb2;

CREATE DATABASE

test=> DROP DATABASE demodbl;

DROP DATABASE

test=> \connect demodb2

You are now connected to database demodb2.
demodbh2=> \q

Figure 20.2: Examples of database creation and removal

is then destroyed, and a connection made to a new database. Additional information about each command
can be found in the manual pages.

20.4 Access Configuration

POSTGRESQL allows administrators to control database access. Access can be granted by database, user,
or TCP/IP network address. By default, POSTGRESQL allows database access only to users logged into the
computer running the database server. To enable network access, the postmaster must be started with the
-1 flag.

Database access is controlled by the data/pg hba.conf file, which is located in the POSTGRESQL home
directory. It contains several types of configuration entries:

190 CHAPTER 20. ADMINISTRATION

local

Local entries control access by users logged into the same computer as the database server. Local connections
use unix domain sockets. These are the per-database authentication options:

* trust — Trust users connecting to this database.
* password — Require a password of users connecting to this database.

* crypt — Like password, except send the password in an encrypted manner. This method is more secure
than password.

* reject — Reject all connection requests for this database.

host and hostssl

Host and hostssl entries control TCP/IP network access. They include host and netmask fields. They support
all the local options, plus:

e ident — Use a remote ident server for authentication.
e kyb4 — Use Kerberos IV authentication.

e krb5 — Use Kerberos V authentication.

These entries are only effective if the postmaster is using the -i option. Hostssl controls access via the Secure
Socket Layer (SSL) if enabled in the server.

User Mappings

By default, passwords used by password and crypt are contained in the pg_shadow table. This table is managed
by createuser and ALTER USER.

However, password takes an optional argument that specifies a secondary password file which overrides
pg shadow. This file contains usernames and passwords of people allowed to connect. Using this method, a
set of users can be given access to certain databases. See the pg_passwd manual page for more information
on creating secondary password files. Currently, crypt does not support secondary password files.

The ident entry also takes an optional argument that specifies a special map name to map ident usernames
to database usernames. The file data/pg ident.conf is used to record these mappings.

Examples

Local entries are configured per database. A database entry of @/l applies to all databases. Indata/pg hba.conf,
the lines:

local all trust
host all 127.0.0.1 255.255.255.255 trust

cause all local users to be trusted. The first line affects users connecting via unix domain sockets, while the
second line controls local users connecting to the same machine by TCP/IP. The local machine is accessed as
TCP/IP address 127.0.0.1 (localhost).

Host and hostssl entries require the additional specification of host addresses and network masks. The
lines:

14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124

14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190

20.5. BACKUP AND RESTORE 191

host all 192.168.34.0 255.255.255.255 crypt
host all 192.168.90.0 255.255.255.0 password

force passwords of all users from host 192.168.34.0 and network 192.168.90.0. Crypt encrypts passwords
when sent, while password sends passwords over the network without encryption. The line:

host all 192.168.98.0 255.255.255.255 password finance

is similar to the previous entries, except it uses the usernames/passwords stored in finance to authenticate
users.

The lines:
host sales 192.168.7.12 255.255.255.255 ident
host sales 192.168.7.64 255.255.255.255 ident support

uses ident on the remote machine to verify the users connecting to database sales from host 192.168.7.12
and 192.168.7.64. The second entry uses the support username mapping in data/pg_ident.conf.

Connections are rejected from hosts and networks not appearing in the file. For more information, see
the file data/pg hba.conf and the Administrator’s Guide mentioned in appendix A.3.

For database client applications, the environment variables PGHOST, PGPORT, PGUSER, PGPASSWORD, PG-
DATESTYLE, PGTZ, PGCLIENTENCODING, and PGDATABASE are helpful for setting default connection parameters
and options. The POSTGRESQL documentation has more information about these.

