
rtj.book Page i Sunday, April 30, 2000 4:37 PM
The Real-Time Specification
for Java™

Ken Arnold, James Gosling, David Holmes
The Java™ Programming Language, Third Edition

Greg Bollella, James Gosling, Ben Brosgol, Peter Dibble,
Steve Furr, David Hardin, Mark Turnbull
The Real-Time Specification for Java™

Mary Campione, Kathy Walrath, Alison Huml
The Java™ Tutorial, Third Edition:
A Short Course on the Basics

Mary Campione, Kathy Walrath, Alison Huml,
Tutorial Team
The Java™ Tutorial Continued: The Rest of the JDK™

Patrick Chan
The Java™ Developers Almanac 2000

Patrick Chan, Rosanna Lee
The Java™ Class Libraries Poster, Enterprise Edition,
version 1.2

Patrick Chan, Rosanna Lee
The Java™ Class Libraries, Second Edition, Volume 2:
 java.applet, java.awt, java.beans

Patrick Chan, Rosanna Lee
The Java™ Class Libraries Poster, Fifth Edition: Covering
the Java™ 2 Platform, Standard Edition, v1.3

Patrick Chan, Lee, Douglas Kramer
The Java™ Class Libraries, Second Edition, Volume 1:
Supplement for the Java™ 2 Platform, Standard Edition,
v1.2

Patrick Chan, Rosanna Lee, Douglas Kramer
The Java™ Class Libraries, Second Edition, Volume 1:
 java.io, java.lang, java.math, java.net, java.text, java.util

Zhiqun Chen
Java Card™ Technology for Smart Cards:
Architecture and Programmer's Guide

Li Gong
Inside Java™ 2 Platform Security:
Architecture, API Design, and Implementation

James Gosling, Bill Joy, Guy Steele, Gilad Bracha
The Java™ Language Specification, Second Edition

http://www.javaseries.com

Jonni Kanerva
The Java™ FAQ

Doug Lea
Concurrent Programming in Java™, Second Edition:
Design Principles and Patterns

Rosanna Lee, Scott Seligman
JNDI API Tutorial and Reference:
Building Directory-Enabled Java™ Applications

Sheng Liang
The Java™ Native Interface:
 Programmer’s Guide and Specification

Tim Lindholm, Frank Yellin
The Java™ Virtual Machine Specification, Second Edition

Henry Sowizral, Kevin Rushforth, Michael Deering
The Java 3D™ API Specification, Second Edition

Kathy Walrath, Mary Campione
The JFC Swing Tutorial: A Guide to Constructing GUIs

Seth White, Maydene Fisher, Rick Cattell,
Graham Hamilton, Mark Hapner
JDBC™ API Tutorial and Reference, Second Edition:
Universal Data Access for the Java™ 2 Platform

Steve Wilson, Jeff Kesselman
Java™ Platform Performance: Strategies and Tactics

The Jini™ Technology Series

Ken Arnold, Bryan O’Sullivan, Robert W. Scheifler,
Jim Waldo, Ann Wollrath
The Jini™ Specification

Eric Freeman, Susanne Hupfer, Ken Arnold
JavaSpaces™ Principles, Patterns, and Practice

The Java™ Series, Enterprise Edition

Nicholas Kassem, Enterprise Team
Designing Enterprise Applications with the Java™ 2
 Platform, Enterprise Edition

Bill Shannon, Mark Hapner, Vlada Matena, James
Davidson, Eduardo Pelegri-Llopart, Larry Cable,
 Enterprise Team
Java™ 2 Platform, Enterprise Edition:
Platform and Component Specifications

The Java™ Series
Lisa Friendly, Series Editor
Tim Lindholm , Technical Editor
Ken Arnold , Technical Editor of The Jini™ Technology Series
Jim Inscore, Technical Editor of The Java™ Series, Enterprise Edition

rtj.book Page ii Sunday, April 30, 2000 4:37 PM

n

rtj.book Page iii Sunday, April 30, 2000 4:37 PM
The Real-Time Specificatio
for Java™

The Real-Time for Java Expert Group
http://www.rtj.org

Greg Bollella
Ben Brosgol Peter Dibble
Steve Furr James Gosling

David Hardin Mark Turnbull

ADDISON-WESLEY
Boston • San Francisco • New York • Toronto • Montreal

London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

rks and
er

 with

ation,

rtj.book Page iv Sunday, April 30, 2000 4:37 PM
Copyright © 2000 Addison-Wesley.

Duke logoΤΜ designed by Joe Palrang.

Sun, Sun Microsystems, the Sun logo, the Duke logo, and all Sun, Java, Jini, and Solaris based tradema
logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and oth
countries. UNIX is a registered trademark in the United States and other countries, exclusively licensed
through X/Open Company, Ltd. All other product names mentioned herein are the trademarks of their
respective owners.

U.S. GOVERNMENT USE:This specification relates to commercial items, processes or software.
Accordingly, use by the United States Government is subject to these terms and conditions, consistent
FAR12.211 and 12.212.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. THE REAL-TIME
FOR JAVA EXPERT GROUP MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME. IN
PARTICULAR, THIS EDITION OF THE SPECIFICATION HAS NOT YET BEEN FINALIZED: THIS
SPECIFICATION IS BEING PRODUCED FOLLOWING THE JAVA COMMUNITY PROCESS AND
HENCE WILL NOT BE FINALIZED UNTIL THE REFERENCE IMPLEMENTATION IS COMPLETE.
THE EXPERIENCE OF BUILDING THAT REFERENCE IMPLEMENTATION MAY LEAD TO
CHANGES IN THE SPECIFICATION.

The publisher offers discounts on this book when ordered in quantity for special sales. For more inform
please contact:

Pearson Education Corporate Sales Division
One Lake Street
Upper Saddle River, NJ 07458
(800) 382-3419
corpsales@pearsontechgroup.com

Visit Addison-Wesley on the Web at www.awl.com/cseng/

Library of Congress Control Number: 00-132774

ISBN 0-201-70323-8
Text printed on recycled paper.

1 2 3 4 5 6 7 8 9 10-MA-04 03 02 01 00
First printing, June 2000

s,
F

,

y the

rtj.book Page v Sunday, April 30, 2000 4:37 PM
To Paula and my daughter Alex, who forgave my extended absences
during critical phases of house construction — GB

To Deb, Abz, and Dan, for making it all worthwhile — BB

To Ken Kaplan and my family, who allowed me the
time and resources for this work — PD

To Linda, who has always been a true friend, cared for my home in my absence
welcomed me at the airport and generally shown patience and consideration — S

To Judy, Kelsey, and Kate, who gave me the
Love and Time to work on this book — JG

To Debbie, Sam, and Anna, who endured my frequent absences, and general
absentmindedness, during the writing of this book — DH

To my daughters Christine, Heather, and Victoria, and especially to my wife Terry
who all put up with my strange working hours — MT

To the Stanford Inn-by-the-Sea, the Chicago Hilton, and the Chateau Laurier for
providing space for a bunch of geeks to hang out; and to the Beaver Tail vendors b

Rideau Canal for providing a yummy distraction.

rtj.book Page vi Sunday, April 30, 2000 4:37 PM

... ix

.. xi

. xiii
 xix

... 1
..... 5
.. 21
.... 22
.... 26
.. 31
.... 35
.... 36
... 38
..... 40
.... 41
..... 42
..... 43
.... 45
.... 47
..... 48
..... 50
 57
... 60
... 61
.. 62
... 62
.. 65
.. 65
... 68
.. 70
... 71
... 72
... 77
.... 79
.... 82

rtj.book Page vii Sunday, April 30, 2000 4:37 PM
Contents

Caveat ...
Authors ..
Preface ..
Foreword ...
Introduction ...
Design ...
Threads ...

RealtimeThread ..
NoHeapRealtimeThread ..

Scheduling ...
Schedulable ..
Scheduler ..
PriorityScheduler ..
SchedulingParameters ...
PriorityParameters ..
ImportanceParameters ...
ReleaseParameters ..
PeriodicParameters ..
AperiodicParameters ..
SporadicParameters ...
ProcessingGroupParameters ...

Memory Management ...
MemoryArea ...
HeapMemory ..
ImmortalMemory ...
ScopedMemory ...
VTMemory ..
LTMemory ...
PhysicalMemoryFactory ...
ImmortalPhysicalMemory ...
ScopedPhysicalMemory ...
RawMemoryAccess ..
RawMemoryFloatAccess ..
MemoryParameters ..
GarbageCollector ...
vii

viii

... 83
.. 84
. 85
.. 86
.. 87
... 88
.... 88
.... 90
... 92
... 95
... 97
... 99
. 102
. 105
 109
. 110
. 112
.. 113
. 114
 121
. 127
. 129
. 134
. 135
 136

.. 138
 147
. 148
. 151
.. 152
 155
 156
. 156
. 157
. 158
. 158
. 159
. 159
. 160
 163
187
 193
. 195

rtj.book Page viii Sunday, April 30, 2000 4:37 PM
IncrementalCollectorExample ..
MarkAndSweepCollectorExample ..

Synchronization ...
MonitorControl ..
PriorityCeilingEmulation ...
PriorityInheritance ..
WaitFreeDequeue ...
WaitFreeReadQueue ..
WaitFreeWriteQueue ..

Time ..
HighResolutionTime ...
AbsoluteTime ..
RelativeTime ...
RationalTime ...

Timers ...
Clock ...
Timer ...
OneShotTimer ..
PeriodicTimer ..

Asynchrony ...
AsyncEvent ...
AsyncEventHandler ..
BoundAsyncEventHandler ..
Interruptible ...
AsynchronouslyInterruptedException ...
Timed ...

System and Options ...
POSIXSignalHandler ..
RealtimeSecurity ...
RealtimeSystem ...

Exceptions ...
IllegalAssignmentError ..
MemoryAccessError ...
MemoryScopeException ...
OffsetOutOfBoundsException ..
ResourceLimitError ..
SizeOutOfBoundsException ...
ThrowBoundaryError ..
UnsupportedPhysicalMemoryException ..

Almanac ..
Bibliography ...
Colophon ...
Index ...

ava/

may

 that

er
m’s

n

ary.

es in

ase

rtj.book Page ix Sunday, April 30, 2000 4:37 PM
Caveat

 This edition ofThe Real-Time Specification for Java™ (RTSJ) ispreliminary . It is
being developed under the Java Community Process (http://java.sun.com/aboutJ
communityprocess). It will not be considered final until after the completion of the
reference implementation. The experience gained from that implementation may
necessitate changes to the specification. Status information on the specification
be obtained from the web site maintained by the expert group,http://www.rtj.org ,
along with updates and samples.

Throughout the RTSJ, when we use the wordcode, we mean code written in the
Java programming language. When we mention the Java language in the RTSJ,
also refers to the Java programming language. The use of the termheap in the RTSJ
will refer to the heap used by the runtime of the Java language. If we refer to oth
heaps, such as the heap used by the C language runtime or the operating syste
heap, we will explicitly state which heap.