20.5 Backup and Restore

Database backups allow databases to be restored if a disk drive fails, a table is accidentally dropped, or a
database file is accidentally deleted. If the databases are idle, a standard file system backup is sufficient as
a POSTGRESQL backup. If the databases are active, the pg_dumpall utility must be used for reliable backup.
Pg_dumpall outputs a consistent snapshot of all databases into a file that can be included in a file system
backup. In fact, once a pg_dumpall file has been created, there is no need to backup the /data/base database
files. There are a few configuration files in /data, like data/pg hba.conf, which should be included in a file
system backup because they are not in the pg_dumpall file. Pg_dump can dump a single POSTGRESQL database.
To restore using a pg_dumpall file, POSTGRESQL must be initialized, any manually edited configuration
files restored to /data, and the database dump file run by psql. This will recreate and reload all databases.
Individual databases can be reloaded from pg_dump files by creating a new database and loading it using
psql. For example, figure 20.3 creates an exact copy of the fest database. It dumps the contents of the

$ pg_dump test > /tmp/test.dump
$ createdb newtest

CREATE DATABASE

$ psql newtest < /tmp/test.dump

Figure 20.3: Making a new copy of database test

database into a file. A new database called newtest is created, then the dump file is loaded into the new
database.

Dump files contain ordinary SQL queries and COPY commands. Because the files contain database
information, they should be created so only authorized users have permission to read them. See pg_dump and
pg_dumpall manual pages for more information about these commands.

192 CHAPTER 20. ADMINISTRATION

20.6 Server Startup and Shutdown

The POSTGRESQL server uses two distinct programs — postmaster and postgres. Postmaster accepts all
requests for database access. It does authentication and starts a postgres process to handle the connection.
The postgres process executes user queries and returns results. Figure 20.4 illustrates this relationship.

Connection Requests

———

Postmaster

Queries
_—

Results
-

Postgres Postgres Postgres

Figure 20.4: Postmaster and postgres processes

POSTGRESQL sites normally have only one postmaster process, but many postgres processes. There is
one postgres process for every open database session.

Administrators only need to start the postmaster, and the postmaster will start postgres backends as
connection requests arrive. The postmaster can be started from the command line, or from a script.

Another way to start the postmaster is using pg_ct1. The pg_ct1 utility allows easy starting and stopping
of the postmaster. See the pg_ct1 manual page for more information. The operating system startup scripts
can even be modified to start the postmaster automatically.

The postmaster can be stopped by sending the process a signal using ki11, or by using pg_ctl.

20.7 Monitoring

Postmaster and postgres produce useful information for administrators. They have many flags to control the
information they output. They can show user connection information, SQL queries, and detailed performance
statistics.

When the postmaster is started, its output should be sent to a file in the POSTGRESQL home directory.
That file can then be used to monitor database activity. See the postmaster and postgres manual pages for a
complete list of output options. To specify flags to be passed to each postgres process, use the postmaster -0
flag.

Another way to monitor the database is by using ps. The ps operating system command displays
information about system processes, including information about the postmaster and postgres processes. It
is a good tool for analyzing POSTGRESQL activity, particularly for diagnosing problems. The ps command can
display information about a process’s:

* Current CPU usage
* Total CPU usage
 Start time

* Memory usage

14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256

14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322

20.8. PERFORMANCE 193

* Disk operations (on some operating systems)
Each operating system uses different ps flags to output these values. A typical display is:

USER PID %CPU TIME STARTED VSZ INBLK OUBLK COMMAND

postgres 18923 45.4 0:27.79 1:15PM 2140 34 1 /usr/local/postgres/ ..

In this case, process 18923 is using 45.4% of the CPU, has used 27.79 seconds of CPU time, was started at
1:15PM, has read 34 blocks, and has written 1 block.

To identify who is using each postgres process, most operating systems allow ps to display connection
information:

e Username
e User’s network address
e Database

* SQL command keyword (SELECT, INSERT, UPDATE, DELETE, CREATE, idle, ...)

Ps displays this information next to the name of each postgres process. A typical display is:

PID TT STAT TIME COMMAND

18923 7?7 S 0:27.79 /usr/Tocal/postgres/bin/postgres demouser localhost test SELECT

In this example, demouses, using process id 18923, is connecting from the local machine to database test, and
is executing a SELECT. Administrators can use ps to analyze who is connected to each database, the query
command they are running, and the system resources used.

20.8 Performance

Chapter 11 covers the performance of SQL queries. This chapter covers more general performance consid-
erations.

One of the most important administrative tasks is the scheduling of the vacuumdb -a command. This
vacuums all databases. It should be run when the databases are least busy. Section 11.4 describes the
purpose of vacuuming. Vacuum analyze should also be performed periodically. This is covered in section 11.5.
Vacuumdb can perform analyzing as well. See the vacuumdb manual page for more information.