Throughout the RTSJ will use the termThreadto refer to the classThread in The
Java Language Specificationandthreadto refer to a sequence of instructions or to a
instance of the classThread. The context of uses ofthread should be sufficient to
distinguish between the two meanings. We will be explicit where we think necess

In order to get this published and in your hands, we made some compromis
copyediting and proofreading for this first edition. It is our intention to provide this
book for you to begin designing real-time applications with this specification. Ple
send any and all comments to: comments@rtj.org.
ix

x

rtj.book Page x Sunday, April 30, 2000 4:37 PM

eal-

e
e

c.

ava-
vard

ned,
ars

97.

ible
m

e

 the

tom
r of

his
, and

rtj.book Page xi Sunday, April 30, 2000 4:37 PM
Authors

Greg Bollella, a Senior Architect at the IBM Corporation, is lead engineer of the R
Time for Java Expert Group. Previously, Greg designed and implemented
communications protocols for IBM. He holds a Ph.D. in computer science from th
University of North Carolina at Chapel Hill. His dissertation research is in real-tim
scheduling theory and real-time systems implementation.

Ben Brosgol is a senior technical staff member of Ada Core Technologies, In
He has had a long involvement with programming language design and
implementation, focusing on Ada and real-time support, and has been providing J
related services since 1997. Ben holds a Ph.D. in applied mathematics from Har
University, and a B.A. from Amherst College.

Peter Dibble, Senior Scientist at Microware Systems Corporation, has desig
coded, and analyzed system software for real-time systems for more than ten ye
with particular emphasis on real-time performance issues. As part of Microware’s
Java team, Peter has been involved with the Java Virtual Machine since early 19

Steve Furr currently works for QNX Software Systems, where he is respons
for Java technologies for the QNX Neutrino Operating System. He graduated fro
Simon Fraser University with a B.Sc. in Computer Ccience.

James Gosling, a Fellow at Sun Microsystems, is the originator of the Java
programming language. His career in programming started by developing real-tim
software for scientific instrumentation. He has a Ph.D. and M.Sc. in Computer
Science from Carnegie-Mellon University and a B.Sc. in Computer Science from
University of Calgary.

David Hardin, Chief Technical Officer and co-founder of aJile Systems, has
worked in safety-critical computer systems architecture, formal methods, and cus
microprocessor design at Rockwell Collins, and was named a Rockwell Enginee
the Year for 1997. He holds a Ph.D. in electrical and computer engineering from
Kansas State University.

Mark Turnbull has been an employee of Nortel Networks since 1983. Most of
experience has been in the area of proprietary language design, compiler design
real-time systems.
xi

xii

rtj.book Page xii Sunday, April 30, 2000 4:37 PM

ge

llent
ays

ve
lso

ile

on

ne

Java

d a

ut

or

rtj.book Page xiii Sunday, April 30, 2000 4:37 PM
Preface

Dreams

In 1997 the idea of writing real-time applications in the Java programming langua
seemed unrealistic. Real-time programmers talk about wanting consistent timing
behavior more than absolute speed, but that doesn’t mean they don’t require exce
overall performance. The Java runtime is sometimes interpreted, and almost alw
uses a garbage collector. The early versions were not known for their blistering
performance.

Nevertheless, Java platforms were already being incorporated into real-time
systems. It is fairly easy to build a hybrid system that uses C for modules that ha
real-time requirements and other components written to the Java platform. It is a
possible to implement the Java interpreter in hardware (for performance), and
integrate the system without a garbage collector (for consistent performance). aJ
Systems produces a Java processor with acceptable real-time characteristics.

Until the summer of 1998, efforts toward support for real-time programming
the Java platform were fragmented. Kelvin Nilsen from NewMonics and Lisa
Carnahan from the National Institute for Standards and Technology (NIST) led o
effort, Greg Bollella from IBM led a group of companies that had a stake in Java
technology and real-time, and Sun had an internal real-time project based on the
platform.

In the summer of 1998 the three groups merged. The real-time requirements
working group included Kelvin Nilsen from NewMonics, Bill Foote and Kevin
Russell from Sun, and the group of companies led by Greg Bollella. It also include
diverse selection of technical people from across the real-time industry and a few
representatives with a more marketing or management orientation.

The requirements group convened periodically until early 1999. Its final outp
was a document,Requirements for Real-time Extensions for the Java Platform,
detailing the requirements the group had developed, and giving some rationale f
those requirements. It can be found on the web athttp://www.nist.gov/rt-java.
xiii

xiv

n
a

the

rtj.book Page xiv Sunday, April 30, 2000 4:37 PM
Realization

One of the critical events during this processess occurred in late 1998, when Su
created theJava Community Process. Anyone who feels that the Java platform needs
new facility can formally request the enhancement. If the request, called a Java
Specification Request (JSR), is accepted, acall for expertsis posted. Thespecification
lead is chosen and then he or she forms theexpert group. The result of the effort is a
specification, reference implementation, and test suite.

In late 1998, IBM asked Sun to accept a JSR,The Real-Time Specification for
Java,based partly on the work of the Requirements Working Group. Sun accepted
request as JSR-000001. Greg Bollella was selected as the specification lead. He
formed the experts group in two tiers. The primary group:

would actually write the specification, and the consultant group:

Greg Bollella IBM

Paul Bowman Cyberonics

Ben Brosgol Aonix/Ada Core Technologies

Peter Dibble Microware Systems Corporation

Steve Furr QNX System Software Lab

James Gosling Sun Microsystems

David Hardin Rockwell-Collins/aJile

Mark Turnbull Nortel Networks

Rudy Belliardi Schneider Automation

Alden Dima NIST

E. Douglas Jensen MITRE

Alexander Katz NSICom

Masahiro Kuroda Mitsubishi Electric

C. Douglass Locke Lockheed Martin/TimeSys

George Malek Apogee

Jean-Christophe Mielnik Thomson-CSF

Ragunathan Rajkumar CMU

PREFACE xv

rly

nt

dom,

. It

so,
ces

 of
cts,

 he
reg.
,
0 AM
ne
ad

kets
ising

an
 of

is

ke

rtj.book Page xv Sunday, April 30, 2000 4:37 PM
would serve as a pool of readily available expertise and as initial reviewers of ea
drafts.

The effort commenced in March 1999 with a plenary meeting of the consulta
and primary groups at the Chicago Hilton and Towers. This was an educational
meeting where the consultants each presented selections of general real-time wis
and the specific requirements of their part of the real-time world.

The basis of the specification was laid down at the first primary group meeting
took place in one of the few civilized locations in the United States that is not
accessible to digital or analog cell phone traffic, Mendocino, California. This is al
in the expert opinion of the primary group, the location of a restaurant that produ
the world’s most heavily cheesed pizza.

Through 1999 the primary group met slightly more than once a month, and
meetings for the joint primary and consultants groups were held slightly less than
once a month. We worked hard and had glorious fun. Mainly, the fun was the joy
solving a welter of problems with a team of diverse and talented software archite
but there were memorable nontechnical moments.

There was the seminal “under your butt” insight, when James told Greg that
should stop looking over his head for the sense of an argument: “This is simple, G
It’s not over your head, it’s going under your butt.” That was the same Burlington
Massachusetts, meeting where a contingent of the expert group attended the 3:0
second showing of the newly released Star Wars Phantom Menace. The only sa
reason for waking up at a time more suitable for going to sleep was that James h
gone back to California to attend the movie with his wife, who had purchased tic
weeks in advance. It tickled our fancy to use the magic of time zones and early r
to see the new release before them.

The cinnamon rolls in Des Moines, which David later claimed were bigger th
his head. This was an exaggeration. Each roll was slightly less than half the size
David’s head.

The “dead cat” meeting in Ottawa, where Greg claimed that when he took h
earache to the clinic, the doctor would probably remove a dead cat.

The “impolite phrase” meeting, also in Ottawa. The group made it into a
computer industry gossip column, and our feelings on the thrill of being treated li

Mike Schuette Motorola

Chris Yurkoski Lucent

Simon Waddington Wind River Systems

xvi

that

y
o
the

y).
e

tion.

the
ting
ead
. It is

at a
 for
long

r
rsue

the
d all
ess.
e

rely

rtj.book Page xvi Sunday, April 30, 2000 4:37 PM
movie stars simply cannot be expressed in this book. We are, however, impressed
a writer old enough to perceive Greg as IBM’sboy is still writing regularly.

In September 1999, the draft specification was published for formal review b
participants in the Java Community Process and informal reading by anyone wh
downloaded it from the group’s web site (http://www.rtj.org). In December 1999,
revised and extended document was published on the web site for public review.
Public review remained open until the 14th of February 2000 (yes, Valentine’s Da
Then the specification was revised a final time to address the comments from th
general public.

The first result of this work is the document you are reading. IBM is also
producing a reference implementation and a test suite to accompany this specifica

Acknowledgments

The reader should consider this work truly a collaborative effort. Many people
contributed in diverse ways. Unlike most traditional published books this work is
result of effort and contribution from engineers, executives, administrators, marke
and product managers, industry consultants, and university faculty members spr
across more than two dozen companies and organizations from around the globe
also the result of a new and unique method for developing software, The Java
Community Process.

We’ll start at the beginning. Many of the technical contributors came together
series of forums conceived and hosted by Lisa Carnahan at the National Institute
Standards and Technology. One of the authors, Greg Bollella, was instrumental, a
with Lisa, in the early establishment of the organization of the future authors. He
thanks his managers at IBM, Ruth Taylor, Rod Smith, and Pat Sueltz, for (in thei
words) being low-maintenance managers and for allowing Greg the freedom to pu
his goal.

The Java Community Process was developed at Sun Microsystems by Jim
Mitchell, Ken Urquhart, and others to allow and promote the broad involvement of
computer industry in the development of the Java™ platform. We thank them an
those at Sun and other companies who reviewed the initial proposals of the proc
Vicki Shipkowitz the embedded Java product manager at Sun has also helped th
Real-Time for Java Expert Group with logistics concerning demonstrations and
presentations of the RTSJ.

The Real-Time for Java Expert Group comprises an engineering team and a
consultant team. The authors of this work are the primary engineers and we since

PREFACE xvii

arly
ng

hank

b,

rd

for
TSJ.

his

on
s use

y

as a

rtj.book Page xvii Sunday, April 30, 2000 4:37 PM
thank the consultants, mentioned by name previously, for their efforts during the e
design phase and for reviewing various drafts. Along the way Ray Kamin, Wolfga
Pieb, and Edward Wentworth replaced three of the original consultants and we t
them for their effort as well.

We thank all those, but especially Kirk Reinholtz of NASA’s Jet Propulsion La
who submitted comments during the participant and public reviews.

We all thank Russ Richards at DISA for his support of our effort.

We thank Kevin Russell and Bill Foote of Sun Microsystems who worked ha
during the NIST sponsored requirements phase.

Although they have much left to do and will likely give us more work as they
implement the RTSJ, we thank the reference implementation team at IBM. Peter
Haggar leads the team of David Wendt and Jim Mickelson. Greg also thanks them
their efforts on the various robot demonstrations he used in his talks about the R

Greg would like to personally thank his dissertation advisor Kevin Jeffay for
guidance.

We thank Robin Coron and Feng Liu, administrative assistants at Sun
Microsystems and IBM, respectively, for their logistical support.

A Note on Format

We usedjavadoc on Java source files to produce most of this book (see the Coloph
for more details) and thus many references to class, interface, and method name
the@link construct to produce a hyperlink in the (more typical) html formatted
output. Of course, clicking on the hyperlink in the html formatted version will displa
the definition of the class. We tried to preserve this hyperlink characteristic in the
book by including on each occurrence of a name the page number of its definition
trailing subscript. Let us know if this is a useful feature (comments@rtj.org).

xviii

rtj.book Page xviii Sunday, April 30, 2000 4:37 PM

uting

t did
r to
e

he
ms

ost
y.
so

hat
s.

t

tical
nd
 in
t, and

)

s.

rtj.book Page xix Sunday, April 30, 2000 4:37 PM
Foreword

 I expectThe Real-Time Specification for Java to become the first real-time
programming language to be both commercially and technologically successful.
Other programming languages have been intended for use in the real-time comp
domain. However, none has been commercially successful in the sense of being
significantly adopted in that domain. Many were academic research projects. Mos
not focus on the core real-time issues of managing computing resources in orde
satisfy application timeliness requirements. Instead, they typically emphasized th
orthogonal (albeit important) topic of concurrency and other topics important to t
whole field of embedded computing systems (of which real-time computing syste
are a subset).

Ada 95, including its Real-Time Systems Annex D, has probably been the m
successful real-time language, in terms of both adoption and real-time technolog
One reason is that Ada is unusually effective (among real-time languages and al
operating systems) across the real-time computing system spectrum, from
programming-in-the-small in traditional device-level control subsystems, to
programming-in-the-large in enterprise command and control systems. Despite t
achievement, a variety of nontechnical factors crippled Ada’s commercial succes

When James Gosling introduced the Java programming language in 1995, i
appeared irrelevant to the real-time computing field, based on most of its initial
purposes and its design. Indeed, some of its fundamental principles were antithe
to those of real-time computing. To facilitate its major goal of operating system a
hardware independence, the language was deliberately given a weak vocabulary
areas such as thread behavior, synchronization, interrupts, memory managemen
input/output. However, these are among the critical areas needing explicit
management (by the language or the operating system) for meeting application
timeliness requirements.

Nevertheless, the Java platform’s promise of “Write Once, Run Anywhere,”
together with the Java language’s appeal as a programming languageper se, offer far
greater cost-savings potential in the real-time (and more broadly, the embedded
domain than in the desktop and server domains. Desktops are dominated by the
“Wintel” duopoly; servers have only a few processor types and operating system
xix

xx

ns of

us.
lly,
r

he

,

ng
of

ity

ity a

eal-

al-

ess-

sing
.

eal-
n, the
 to
are

e

rtj.book Page xx Sunday, April 30, 2000 4:37 PM
Real-time computing systems have tens of different processor types and many te
different operating system products (not counting the custom-made ones that
currently constitute about half of the installations). The POSIX standard hasn’t
provided the intended real-time application portability because it permits widely
varying subsets to be implemented. The Java platform is already almost ubiquito
The real-time Java platform’s necessarily qualified promise of “Write Once Carefu
Run Anywhere Conditionally” is nevertheless the best prospective opportunity fo
application re-usability.

The overall challenge was to reconcile the intrinsically divergent natures of t
Java language and most of real-time computing. Compatibility of the Real-Time
Specification for Java and the Java Language Specification had to be maintained
while making the former cost-effective for real-time computing systems.

Most people involved in, and even aware of, the real-time Java effort, includi
the authors of this book and me, were initially very skeptical about the feasibility
adequately meeting this challenge.

The real-time Java community took two important and unusual initial steps
before forming the Real-Time for Java Expert Group under Sun’s Java Commun
Process.

The first step was to convene many representatives of the real-time commun
number of times (under the auspices of the National Institute for Standards and
Technology), to achieve and document consensus on the requirements for the R
Time Specification for Java. Not surprisingly, when this consensus emerged, it
included mandatory requirements for building the kind of smaller scale, static, re
time subsystems familiar to current practitioners using C and C++.

More surprisingly, the consensus also included mandatory and optional
requirements for accommodating advanced dynamic and real-time resource
management technologies, such as asynchronous transfer of control and timelin
based scheduling policies, and for building larger scale real-time systems. The
primary impetus for these dynamic and programming-in-the-large, real-time
requirements came from the communities already using the Java language, or u
the Ada language, or building defense (primarily command and control) systems

The second, concomitant, step was to establish an agreed-upon lexicon of r
time computing concepts and terms to enable this dialog about, and consensus o
requirements for the Real-Time Specification for Java. As unlikely as it may seem
those outside of the real-time community, real-time computing concepts and terms
normally not used in a well-defined way (except by most real-time researchers).

The next step toward the realization of the Java language’s potential for the
present and the future of real-time computing is defining and writing the Real-Tim

FOREWORD xxi

is
age

ell

ly

ples;

cts,
the

rtj.book Page xxi Sunday, April 30, 2000 4:37 PM
Specification for Java, the first version of which is in this book. Understanding th
specification will also improve the readers’ understanding of both the Java langu
and real-time computing systems as well.

Greg Bollella was an ideal leader for this specification team. He recruited a w
balanced group of real-time and Java language experts. His background in both
practical and theoretical real-time computing prepared him for gently but resolute
guiding the team’s rich and intense discussions into a coherent specification.

Of course, more work remains, including documenting use cases and exam
performing implementations and evaluations; gaining experience from deployed
products; and iterations onThe Real-Time Specification for Java. The Distributed
Real-Time Specification for Java also lies ahead.

The real-time Java platform is prepared not just to provide cost-reduced
functional parity with current mainstream real-time computing practice and produ
but also to play a leadership role as real-time computing practice moves forward in
Internet age.

E. Douglas Jensen

Sherborn, MA

xxii

rtj.book Page xxii Sunday, April 30, 2000 4:37 PM

n.

cing

va
 as
EG
ts
logy
d as

rk of

icular
t, or

rtj.book Page 1 Sunday, April 30, 2000 4:37 PM
C H A P T E R 1
Introduction

This book is a preliminary release ofThe Real-Time Specification for Java™ (RTSJ).
The final version will be available with the release of the reference implementatio

The Real-Time for Java Expert Group (RTJEG), convened under the Java
Community Process and JSR-000001, has been given the responsibility of produ
a specification for extendingThe Java Language Specification andThe Java Virtual
Machine Specification and of providing an Application Programming Interface that
will enable the creation, verification, analysis, execution, and management of Ja
threads whose correctness conditions include timeliness constraints (also known
real-time threads). This introduction describes the guiding principles that the RTJ
created and used during our work, a description of the real-time Java requiremen
developed under the auspices of The National Institute for Standards and Techno
(NIST), and a brief, high-level description of each of the seven areas we identifie
requiring enhancements to accomplish our goal.

Guiding Principles

The guiding principles are high-level statements that delimit the scope of the wo
the RTJEG and introduce compatibility requirements forThe Real-Time Specification
for Java.

Applicability to Particular Java Environments: The RTSJ shall not include
specifications that restrict its use to particular Java environments, such as a part
version of the Java Development Kit, the Embedded Java Application Environmen
the Java 2 Micro Edition™.
1

2

SJ.

g

ced

e.

uch

The
uire
 the

ach
eers

e
tion
ism
e

rtj.book Page 2 Sunday, April 30, 2000 4:37 PM
Backward Compatibility: The RTSJ shall not prevent existing, properly
written, non-real-time Java programs from executing on implementations of the RT

Write Once Run Anywhere: The RTSJ should recognize the importance of
“Write Once Run Anywhere”’, but it should also recognize the difficulty of achievin
WORA for real-time programs and not attempt to increase or maintain binary
portability at the expense of predictability.

Current Practice vs. Advanced Features: The RTSJ should address current
real-time system practice as well as allow future implementations to include advan
features.

Predictable Execution: The RTSJ shall hold predictable execution as first
priority in all tradeoffs; this may sometimes be at the expense of typical general-
purpose computing performance measures.

No Syntactic Extension:In order to facilitate the job of tool developers, and
thus to increase the likelihood of timely implementations, the RTSJ shall not
introduce new keywords or make other syntactic extensions to the Java languag

Allow Variation in Implementation Decisions: The RTJEG recognizes that
implementations of the RTSJ may vary in a number of implementation decisions, s
as the use of efficient or inefficient algorithms, tradeoffs between time and space
efficiency, inclusion of scheduling algorithms not required in the minimum
implementation, and variation in code path length for the execution of byte codes.
RTSJ should not mandate algorithms or specific time constants for such, but req
that the semantics of the implementation be met. The RTSJ offers implementers
flexibility to create implementations suited to meet the requirements of their
customers.

Overview of the Seven Enhanced Areas

In each of the seven sections that follow we give a brief statement of direction for e
area. These directions were defined at the first meeting of the eight primary engin
in Mendocino, California, in late March 1999, and further clarified through late
September 1999.

Thread Scheduling and Dispatching: In light of the significant diversity in
scheduling and dispatching models and the recognition that each model has wid
applicability in the diverse real-time systems industry, we concluded that our direc
for a scheduling specification would be to allow an underlying scheduling mechan
to be used by real-time Java threads but that we would not specify in advance th
exact nature of all (or even a number of) possible scheduling mechanisms. The

INTRODUCTION 3

 of
iding
ion of
 and

he

 a
ht a
o be

y of
ur

 on

GC

n.

va
use of
s

of

rtj.book Page 3 Sunday, April 30, 2000 4:37 PM
specification is constructed to allow implementations to provide unanticipated
scheduling algorithms. Implementations will allow the programmatic assignment
parameters appropriate for the underlying scheduling mechanism as well as prov
any necessary methods for the creation, management, admittance, and terminat
real-time Java threads. We also expect that, for now, particular thread scheduling
dispatching mechanisms are bound to an implementation. However, we provide
enough flexibility in the thread scheduling framework to allow future versions of t
specification to build on this release and allow the dynamic loading of scheduling
policy modules.

To accomodate current practice the RTSJ requires a base scheduler in all
implementations. The required base scheduler will be familiar to real-time system
programmers. It is priority-based, preemptive, and must have at least 28 unique
priorities.