Postmaster and postgres have several flags that can improve performance. The postmaster -B flag
controls the amount of shared buffer memory allocated. The postgres -S flag controls the amount sort
memory allocated. While these consume system resources, they also improve performance by reducing disk
access.

Database performance can also be improved by moving databases to different disk drives. This allows
disk access to be spread among multiple drives. The initlocation utility allows new database locations to
be created on different drives. Createdb can use these locations for new databases.

POSTGRESQL stores tables and indexes in operating system files. Using operating system symbolic links,
databases, tables, and indexes can be moved to different disk drives, often improving performance.

194 CHAPTER 20. ADMINISTRATION

20.9 System Tables

There is a great deal of information stored in POSTGRESQL system tables. These tables begin with pg .
They contain information about data types, functions, operators, databases, users, and groups. Table 20.1
shows the most commonly used tables.

Name Contents
pg_aggregate aggregates
pg_attribute columns
pg class tables

pg_database databases
pg_description | comments

pg_group groups
pg_index indexes

pg_log transaction status
pg_operator operators
pg_proc functions
pg_rewrite rules and views
pg_shadow users

pg_trigger triggers

pg_type types

Table 20.1: Commonly used system tables

Pg log is an binary file and not a real table. Pg shadow contains user passwords and is not visible to
ordinary users. Pg user (not shown) is a view of pg_shadow that does not display the password field. There
are several other system views available. Most system tables are joined using OID’s, which are covered in
section 7.1. The psql \dS command lists all system tables and views.

20.10 Internationalization

POSTGRESQL supports several features important for international use. Multi-byte encoding allows non-ASCII
character sets to be accurately stored in the database. It can be specified during POSTGRESQL initialization,
at database creation, or inside psql. POSTGRESQL can also be installed to support locales.

POSTGRESQL can read and display dates in a variety of formats. The default date format can be specified
as a postgres flag, using SET DATESTYLE from inside psq1, or using the PGDATESTYLE environment variable.

20.11 Upgrading

The process of upgrading from previous POSTGRESQL releases is covered in the documentation distributed
with each version. Sometimes, the pg_upgrade utility can be used. In other cases, a pg_dumpall and reload
are required.

20.12 Summary

This chapter is only a summary of basic administrative tasks. Each utility has many options not covered in
this chapter.

14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388

14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454

20.12. SUMMARY 195

Administration can be quite challenging. It takes skill and experience. Hopefully this chapter has supplied
enough information for you to start exploring topics of interest. The manual pages and Administrators Guide
mentioned in appendix A.3 contain more valuable information.

196

CHAPTER 20. ADMINISTRATION

14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
144383
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520

14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586

Appendix A

Additional Resources

A.1 Frequently Asked Questions (FAQ’S)

This information comes from http://www.postgresql.org/docs/fag-english.html.

A.2 Mailing List Support

This information comes from http://www.postgresql.org/lists/mailing-1ist.html.

A.3 Supplied Documentation

This information comes from http://www.postgresql.org/docs/index.html.

A.4 Commercial Support

Information from http://www.pgsql.com/ andhttp://www.greatbridge.com/.

A.5 Modifying the Source Code

POSTGRESQL allows access to all its source code. The web page http://www.postgresql.org/docs/index.html
has a Developers section

197

http://www.postgresql.org/docs/faq-english.html
http://www.postgresql.org/lists/mailing-list.html
http://www.postgresql.org/docs/index.html
http://www.pgsql.com/
http://www.greatbridge.com/
http://www.postgresql.org/docs/index.html

198

APPENDIX A. ADDITIONAL RESOURCES

14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652

14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718

Appendix B

Installation

Getting POSTGRESQL

The POSTGRESQL software is distributed in several formats:

* Tar-gzipped file with file extension .targz
* Prepackaged file with file extension .7pm
* Another prepackaged format

¢ CD-ROM

Because there are so many formats, this appendix will only cover the general steps need to install POST-
GRESQL. Each distribution comes with a INSTALL or README file with more specific instructions.

Create the POSTGRESQL User

It is best to create a separate user to own the POSTGRESQL files and processes that are about to be installed.
The user name is typically posigres.

Configure

Many distributions use a configure command which allows users to choose various options before compiling
and installing the software.

Compiling

POSTGRESQL is usually distributed in source code format. This means that the C source code must be
compiled into a format that is understood by the CPU inside the computer. This process is usually performed
by a compiler often called cc or gcc. Several distribution formats automatically perform these steps for the
user.