Memory Management: We recognize that automatic memory management is
particularly important feature of the Java programming environment, and we soug
direction that would allow, as much as possible, the job of memory management t
implemented automatically by the underlying system and not intrude on the
programming task. Additionally, we understand that many automatic memory
management algorithms, also known as garbage collection (GC), exist, and man
those apply to certain classes of real-time programming styles and systems. In o
attempt to accommodate a diverse set of GC algorithms, we sought to define a
memory allocation and reclamation specification that would:

• be independent of any particular GC algorithm,
• allow the program to precisely characterize a implemented GC algorithm’s effect

the execution time, preemption, and dispatching of real-time Java threads, and
• allow the allocation and reclamation of objects outside of any interference by any

algorithm.
Synchronization and Resource Sharing: Logic often needs to share serializable
resources. Real-time systems introduce an additional complexity: priority inversio
We have decided that the least intrusive specification for allowing real-time safe
synchronization is to require that implementations of the Java keywordsynchronized

include one or more algorithms that prevent priority inversion among real-time Ja
threads that share the serialized resource. We also note that in some cases the
thesynchronized keyword implementing the required priority inversion algorithm i
not sufficient to both prevent priority inverison and allow a thread to have an
execution eligibility logically higher than the garbage collector. We provide a set
wait-free queue classes to be used in such situations.

Asynchronous Event Handling: Real-time sytems typically interact closely
with the real-world. With respect to the execution of logic, the real-world is
asynchronous. We thus felt compelled to include efficient mechanisms for

4

ing.
 those

nd

be

t to
ally
.

or a
ost
and

ake
mers
n of

rtj.book Page 4 Sunday, April 30, 2000 4:37 PM
programming disciplines that would accommodate this inherent asynchrony. The
RTSJ generalizes the Java language’s mechanism of asynchronous event handl
Required classes represent things that can happen and logic that executes when
things happen. A notable feature is that the execution of the logic is scheduled a
dispatched by an implemented scheduler.

Asynchronous Transfer of Control: Sometimes the real-world changes so
drastically (and asynchronously) that the current point of logic execution should
immediately and efficiently transferred to another location. The RTSJ includes a
mechanism which extends Java’s exception handling to allow applications to
programatically change the locus of control of another Java thread. It is importan
note that the RTSJ restricts this asynchronous transfer of control to logic specific
written with the assumption that its locus of control may asynchronously change

Asynchronous Thread Termination: Again, due to the sometimes drastic and
asynchronous changes in the real-world, application logic may need to arrange f
real-time Java thread to expeditiously and safely transfer its control to its outerm
scope and thus end in a normal manner. Note that unlike the traditional, unsafe,
deprecated Java mechanism for stopping threads, the RTSJ’s mechanism for
asynchronous event handling and transfer of control, is safe.

Physical Memory Access: Although not directly a real-time issue, physical
memory access is desirable for many of the applications that could productively m
use of an implementation of the RTSJ. We thus define a class that allows program
byte-level access to physical memory as well as a class that allows the constructio
objects in physical memory.

ach in
ing
der of
s of

nous
on,
RTSJ

ble
me
,

e

y
th
ss

rtj.book Page 5 Sunday, April 30, 2000 4:37 PM
C H A P T E R 2
Design

The RTSJ comprises eight areas of extended semantics. This chapter explains e
fair detail. Further detail, exact requirements, and rationale are given in the open
section of each relevant chapter. The eight areas are discussed in approximate or
their relevance to real-time programming. However, the semantics and mechanism
each of the areas˝scheduling, memory management, synchronization, asynchro
event handling, asynchronous transfer of control, asynchronous thread terminati
physical memory access, and exceptions˝are all crucial to the acceptance of the
as a viable real-time development platform.

Scheduling

One of the concerns of real-time programming is to ensure the timely or predicta
execution of sequences of machine instructions. Various scheduling schemes na
these sequences of instructions differently. Typically used names include threads
tasks, modules, and blocks. The RTSJ introduces the concept of aschedulable object.
Any instance of any class implementing the interfaceSchedulable is a schedulable
object and its scheduling and dispatching will be managed by the instance of
Scheduler to which it holds a reference. The RTSJ requires three classes that ar
schedulable objects;RealtimeThread, NoHeapRealtimeThread, and
AsyncEventHandler.

By timely execution of threads, we mean that the programmer can determine b
analysis of the program, testing the program on particular implementations, or bo
whether particular threads will always complete execution before a given timeline
5

6

l
ram
only
lar

ll the

le
such

ority
the

er
ies
rom
rate-
TSJ
rect.
ss
g

ore

ble
r

 that

rtj.book Page 6 Sunday, April 30, 2000 4:37 PM
constraint. This is the essence of real-time programming: the addition of tempora
constraints to the correctness conditions for computation. For example, for a prog
to compute the sum of two numbers it may no longer be acceptable to compute
the correct arithmetic answer but the answer must be computed before a particu
time. Typically, temporal constraints are deadlines expressed in either relative or
absolute time.

We use the termscheduling (or scheduling algorithm) to refer to the production
of a sequence (or ordering) for the execution of a set of threads (aschedule). This
schedule attempts to optimize a particular metric (a metric that measures how we
system is meeting the temporal constraints). Afeasibility analysis determines if a
schedule has an acceptable value for the metric. For example, in hard real-time
systems the typical metric is ’number of missed deadlines’ and the only acceptab
value for that metric is zero. So called soft real-time systems use other metrics (
as mean tardiness) and may accept various values for the metric in use.

Many systems use thread priority in an attempt to determine a schedule. Pri
is typically an integer associated with a thread; these integers convey to the system
order in which the threads should execute. The generalization of the concept of
priority is execution eligibility. We use the termdispatching to refer to that portion of
the system which selects the thread with the highest execution eligibility from the
pool of threads that are ready to run. In current real-time system practice, the
assignment of priorities is typically under programmer control as opposed to und
system control. The RTSJ’s base scheduler also leaves the assignment of priorit
under programmer control. However, the base scheduler also inherits methods f
its superclass to determine feasibility. The feasibility algorithms assume that the
monotonic priority assignment algorithm has been used to assign priorities. The R
does not require that implementations check that such a priority assignment is cor
If, of course, the assignment is incorrect the feasibility analysis will be meaningle
(note however, that this is no different than the vast majority of real-time operatin
systems and kernels in use today).

The RTSJ requires a number of classes with names of the format
<string>Parameters (such asSchedulingParameters). An instance of one of these
parameter classes holds a particular resource demand characteristic for one or m
schedulable objects. For example, thePriorityParameters subclass of
SchedulingParameters contains the execution eligibility metric of the base
scheduler, i.e., priority. At some times (thread create-time or set (reset)), later,
instances of parameter classes are bound to a schedulable object. The schedula
object then assumes the characteristics of the values in the parameter object. Fo
example, if aPriorityParameter instance, that had in its priority field the value
representing the highest priority available, is bound to a schedulable object, then

DESIGN 7

e

ry
the
tems
g to
ware
s

that

nd
ired

real-

al
ted

n area
xist
ctor

these
ty of

at

rtj.book Page 7 Sunday, April 30, 2000 4:37 PM
object will assume the characteristic that it will execute whenever it is ready in
preference to all other schedulable objects (except, of course, those also with th
highest priority).

The RTSJ is written so as to allow implementers the flexibility to install arbitra
scheduling algorithms and feasibility analysis algorithms in an implementation of
specification. We do this because the RTJEG understands that the real-time sys
industry has widely varying requirements with respect to scheduling. Programmin
the Java platform may result in code much closer toward the goal of reusing soft
written once but able to execute on many different computing platforms (known a
Write Once Run Anywhere) and that the above flexibility stands in opposition to
goal,The Real-Time Specification for Java also specifies a particular scheduling
algorithm and semantic changes to the JVM that support predictable execution a
must be available on all implementations of the RTSJ. The initial default and requ
scheduling algorithm is fixed-priority preemptive with at least 28 unique priority
levels and will be represented in all implementations by thePriorityScheduler

subclass ofScheduler.

Memory Management

Garbage-collected memory heaps have always been considered an obstacle to
time programming due to the unpredictable latencies introduced by the garbage
collector. The RTSJ addresses this issue by providing several extensions to the
memory model, which support memory management in a manner that does not
interfere with the ability of real-time code to provide deterministic behavior. This go
is accomplished by allowing the allocation of objects outside of the garbage-collec
heap for both short-lived and long-lived objects.

Memory Areas

The RTSJ introduces the concept of a memory area. A memory area represents a
of memory that may be used for the allocation of objects. Some memory areas e
outside of the heap and place restrictions on what the system and garbage colle
may do with objects allocated within. Objects in some memory areas are never
garbage collected; however, the garbage collector must be capable of scanning
memory areas for references to any object within the heap to preserve the integri
the heap.

There are four basic types of memory areas:
1. Scoped memory provides a mechanism for dealing with a class of objects th

have a lifetime defined by syntactic scope (cf, objects on the heap).

8

ry
as

e

es not
 by

give
,
. A

uted
TSJ

ations
ope is

from

e

cope,

. The

rtj.book Page 8 Sunday, April 30, 2000 4:37 PM
2. Physical memory allows objects to be created within specific physical memo
regions that have particular important characteristics, such as memory that h
substantially faster access.

3. Immortal memory represents an area of memory containing objects that, onc
allocated, exist until the end of the application, i.e., the objects are immortal.

4. Heap memory represents an area of memory that is the heap. The RTSJ do
change the determinant of lifetime of bjects on the heap. It is still determined
visibility.

Scoped Memory

The RTSJ introduces the concept of scoped memory. A memory scope is used to
bounds to the lifetime of any objects allocated within it. When a scope is entered
every use ofnew causes the memory to be allocated from the active memory scope
scope may be entered explicitly, or it can be attached to aRealtimeThread which will
effectively enter the scope before it executes the thread’srun() method.

Every scoped memory area effectively maintains a count of the number of
external references to that memory area. The reference count for aScopedMemory area
is increased by entering a new scope through theenter() method ofMemoryArea, by
the creation of aRealtimeThread using the particularScopedMemory area, or by the
opening of an inner scope. The reference count for aScopedMemory area is decreased
when returning from theenter() method, when theRealtimeThread using the
ScopedMemory exits, or when an inner scope returns from itsenter() method. When
the count drops to zero, the finalize method for each object in the memory is exec
to completion. The scope cannot be reused until finalization is complete and the R
requires that the finalizers execute to completion before the next use (callingenter()

or in a constructor) of the scoped memory area.

Scopes may be nested. When a nested scope is entered, all subsequent alloc
are taken from the memory associated with the new scope. When the nested sc
exited, the previous scope is restored and subsequent allocations are again taken
that scope.

Because of the unusual lifetimes of scoped objects, it is necessary to limit th
references to scoped objects, by means of a restricted set of assignment rules. A
reference to a scoped object cannot be assigned to a variable from an enclosing s
or to a field of an object in either the heap or the immortal area. A reference to a
scoped object may only be assigned into the same scope or into an inner scope
virtual machine must detect illegal assignment attempts and must throw an
appropriate exception when they occur.

DESIGN 9

on
r

n.

nt.

 for
m
 is

her
arily

der.
e

nized

rtj.book Page 9 Sunday, April 30, 2000 4:37 PM
The flexibility provided in choice of scoped memory types allows the applicati
to use a memory area that has characteristics that are appropriate to a particula
syntactically defined region of the code.

Immortal Memory

ImmortalMemory is a memory resource shared among all threads in an applicatio
Objects allocated inImmortalMemory are freed only when the Java runtime
environment terminates, and are never subject to garbage collection or moveme

Budgeted Allocation

The RTSJ also provides limited support for providing memory allocation budgets
threads using memory areas. Maximum memory area consumption and maximu
allocation rates for individual real-time threads may be specified when the thread
created.

Synchronization

Terms

For the purposes of this section, the use of the termpriority should be interpreted
somewhat more loosely than in conventional usage. In particular, the termhighest
priority threadmerely indicates the most eligible thread˝the thread that the dispatc
would choose among all of the threads that are ready to run˝and doesn’t necess
presume a strict priority based dispatch mechanism.

Wait Queues

Threads waiting to acquire a resource must be released in execution eligibility or
This applies to the processor as well as to synchronized blocks. If threads with th
same execution eligibility are possible under the active scheduling policy, such
threads are awakened in FIFO order. For example:

• Threads waiting to enter synchronized blocks are granted access to the synchro
block in execution eligibility order.

• A blocked thread that becomes ready to run is given access to the processor in
execution eligibility order.

• A thread whose execution eligibility is explicitly set by itself or another thread is
given access to the processor in execution eligibility order.

• A thread that performs a yield will be given access to the processor after waiting
threads of the same execution eligibility.

10

ay

g

ed

ust

),
 well-

r’s
ot
or.
e

.
never

ct is

age

rtj.book Page 10 Sunday, April 30, 2000 4:37 PM
• Threads that are preempted in favor of a thread with higher execution eligibility m
be given access to the processor at any time as determined by a particular
implementation. The implementation is required to provide documentation statin
exactly the algorithm used for granting such access.

Priority Inversion Avoidance

Any conforming implementation must provide an implementation of the
synchronized primitive with default behavior that ensures that there is no unbound
priority inversion. Furthermore, this must apply to code if it is run within the
implementation as well as to real-time threads. The priority inheritance protocol m
be implemented by default. The priority inheritance protocol is a well-known
algorithm in the real-time scheduling literature and it has the following effect. If
thread t1 attempts to acquire a lock that is held by a lower-priority thread t2, then t2’s
priority is raised to that of t1 as long as t2 holds the lock (and recursively if t2 is itself
waiting to acquire a lock held by an even lower-priority thread).

The specification also provides a mechanism by which the programmer can
override the default system-wide policy, or control the policy to be used for a
particular monitor, provided that policy is supported by the implementation. The
monitor control policy specification is extensible so that new mechanisms can be
added by future implementations.

A second policy, priority ceiling emulation protocol (or highest locker protocol
is also specified for systems that support it. The highest locker protocol is also a
known algorithm in the literature, and it has the following effect:

• With this policy, a monitor is given apriority ceiling when it is created, which is the
highest priority of any thread that could attempt to enter the monitor.

• As soon as a thread enters synchronized code, its priority is raised to the monito
ceiling priority, thus ensuring mutually exclusive access to the code since it will n
be preempted by any thread that could possibly attempt to enter the same monit

• If, through programming error, a thread has a higher priority than the ceiling of th
monitor it is attempting to enter, then an exception is thrown.

One needs to consider the design point given above, the two new thread types,
RealtimeThread andNoHeapRealtimeThread, and regular Java threads and the
possible issues that could arise when aNoHeapRealtimeThread and a regular Java
thread attempt to synchronize on the same object.NoHeapRealtimeThreads have an
implicit execution eligibility that must be higher than that of the garbage collector
This is fundamental to the RTSJ. However, given that regular Java threads may
have an execution eligibility higher than the garbage collector, no known priority
inversion avoidance algorithm can be correctly implemented when the shared obje
shared between a regular Java thread and aNoHeapRealtimeThread because the
algorithm may not raise the priority of the regular Java thread higher than the garb

DESIGN 11

nsure
and

 a
by

e

le

ired

,

 by

.

s set

stem

rtj.book Page 11 Sunday, April 30, 2000 4:37 PM
collector. Some mechanism other than the synchronized keyword is needed to e
non-blocking, protected access to objects shared between regular Java threads
NoHeapRealtimeThreads.

Note that if the RTSJ requires that the execution ofNoHeapRealtimeThreads

must not be delayed by the execution of the garbage collector it is impossible for
NoHeapRealtimeThread to synchronize, in the classic sense, on an object accessed
regular Java threads. The RTSJ provides three wait-free queue classes to provid
protected, non-blocking, shared access to objects accessed by both regular Java
threads andNoHeapRealtimeThreads. These classes are provided explicitly to enab
communication between the real-time execution ofNoHeapRealtimeThreads and
regular Java threads.

Determinism

Conforming implementations shall provide a fixed upper bound on the time requ
to enter a synchronized block for an unlocked monitor.

Asynchronous Event Handling

The asynchronous event facility comprises two classes:AsyncEvent and
AsyncEventHandler. An AsyncEvent object represents something that can happen
like a POSIX signal, a hardware interrupt, or a computed event like an airplane
entering a specified region. When one of these events occurs, which is indicated
thefire() method being called, the associatedhandleAsyncEvent() methods of
instances ofAsyncEventHandler are scheduled and thus perform the required logic

An instance ofAsyncEvent manages two things: 1) the unblocking of handlers
when the event is fired, and 2) the set of handlers associated with the event. Thi
can be queried, have handlers added, or have handlers removed.

An instance ofAsyncEventHandler can be thought of as something roughly
similar to a thread. It is aRunnable object: when the event fires, the
handleAsyncEvent() methods of the associated handlers are scheduled. What
distinguishes anAsyncEventHandler from a simpleRunnable is that an
AsyncEventHandler has associated instances ofReleaseParameters,

SchedulingParameters and MemoryParameters that control the actual execution of
the handler once the associatedAsyncEvent is fired. When an event is fired, the
handlers are executed asynchronously, scheduled according to the associated
ReleaseParameters and SchedulingParameters objects, in a manner that looks
like the handler has just been assigned to its own thread. It is intended that the sy
can cope well with situations where there are large numbers of instances of

12

nal

tent
sly

J
 with

 in

r
be
e).
tion

e

rtj.book Page 12 Sunday, April 30, 2000 4:37 PM
AsyncEvent andAsyncEventHandler (tens of thousands). The number of fired (in
process) handlers is expected to be smaller.

A specialized form of anAsyncEvent is theTimer class, which represents an
event whose occurrence is driven by time. There are two forms of Timers: the
OneShotTimer and thePeriodicTimer. Instances ofOneShotTimer fire once, at the
specified time. Periodic timers fire off at the specified time, and then periodically
according to a specified interval.

Timers are driven byClock objects. There is a specialClock object,
Clock.getRealtimeClock(), that represents the real-time clock. The Clock class
may be extended to represent other clocks the underlying system might make
available (such as a soft clock of some granularity).

Asynchronous Transfer of Control

Many times a real-time programmer is faced with a situation where the computatio
cost of an algorithm is highly variable, the algorithm is iterative, and the algorithm
produces successively refined results during each iteration. If the system, before
commencing the computation, can determine only a time bound on how long to
execute the computation (i.e., the cost of each iteration is highly variable and the
minimum required latency to terminate the computation and receive the last consis
result is much less than about half of the mean iteration cost), then asynchronou
transferring control from the computation to the result transmission code at the
expiration of the known time bound is a convenient programming style. The RTS
supports this and other styles of programming where such transfer is convenient
a feature termed Asynchronous Transfer of Control (ATC).

The RTSJ’s approach to ATC is based on several guiding principles, outlined
the following lists.

Methodological Principles

• A thread needs to explicitly indicate its susceptibility to ATC. Since legacy code o
library methods might have been written assuming no ATC, by default ATC should
turned off (more precisely, it should be deferred as long as control is in such cod

• Even if a thread allows ATC, some code sections need to be executed to comple
and thus ATC is deferred in such sections. The ATC-deferred sections are
synchronized methods and statements.

• Code that responds to an ATC does not return to the point in the thread where th
ATC was triggered; that is, an ATC is an unconditional transfer of control.
Resumptive semantics, which returns control from the handler to the point of

DESIGN 13

s (in

rget
n

g an

arry

t an
ple,

ner

ferred

e, or

and

use

s to

. It is
time

rtj.book Page 13 Sunday, April 30, 2000 4:37 PM
interruption, are not needed since they can be achieved through other mechanism
particular, anAsyncEventHandler).

Expressibility Principles

• A mechanism is needed through which an ATC can be explicitly triggered in a ta
thread. This triggering may be direct (from a source thread) or indirect (through a
asynchronous event handler).

• It must be possible to trigger an ATC based on any asynchronous event includin
external happening or an explicit event firing from another thread. In particular, it
must be possible to base an ATC on a timer going off.

• Through ATC it must be possible to abort a thread but in a manner that does not c
the dangers of theThread class’sstop() anddestroy() methods.

Semantic Principles

• If ATC is modeled by exception handling, there must be some way to ensure tha
asynchronous exception is only caught by the intended handler and not, for exam
by an all-purpose handler that happens to be on the propagation path.

• Nested ATCs must work properly. For example, consider two, nested ATC-based
timers and assume that the outer timer has a shorter timeout than the nested, in
timer. If the outer timer times out while control is in the nested code of the inner
timer, then the nested code must be aborted (as soon as it is outside an ATC-de
section), and control must then transfer to the appropriatecatch clause for the outer
timer. An implementation that either handles the outer timeout in the nested cod
that waits for the longer (nested) timer, is incorrect.

Pragmatic Principles

• There should be straightforward idioms for common cases such as timer handlers
thread termination.

• ATC must be implemented without inducing an overhead for programs that do not
it.

• If code with a timeout completes before the timeout’s deadline, the timeout need
be automatically stopped and its resources returned to the system.

Asynchronous Thread Termination

Although not a real-time issue, many event-driven computer systems that tightly
interact with external real-world noncomputer systems (e.g., humans, machines,
control processes, etc.) may require significant changes in their computational
behavior as a result of significant changes in the non-computer real-world system
convenient to program threads that abnormally terminate when the external real-

14

ner so
g
 to
rnal

t of
eads

ese

e

read

 of

dlers
 can

s as

if
acle

o
ss the

rtj.book Page 14 Sunday, April 30, 2000 4:37 PM
system changes in a way such that the thread is no longer useful. Consider the
opposite case. A thread or set of threads would have to be coded in such a man
that their computational behavior anticipated all of the possible transitions amon
possible states of the external system. It is an easier design task to code threads
computationally cooperate for only one (or a very few) possible states of the exte
system. When the external system makes a state transition, the changes in
computation behavior might then be managed by an oracle, that terminates a se
threads useful for the old state of the external system, and invokes a new set of thr
appropriate for the new state of the external system. Since the possible state
transitions of the external system are encoded in only the oracle and not in each
thread, the overall system design is easier.