Installation

This process involves copying all compiled programs into a directory that will serve as the home of all
POSTGRESQL activity. It will also contain all POSTGRESQL programs, databases, and log files. The directory
is typically /usr/local/pgsql.

199

200 APPENDIX B. INSTALLATION

Initialization

Initialization creates a database called femplatel in the POSTGRESQL home directory. This database is used
to create all other databases. Initdb performs this initialization step.

Starting the Server

Once templatel is created, the database server can be started. This is typically done by running the program
called postmaster.

Creating a Database

Once the database server is running, databases can be created by running createdb from the operating system
prompt. Chapter 20 covers POSTGRESQL administration in detail.

14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784

14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850

Appendix C

PostgreSQL Non-Standard Features by
Chapter

This section outlines the non-standard features covered in this book:

Chapter 1 None.

Chapter 2 Psql is a unique feature of POSTGRESQL.

Chapter 3 None.

Chapter 4 Use of regular expressions, SET, SHOW, and RESET are features unique to POSTGRESQL.
Chapter 5 None.

Chapter 6 None.

Chapter 7 OID’s, sequences, and SERIAL are unique features of POSTGRESQL.

Chapter 8 FROM in UPDATE is a unique features of POSTGRESQL. Some databases support the creation of
tables by SELECT.

Chapter 9 Most databases support only a few of the many datatypes, functions, and operators included in
POSTGRESQL. Arrays are a unque features of POSTGRESQL. Large objects are implemented differently
by other database systems.

Chapter 10 None.

Chapter 11 CLUSTER, VACUUM, and EXPLAIN are features unique to POSTGRESQL.
Chapter 12 LIMIT is implemented by a few other database systems.

Chapter 13 Inheritance, RULES, LISTEN, and NOTIFY are features unique to POSTGRESQL.
Chapter 14 None.

Chapter 15 COPY s a unique feature of POSTGRESQL.

Chapter 16 Psql and pgaccess are unique features of POSTGRESQL.

Chapter 17 All the programming interfaces except libecpg and JAVA are implemented differently in other
database systems.

201

202 APPENDIX C. POSTGRESQL NON-STANDARD FEATURES BY CHAPTER

Chapter 18 Server-side functions and triggers are implented differently in other database systems.
Chapter 19 Using C to enhance the database is a unique POSTGRESQL feature.

Chapter 20 The administrative utilities are unique to POSTGRESQL.

14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916

14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982

Appendix D

Reference Manual

The following is a copy of the reference manual pages (man pages) as they appeared in POSTGRESQL 7.0.
These come from http://www.postgresql.org/docs/user/sql-commands.htmand http://www.postgresql.org/docs/user/
They are in sgml/Docbook format. Approximately 200 pages.

203

http://www.postgresql.org/docs/user/sql-commands.htm
http://www.postgresql.org/docs/user/applications.htm

204

APPENDIX D. REFERENCE MANUAL

14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048

15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114

Bibliography

[Bowman] Bowman et al., The Practical SQL Handbook, Addison—Wesley
[Date, Standard] Date, C.J. A Guide to The SQL Standard, Addison-Wesley

[Date, Introduction] Date. C.J. An Introduction to Database Systems, Addison-Wesley

[Celko] Celko, Joe SQL For Smarties, Morgan, Kaufmann

[Groff] Groff, James R. and Paul N. Weinberg The Complete Reference SQL, McGraw-Hill

[Hilton] Hilton, Craig and Jeff Willis Building Database Applications on the Web Using PHPS3,
Addison-Wesley

[User’s Guide] POSTGRESQL User’s Guide, http://www.postgresql.org/docs/user

[Tutorial] POSTGRESQL Tutorial, http://www.postgresql.org/docs/tutorial

[Administrator’s Guide] POSTGRESQL Administrators Guide, http://www.postgresql.org/docs/admin
[Programmer’s Guide] POSTGRESQL Programmer’s Guide, http://www.postgresql.org/docs/programmer

[Appendices] POSTGRESQL Appendices, http://www.postgresql.org/docs/postgres/part-appendix.htm

205

http://www.postgresql.org/docs/user
http://www.postgresql.org/docs/tutorial
http://www.postgresql.org/docs/admin
http://www.postgresql.org/docs/programmer
http://www.postgresql.org/docs/postgres/part-appendix.htm