Earlier versions of the Java language supplied mechanisms for achieving th
effects: in particular the methodsstop() anddestroy() in classThread. However,
sincestop() could leave shared objects in an inconsistent state,stop() has been
deprecated. The use ofdestroy() can lead to deadlock (if a thread is destroyed whil
it is holding a lock) and although it has not yet been deprecated, its usage is
discouraged. A goal of the RTSJ was to meet the requirements of asynchronous th
termination without introducing the dangers of thestop() or destroy() methods.

The RTSJ accommodates safe asynchronous thread termination through a
combination of the asynchronous event handling and the asynchronous transfer
control mechanisms. If the significantly long or blocking methods of a thread are
made interruptible the oracle can consist of a number of asynchronous event han
that are bound to external happenings. When the happenings occur the handlers
invokeinterrupt() on appropriate threads. Those threads will then clean up by
having all of the interruptible methods transfer control to appropriate catch clause
control enters those methods (either by invocation or by thereturn bytecode). This
continues until therun() method of the thread returns. This idiom provides a quick (
coded to be so) but orderly clean up and termination of the thread. Note that the or
can comprise as many or as few asynchronous event handlers as appropriate.

Physical Memory Access

The RTSJ defines classes for programmers wishing to directly access physical
memory from code.RawMemoryAccess defines methods that allow the programmer t
construct an object that represents a range of physical addresses and then acce
physical memory with byte, short, int, long, float, and double granularity. No
semantics other than theset<type>() andget<type>() methods are implied. The
ScopedPhysicalMemory andImmortalPhysicalMemory classes allow programmers

DESIGN 15

hich

s of

 The
he
tion

ase,
s of

w-

.

ices
s,

need
her

s

rtj.book Page 15 Sunday, April 30, 2000 4:37 PM
to create objects that represent a range of physical memory addresses and in w
Java objects can be located. The RTSJ requires aPhysicalMemoryFactory in each
implementation. Methods on the factory object are the only way to create instance
physical memory objects. On each physical memory classcreate() methods invoke
appropriate methods on thePhysicalMemoryFactory class to create the required
instance. The factory also enforces security policies.

Raw Memory Access

An instance ofRawMemoryAccess models a “raw storage” area as a fixed-size
sequence of bytes. Factory methods allowRawMemoryAccess objects to be created
from memory at a particular address range or using a particular type of memory.
implementation must provide a factory that interprets these requests correctly. T
factory may be set by applications based on documentation from the implementa
provider. A full complement ofset<type>() andget<type>() methods allow the
contents of the physical memory area to be accessed through offsets from the b
interpreted as byte, short, int, long or float data values, and copied to/from array
those types.

The byte-ordering interpretation of the data is based on the value of the
BYTE_ORDER static variable in classRealtimeSystem.

TheRawMemoryAccess class allows a real-time program to implement device
drivers, memory-mapped I/O, flash memory, battery-backed RAM, and similar lo
level software.

A raw memory access object cannot contain objects or references to objects
Such a capability would be unsafe (since it could be used to defeat Java’s type
checking) and error-prone (since it is sensitive to the specific representational cho
made by the Java compiler). This capability is provided by physical memory area
which do not provide raw access to the memory.

Physical Memory Areas

In many cases systems, needing the predictable execution of the RTSJ will also
to access various kinds of memory at particular addresses for performance or ot
reasons. Consider a system in which very fast static RAM was programmatically
available. A design that could optimize performance might wish to place various
frequently used Java objects in the fast static RAM. TheScopedPhysicalMemory and
ImmortalPhysicalMemory classes allow the programmer this flexibility. The
programmer would construct a physical memory object on the memory addresse
occupied by the fast RAM.

16

mory

tions

ory

t

e

s

it,

 any

own
 a
dard

rtj.book Page 16 Sunday, April 30, 2000 4:37 PM
In order to maintain safety, a factory object constructs all physical memory
objects. The factory ensures that physical memory areas don’t overlap other me
areas or raw memory access objects.

Exceptions

The RTSJ introduces several new exceptions, and some new treatment of excep
surrounding asynchronous transfer of control and memory allocators.

The new exceptions introduced are:
• AsynchronouslyInterruptedException: Generated when a thread is asynchronously

interrupted.
• MemoryAccessError: Thrown by the JVM when a thread attempts to access mem

that is not in scope.
• ThrowBoundaryError:A throwable tried to propagate into a scope where it was no

accessible.
• MemoryScopeException: Thrown by the wait-free queue implementation when an

object is passed that is not compatible with both ends of the queue.
• OffsetOutOfBoundsException: Generated by the physical memory classes when th

given offset is out of bounds.
• SizeOutOfBoundsException: Generated by the physical memory classes when the

given size is out of bounds.
• UnsupportedPhysicalMemoryException: Generated by the physical memory classe

when the requested physical memory is unsupported.
• IllegalAssignmentError: Thrown on an attempt to make an illegal assignment.
• ResourceLimitError:Thrown if an attempt is made to exceed a system resource lim

such as the maximum number of locks.

Minimum Implementations of the RTSJ

The flexibility of the RTSJ indicates that implementations may provide different
semantics for scheduling, synchronization, and garbage collection. This section
defines what minimum semantics for these areas and other semantics and APIs
required of all implementations of the RTSJ. In general, the RTSJ does not allow
subsetting of the APIs in thejavax.realtime package (except those noted as
optionally required); however, some of the classes are specific to certain well-kn
scheduling or synchronization algorithms and may have no underlying support in
minimum implementation of the RTSJ. The RTSJ provides these classes as stan
parent classes for implementations supporting such algorithms.

DESIGN 17

t 28
 the

ch
at

ired

s
ly
ity
vels

and

ded

ust

his
me
me
e

nized

iority

rtj.book Page 17 Sunday, April 30, 2000 4:37 PM
The minimum scheduling semantics that must be supported in all
implementations of the RTSJ are fixed-priority preemptive scheduling and at leas
unique priority levels. By fixed-priority we mean that the system does not change
priority of anyRealtimeThread or NoHeapRealtimeThread except, temporarily, for
priority inversion avoidance. Note, however, that application code may change su
priorities. What the RTSJ precludes by this statement is scheduling algorithms th
change thread priorities according to policies for optimizing throughput (such as
increasing the priority of threads that have been receiving few processor cycles
because of higher priority threads (aging)). The 28 unique priority levels are requ
to be unique to preclude implementations from using fewer priority levels of
underlying systems to implement the required 28 by simplistic algorithms (such a
lumping four RTSJ priorities into seven buckets for an underlying system that on
supports seven priority levels). It is sufficient for systems with fewer than 28 prior
levels to use more sophisticated algorithms to implement the required 28 unique le
as long asRealtimeThreads andNoHeapRealtimeThreads behave as though there
were at least 28 unique levels. (e.g. if there were 28 RealtimeThreads (t1,...,t28) with
priorities (p1,...,p28), respectively, where the value of p1 was the highest priority and
the value of p2 the next highest priority, etc., then for all executions of threads t1
through t28 thread t1 wouldalways execute in preference to threads t2, ..., t28 and
thread t2 wouldalways execute in preference to threads t3,..., t28, etc.)

The minimum synchronization semantics that must be supported in all
implementations of the RTSJ are detailed in the above section on synchronization
repeated here.

All implementations of the RTSJ must provide an implementation of the
synchronized primitive with default behavior that ensures that there is no unboun
priority inversion. Furthermore, this must apply to code if it is run within the
implementation as well as to real-time threads. The priority inheritance protocol m
be implemented by default.

All threads waiting to acquire a resource must be queued in priority order. T
applies to the processor as well as to synchronized blocks. If threads with the sa
exact priority are possible under the active scheduling policy, threads with the sa
priority are queued in FIFO order. (Note that these requirements apply only to th
required base scheduling policy and hence use the specific term “priority”). In
particular:

• Threads waiting to enter synchronized blocks are granted access to the synchro
block in priority order.

• A blocked thread that becomes ready to run is given access to the processor in pr
order.

• A thread whose execution eligibility is explicitly set by itself or another thread is
given access to the processor in priority order.

18

g

 be

g

e
sk

 a
h in

if

ant

s.
ided,

rtj.book Page 18 Sunday, April 30, 2000 4:37 PM
• A thread that performs ayield() will be given access to the processor after waitin
threads of the same priority.

• However, threads that are preempted in favor of a thread with higher priority may
given access to the processor at any time as determined by a particular
implementation. The implementation is required to provide documentation statin
exactly the algorithm used for granting such access.

The RTSJ does not require any particular garbage collection algorithm. All
implementations of the RTSJ must, however, support the classGarbageCollector

and implement all of its methods.

Optionally Required Components

The RTSJ does not, in general, support the concept of optional components of th
specification. Optional components would further complicate the already difficult ta
of writing WORA (Write Once Run Anywhere) software components for real-time
systems. However, understanding the difficulty of providing implementations of
mechanisms for which there is no underlying support, the RTSJ does provide for
few exceptions. Any components that are considered optional will be listed as suc
the class definitions.

The most notable optional component of the specification is the
POSIXSignalHandler. A conformant implementation must support POSIX signals
and only if the underlying system supports them. Also, the class
RawMemoryFloatAccess is required to be implemented if and only if the JVM itself
supports floating point types.

Documentation Requirements

In order to properly engineer a real-time system, an understanding of the cost
associated with any arbitrary code segment is required. This is especially import
for operations that are performed by the runtime system, largely hidden from the
programmer. (An example of this is the maximum expected latency before the
garbage collector can be interrupted.)

The RTSJ does not require specific performance or latency numbers to be
matched. Rather, to be conformant to this specification, an implementation must
provide documentation regarding the expected behavior of particular mechanism
The mechanisms requiring such documentation, and the specific data to be prov
will be detailed in the class and method definitions.

DESIGN 19

s a

ed

ent on

at
 of

rtj.book Page 19 Sunday, April 30, 2000 4:37 PM
Parameter Objects

A number of constructors in this specification take objects generically named
feasibility parameters (classes named<string>Parameters where<string>
identifies the kind of parameter). When a reference to aParameters object is given as
a parameter to a constructor theParameters object becomes bound to the object
being created. Changes to the values in theParameters object affect the constructed
object. For example, if a reference to aSchedulingParameters object,sp, is given to
the constructor of aRealtimeThread, rt, then calls tosp.setPriority() will
change the priority ofrt. There is no restriction on the number of constructors to
which a reference to a singleParameters object may be given. If aParameters
object is given to more than one constructor, then changes to the values in the
Parameters object affectall of the associated schedulable objects. Note that this i
one-to-many relationship,not a many-to-many relationship, that is, a schedulable
object (e.g., an instance ofRealtimeThread) must have zero or one associated
instance of eachParameter object type.

Caution: <string>Parameter objects are explicitly unsafe in multithreaded
situations when they are being changed. No synchronization is done. It is assum
that users of this class who are mutating instances will be doing their own
synchronization at a higher level.

Java Platform Dependencies

In some cases the classes and methods defined in this specification are depend
the underlying Java platform.

1. TheComparable interface is available in Java(tm) 2 v1.2 1nd 1.3 and not in wh
was formally known as JDK’s 1.0 and 1.1. Thus, we expect implementations
this specification which are based on JDK’s 1.0 or 1.1 to include aComparable

interface.

2. The classRawMemoryFloatAccess is required if and only if the underlying Java
Virtual Machine supports floating point data types.

20

rtj.book Page 20 Sunday, April 30, 2000 4:37 PM

 than

ts.

he

he

hod,

rtj.book Page 21 Sunday, April 30, 2000 4:37 PM
C H A P T E R 3
Threads

This section contains classes that:

• Provide for the creation of threads that have more precise scheduling semantics
java.lang.Thread.

• Allow the use of areas of memory other than the heap for the allocation of objec
• Allow the definition of methods that can be asynchronously interrupted.
• Provide the scheduling semantics for handling asynchronous events.

The RealtimeThread class extendsjava.lang.Thread. TheReleaseParameters,
SchedulingParameters, MemoryParameters provided to theRealtimeThread
constructor allow the temporal and processor demands of the thread to be
communicated to the system.

TheNoHeapRealtimeThread class extendsRealtimeThread. A
NoHeapRealtimeThread is not allowed to allocate or even reference objects from t
Java heap, and can thus safely execute in preference to the garbage collector.

Semantics and Requirements

This list establishes the semantics and requirements that are applicable across t
classes of this section. Semantics that apply to particular classes, constructors,
methods, and fields will be found in the class description and the constructor, met
and field detail sections.

1. The default scheduling policy must manage the execution of instances of
RealtimeThread andNoHeapRealtimeThread.

2. Any scheduling policy present in an implementation must be available to
21

22

f
of

s.

fy

nd

rtj.book Page 22 Sunday, April 30, 2000 4:37 PM
instances ofRealtimeThread andNoHeapRealtimeThread.

3. The function of allocating objects in memory in areas defined by instances o
ScopedMemory or its subclasses shall be available only to logic within instances
RealtimeThread andNoHeapRealtimeThread.

4. The invocation of methods that throwAsynchronouslyInterruptedException
has the indicated effect only when the invocation occurs in the context of
instances ofRealtimeThread andNoHeapRealtimeThread.

5. Instances of theNoHeapRealtimeThread class have an implicit execution
eligibility logically higher than the garbage collector.

6. Instances of theRealtimeThread class may have an execution eligibility logically
lower than the garbage collector.

7. Changing values inSchedulingParameters, ProcessingParameters,
ReleaseParameters, ProcessingGroupParameters, or use of
Thread.setPriority() must not affect the correctness of any implemented
priority inversion avoidance algorithm.

Rationale

The Java platform’s priority-preemptive dispatching model is very similar to the
dispatching model found in the majority of commercial real-time operating system
However, the dispatching semantics were purposefully relaxed in order to allow
execution on a wide variety of operating systems. Thus, it is appropriate to speci
real-time threads by merely extendingjava.lang.Thread. TheRealtimeParameters
andMemoryParameters provided to theRealtimeThread constructor allow for a
number of common real-time thread types, including periodic threads.

TheNoHeapRealtimeThread class is provided in order to allow time-critical
threads to execute in preference to the garbage collector. The memory access a
assignment semantics of theNoHeapRealtimeThread are designed to guarantee that
the execution of such threads does not lead to an inconsistent heap state.

THREADS 23

s

ay

ch

ues

rtj.book Page 23 Sunday, April 30, 2000 4:37 PM
3.1 RealtimeThread

Syntax:public class RealtimeThread extends java.lang.Thread implements
Schedulable35

Direct Known Subclasses:NoHeapRealtimeThread27

All Implemented Interfaces:java.lang.Runnable,Schedulable35

RealtimeThread extendsjava.lang.Thread and includes classes and method
to get and set parameter objects, manage the execution of those threads with a
ReleaseParameters43 type ofPeriodicParameters45 , and waiting. A
RealtimeThreadobject must be placed in a memory area such that thread logic m
unexceptionally access instance variables and such that Java methods on
java.lang.Thread (e.g., enumerate and join) complete normally except where su
execution would cause access violations. (Implementation hint: They could be
allocated inHeapMemory61)

3.1.1 Constructors
public RealtimeThread()

Create a real-time thread. All parameter values are null. The default val
for null parameter objects are dependent on the value of the default
Scheduler36 at the time the thread is created.

public RealtimeThread(SchedulingParameters40 scheduling)
Create a real-time thread with the givenSchedulingParameters40 .

Parameters:
scheduling - TheSchedulingParameters40 associated with this

(and possibly otherRealtimeThread).

public RealtimeThread(SchedulingParameters40 scheduling,
ReleaseParameters43 release)

Create a real-time thread with the givenSchedulingParameters40 and
ReleaseParameters43 .

Parameters:
scheduling - TheSchedulingParameters40 associated with this

(and possibly otherRealtimeThread).
release - TheReleaseParameters43 associated with this (and

possibly otherRealtimeThread).

public RealtimeThread(SchedulingParameters40 scheduling,
ReleaseParameters43 release,

24 REALTIMETHREAD

ity

rtj.book Page 24 Sunday, April 30, 2000 4:37 PM
MemoryParameters79 memory, MemoryArea60 area,
ProcessingGroupParameters50 group,
java.lang.Runnable logic)

Create a real-time thread with the given characteristics and a
java.lang.Runnable .

Parameters:
scheduling - TheSchedulingParameters40 associated with this

(and possibly otherRealtimeThread).
release - TheReleaseParameters43 associated with this (and

possibly otherRealtimeThread).
memory - TheMemoryParameters79 associated with this (and

possibly otherRealtimeThread).
area - TheMemoryArea60 associated with this.
group - TheProcessingGroupParameters50 associated with this

(and possibly otherRealtimeThread).

3.1.2 Methods
public void addToFeasibility()

Inform the scheduler and cooperating facilities that this thread’s feasibil
parameters should be considered in feasibility analysis until further
notified.

public static RealtimeThread23 currentRealtimeThread()
This will throw aClassCastException if the current thread is not a
RealtimeThread.

public synchronized void deschedulePeriodic()
Stop unblockingpublic boolean waitForNextPeriod()26 for a periodic
schedulable object. If this does not have a type ofPeriodicParameters45
as itReleaseParameters43 nothing happens.

public MemoryArea60 getMemoryArea()
Get the currentMemoryArea60 .

Returns: The current memory area in which allocations occur.

public MemoryParameters79 getMemoryParameters()
Return a reference to theMemoryParameters79 object.

public ProcessingGroupParameters50 getProcessingGroupParameters()
Return a reference to theProcessingGroupParameters50 object.

public ReleaseParameters43 getReleaseParameters()
Returns a reference to theReleaseParameters43 object.

public Scheduler36 getScheduler()

THREADS 25

ity

an

 the

rtj.book Page 25 Sunday, April 30, 2000 4:37 PM
Get the scheduler for this thread.

public SchedulingParameters40 getSchedulingParameters()
Return a reference to theSchedulingParameters40 object.

public synchronized void interrupt()
Set the state of the genericAsynchronouslyInterruptedException136 to
pending.

Overrides:java.lang.Thread.interrupt() in class java.lang.Thread

public void removeFromFeasibility()
Inform the scheduler and cooperating facilities that this thread’s feasibil
parameters should not be considered in feasibility analysis until further
notified.

public synchronized void schedulePeriodic()
Begin unblockingpublic boolean waitForNextPeriod()26 for a
periodic thread. Typically used when a periodic schedulable object is in
overrun condition. The scheduler should recompute the schedule and
perform admission control. If this does not have a type of
PeriodicParameters45 as itReleaseParameters43 nothing happens.

public void setMemoryParameters(MemoryParameters79 parameters)
Set the reference to theMemoryParameters79 object.

public void
setProcessingGroupParameters(ProcessingGroupParam
eters50 parameters)

Set the reference to theProcessingGroupParameters50 object.

public void setReleaseParameters(ReleaseParameters43 parameters)
Set the reference to theReleaseParameters43 object.

public void setScheduler(Scheduler36 scheduler)
Set the scheduler. This is a reference to the scheduler that will manage
execution of this thread.

Throws: IllegalThreadStateException - Thrown when
((Thread.isAlive() && Not Blocked) == true). (Where
blocked means waiting inThread.wait(), Thread.join(), or
Thread.sleep())

public void setSchedulingParameters(SchedulingParameters40
scheduling)

Set the reference to theSchedulingParameters40 object.

public static void sleep(Clock110 clock, HighResolutionTime97 time)
An accurate timer with nanosecond granularity. The actual resolution
available for the clock must be queried from somewhere else. The time

26 REALTIMETHREAD

 by

e,

f
 by

e,

ion.
its

ad

iss

rtj.book Page 26 Sunday, April 30, 2000 4:37 PM
base is the givenClock110 . The sleep time may be relative or absolute. If
relative, then the calling thread is blocked for the amount of time given
the parameter. If absolute, then the calling thread is blocked until the
indicated point in time. If the given absolute time is before the current tim
the call to sleep returns immediately.

Throws: InterruptedException

public static void sleep(HighResolutionTime97 time)
An accurate timer with nanosecond granularity. The actual resolution
available for the clock must be queried from somewhere else. The time
base is the defaultClock110 . The sleep time may be relative or absolute. I
relative, then the calling thread is blocked for the amount of time given
the parameter. If absolute, then the calling thread is blocked until the
indicated point in time. If the given absolute time is before the current tim
the call to sleep returns immediately.

Throws: InterruptedException

public boolean waitForNextPeriod()
Used by threads that have a reference to aReleaseParameters43 type of
PeriodicParameters45 to block until the start of each period. Periods
start at either the start time inPeriodicParameters45 or when
this.start() is called. This method will block until the start of the next
period unless the thread is in either an overrun or deadline miss condit
If both overrun and miss handlers are null and the thread has overrun
cost or missed a deadlinepublic boolean waitForNextPeriod()26 will
immediately return false once per overrun or deadline miss. It will then
again block until the start of the next period (unless, of course, the thre
has overrun or missed again). If either the overrun or deadline miss
handlers are not null and the thread is in either an overrun or deadline m
conditionpublic boolean waitForNextPeriod()26 will block until the
handler corrects the situation (possibly by callingpublic synchronized

void schedulePeriodic()25). public boolean
waitForNextPeriod()26 throws IllegalThreadStateException if this does
not have a reference to aReleaseParameters43 type of
PeriodicParameters45 .

Returns: True when the thread is not in an overrun or deadline miss
condition and unblocks at the start of the next period.