	Note to Reviewers
	Foreword
	Preface
	Acknowledgements
	History of PostgreSQL
	Introduction
	University of California at Berkeley
	Development Leaves Berkeley
	PostgreSQL Global Development Team
	Open Source Software
	Summary

	Issuing Database Commands
	Starting a Database Session
	Controlling a Session
	Getting Help
	Exiting a Session
	Summary

	Basic SQL Commands
	Relational Databases
	Creating Tables
	Adding Data with Insert
	Viewing Data with Select
	Selecting Specific Rows with Where
	Removing Data with Delete
	Modifying Data with Update
	Sorting Data with Order By
	Destroying Tables
	Summary

	Customizing Queries
	Data types
	Quotes Inside Text
	Using Null Values
	Controlling Default Values
	Column Labels
	Comments
	And/Or Usage
	Range of Values
	Like Comparison
	Regular Expressions
	Case Clause
	Distinct Rows
	Functions and Operators
	Set, Show, and Reset
	Summary

	SQL Aggregates
	Aggregates
	Using Group By
	Using Having
	Query Tips
	Summary

	Joining Tables
	Table and Column References
	Joined Tables
	Creating Joined Tables
	Performing Joins
	Three and Four Table Joins
	Additional Join Possibilities
	Choosing a Join Key
	One-to-Many Joins
	Unjoined Tables
	Table Aliases and Self-Joins
	Non-Equijoins
	Ordering Multiple Parts
	Primary and Foreign Keys
	Summary

	Numbering Rows
	Object Identification Numbers (oids)
	Object Identification Number Limitations
	Sequences
	Creating Sequences
	Using Sequences to Number Rows
	Serial Column Type
	Manually Numbering Rows
	Summary

	Combining Selects
	Union, Except, Intersect Clauses
	Subqueries
	Outer Joins
	Subqueries in Non-select Queries
	Update with From
	Inserting Data Using Select
	Creating Tables Using Select
	Summary

	Data Types
	Purpose of Data Types
	Installed Types
	Type Conversion using cast
	Support Functions
	Support Operators
	Support Variables
	Arrays
	Large Objects(blobs)
	Summary

	Transactions and Locks
	Transactions
	Multi-Statement Transactions
	Visibility of Committed Transactions
	Read Committed and Serializable Isolation Levels
	Locking
	Deadlocks
	Summary

	Performance
	Indexes
	Unique Indexes
	Cluster
	Vacuum
	Vacuum Analyze
	Explain
	Summary

	Controlling Results
	Limit
	Cursors
	Summary

	Table Management
	Temporary Tables
	Alter Table
	Grant and Revoke
	Inheritance
	Views
	Rules
	Listen and Notify
	Summary

	Constraints
	Not Null
	Unique
	Primary Key
	Foreign Key/References
	Check
	Summary

	Importing and Exporting Data
	Using Copy
	Copy File Format
	Delimiters
	Copy without files
	Backslashes and nulls
	Copy Tips
	Summary

	Database Query Tools
	Psql
	pgaccess
	Summary

	Programming Interfaces
	C Language Interface (libpq)
	Pgeasy(libpgeasy)
	Embedded C (ecpg)
	C++ (libpq++)
	Compiling Programs
	Assignment to Program Variables
	Odbc
	Java (jdbc)
	Scripting Languages
	Perl
	Tcl/Tk (pgtclsh/pgtksh)
	Python (pygresql)
	Php
	Installing Scripting Languages
	Summary

	Functions and Triggers
	Functions
	Sql Functions
	Pl/pgsql Functions
	Triggers
	Summary

	Extending PostgreSQL Using C
	Writing C code
	Compile the C code
	Register the New Functions
	Optionally Create Operators, Types, and Aggregates
	Summary

	Administration
	Files
	Creating Users
	Creating Databases
	Access Configuration
	Backup and Restore
	Server Startup and Shutdown
	Monitoring
	Performance
	System Tables
	Internationalization
	Upgrading
	Summary

	Additional Resources
	Frequently Asked Questions (faq's)
	Mailing List Support
	Supplied Documentation
	Commercial Support
	Modifying the Source Code

	Installation
	PostgreSQL Non-Standard Features by Chapter
	Reference Manual
	Bibliography
	Index