Throws: IllegalThreadStateException

THREADS 27

es to
 is

r a

cess

ns.

of

rtj.book Page 27 Sunday, April 30, 2000 4:37 PM
3.2 NoHeapRealtimeThread

Syntax:public class NoHeapRealtimeThread extends RealtimeThread23

All Implemented Interfaces:java.lang.Runnable,Schedulable35

A NoHeapRealtimeThread is a specialized form ofRealtimeThread23 . Because
an instance ofNoHeapRealtimeThread may immediately preempt any implemented
garbage collector logic contained in itsrun() is never allowed to allocate or reference
any object allocated in the heap nor it is even allowed to manipulate the referenc
objects in the heap. For example, if a and b are objects in immortal memory, b.p
reference to an object on the heap, and a.p is type compatible with b.p, then a
NoHeapRealtimeThread is not allowed to execute anyting like the following:

a.p = b.p; b.p = null;

Thus, it is always safe for aNoHeapRealtimeThread to interrupt the garbage
collector at any time, without waiting for the end of the garbage collection cycle o
defined preemption point. Due to these restrictions, aNoHeapRealtimeThread object
must be placed in a memory area such that thread logic may unexceptionally ac
instance variables and such that Java methods onjava.lang.Thread (e.g., enumerate
and join) complete normally except where execution would cause access violatio
(Implementation hint: They could be allocated inImmortalMemory62 .) The
constructors ofNoHeapRealtimeThread require a reference toScopedMemory62 or
ImmortalMemory62 . When the thread is started, all execution occurs in the scope
the given memory area. Thus, all memory allocation performed with the “new”
operator is taken from this given area.

3.2.1 Constructors
public NoHeapRealtimeThread(SchedulingParameters40 scheduling,

MemoryArea60 area)
Create aNoHeapRealtimeThread.

Parameters:
scheduling - A SchedulingParameters40 object that will be

associated with this. A null value means this will not have an
associatedSchedulingParameters40 object.

area - A MemoryArea60 object. Must be aScopedMemory62 or
ImmortalMemory62 type. A null value causes an
IllegalArgumentException to be thrown.

Throws: IllegalArgumentException

28 NOHEAPREALTIMETHREAD

rtj.book Page 28 Sunday, April 30, 2000 4:37 PM
public NoHeapRealtimeThread(SchedulingParameters40 scheduling,
ReleaseParameters43 release, MemoryArea60 area)

Create aNoHeapRealtimeThread.

Parameters:
scheduling - A SchedulingParameters40 object that will be

associated with this. A null value means this will not have an
associatedSchedulingParameters40 object.

release - A ReleaseParameters43 object that will be associated
with this. A null value means this will not have an associated
ReleaseParameters43 object.

area - A MemoryArea60 object. Must be aScopedMemory62 or
ImmortalMemory62 type. A null value causes an
IllegalArgumentException to be thrown.

Throws: IllegalArgumentException

public NoHeapRealtimeThread(SchedulingParameters40 scheduling,
ReleaseParameters43 release,
MemoryParameters79 memory, MemoryArea60 area,
ProcessingGroupParameters50 group,
java.lang.Runnable logic)

Create aNoHeapRealtimeThread.

Parameters:
scheduling - A SchedulingParameters40 object that will be

associated with this. A null value means this will not have an
associatedSchedulingParameters40 object.

release - A ReleaseParameters43 object that will be associated
with this. A null value means this will not have an associated
ReleaseParameters43 object.

memory - A MemoryParameters79 object that will be associated with
this. A null value means this will not have a
MemoryParameters79 object.

area - A MemoryArea60 object. Must be aScopedMemory62 or
ImmortalMemory62 type. A null value causes an
IllegalArgumentException to be thrown.

group - A ProcessingGroupParameters50 object that will be
associated with this. A null value means this will not have an
associatedProcessingGroupParameters50 object.

logic - A Runnable whoserun() method will be executed for this.

Throws: IllegalArgumentException

THREADS 29

This

hen

d
eads.
ve,
ms

rtj.book Page 29 Sunday, April 30, 2000 4:37 PM
RealtimeThread Example

The simplest way to create a thread is to accept the default parameters from the
constructor and override the run method with the desired behavior for the thread.
can be done with a new class definition:

public class MyThread extends RealtimeThread {
public void run() {

do thread task

}
The thread can then be created with:

RealtimeThread t1 = new MyThread();
An alternative would be to use a local inner class based on RealtimeThread,
overriding the run method. Here is a local inner class implementation:

RealtimeThread t3 = new RealtimeThread() {
public void run() {

do_whatever_you_want();
}

};
A thread can be created with just priority information:

SchedulingParameters sp =
new SchedulingParameters(RealtimeThread.getNormPriority()-1);

RealtimeThread t2 = new RealtimeThread(sp) {
public void run() {

do_whatever_you_want();
}

};
A real-time thread that is created with scheduling parameters but without release
parameters will have no cost information available for feasibility analysis. The
scheduler doesn’t perform admission control on these non-scheduled threads. W
doing static priority analysis, it’s important to use a disjoint set of priorities for the
statically analyzed (scheduled) threads from the ones assigned to non-schedule
threads, with the scheduled threads executing in preference to non-scheduled thr
A logical division might be at RealtimeThread.getNormPriority(), as employed abo
although this may unduly limit the range available for scheduled threads in syste
that provide the minimum number of real-time priorities.

30 NOHEAPREALTIMETHREAD

rtj.book Page 30 Sunday, April 30, 2000 4:37 PM

SCHEDULING 31

ad

sses
se is
on
ss
the

e
For
nt

ld

rtj.book Page 31 Sunday, April 30, 2000 4:37 PM
C H A P T E R 4
Scheduling

This section contains classes that:

• Allow the definition of schedulable objects.
• Manage the assignment of execution eligibility to schedulable objects.
• Perform feasibility analysis for sets of schedulable objects.
• Control the admission of new schedulable objects.
• Manage the execution of instances of the AsyncEventHandler and RealtimeThre

classes.
• Assign release characteristics to schedulable objects.
• Assign execution eligibility values to schedulable objects.
• Define temporal containers used to enforce correct temporal behavior of multiple

schedulable objects.
The scheduler required by this specification is fixed-priority preemptive with 28
unique priority levels. It is represented by the classPriorityScheduler and is called
thebase scheduler.

The schedulable objects required by this specification are defined by the cla
RealtimeThread, NoHeapRealtimeThread, and AsyncEventHandler. Each of the
assigned processor resources according to their release characteristics, executi
eligibility, and processing group values. Any subclass of these objects or any cla
implementing the Schedulable interface are schedulable objects and behave as
these required classes.

An instance of the SchedulingParameters class contains values of execution
eligibility. A schedulable object is considered to have the execution eligibility in th
SchedulingParameters object used in the constructor of the schedulable object.
implementations providing only the base scheduling policy, the previous stateme
holds for the specific typePriorityParameters (a subclass of
SchedulingParameters), Implementations providing additional scheduling policies
or execution eligibility assignment policies which require an application visible fie

32 NOHEAPREALTIMETHREAD

s

eters,
ticular

In all
set of
ly,
 is an
ct’s
. In

fine a
d
e

y
jects
 the
 is

he
ply to

el

ave

rtj.book Page 32 Sunday, April 30, 2000 4:37 PM
to contain execution eligibility thenSchedulingParamters must be subclassed and
the previous statement then holds for the specific subclass type. If, however,
additionally provided scheduling policies or execution eligibility asignment policie
do not require application visibility of execution eligibility or it appears in another
parameter object (e.g., the earliest deadline first scheduling uses deadline as the
execution eligibility metric and would thus be visible inReleaseParameters), then
SchedulingParameters need not be subclassed.

An instance of the ReleaseParameters class or its subclasses, PeriodicParam
AperiodicParameters, and SporadicParameters, contains values that define a par
release discipline. A schedulable object is considered to have the release
characteristics of a single associated instance of the ReleaseParameters class.
cases the Scheduler uses these values to perform its feasibility analysis over the
schedulable objects and admission control for the schedulable object. Additional
for those schedulable objects whose associated instance of ReleaseParameters
instance of PeriodicParameters, the scheduler manages the behavior of the obje
waitForNextPeriod() method and monitors overrun and deadline-miss conditions
the case of overrun or deadline-miss the scheduler changed the behavior of the
waitForNextPeriod()and schedules the appropriate handler.

An instance of the ProcessingGroupParameters class contains values that de
temporal scope for a processing group. If a schedulable object has an associate
instance of the ProcessingGroupParameters class, it is said to execute within th
temporal scope defined by that instance. A single instance of the
ProcessingGroupParameters class can be (and typically is) associated with man
schedulable objects. The combined processor demand of all of the schedulable ob
associated with an instance of the ProcessingParameters class must not exceed
values in that instance (i.e., the defined temporal scope). The processor demand
determined by the Scheduler.

Semantics and Requirements

This list establishes the semantics and requirements that are applicable across t
classes of this section and the required scheduling algorithm. Semantics that ap
particular classes, constructors, methods and fields will be found in the class
description and the constructor, method, and field detail sections.

1. The base scheduler must support at least 28 unique values in the priorityLev
field of an instance of PriorityParameters.

2. Higher values in the priorityLevel field of an instance of PriorityParameters h
a higher execution eligibility.

SCHEDULING 33

he

 the

er
a
,
 ten
e
28

of

may

ge

d in

 it

g

t

rtj.book Page 33 Sunday, April 30, 2000 4:37 PM
3. In (1) unique means that if two schedulable objects have different values in t
priorityLevel field in their respective instances of PriorityParameters, the
schedulable object with the higher value will always execute in preference to
schedulable object with the lower value when both are ready to execute.

4. An implementation must make available some native priorities which are low
than the 28 required real-time priorities. These are to be used for regular Jav
threads (i.e., instances of threads which are not instances of RealtimeThread
NoHeapRealtimeThread, or AsyncEventHandler classes or subclasses). The
traditional Java thread priorities may have an arbitrary mapping into the nativ
priorities. These ten traditional Java thead priorities and the required minimum
unique real-time thread priorities shall be from the same space. Assignment
any of these (minimum) 38 priorities to real-time threads or traditional Java
threads is legal. It is the responsibility of application logic to make rational
priority assignments.

5. The dispatching mechanism must allow the preemption of the execution of
schedulable objects at a point not governed by the preempted object.

6. For schedulable objects managed by the base scheduler no part of the system
change the execution eligibility for any reason other than implementation of a
priority inversion algorithm. This does not preclude additional schedulers from
changing the execution eligibility of schedulable objects —- which they mana
—- according to the scheduling algorithm.

7. Threads that are preempted in favor of a higher priority thread may be place
the appropriate queue at any position as determined by a particular
implementation. The implementation is required to provide documentation
stating exactly the algorithm used for such placement.

8. If an implementation provides any schedulers other than the base scheduler
shall provide documentation explicitly stating the semantics expressed by 8
through 11 in language and constructs appropriate to the provided schedulin
algorithms.

9. All instances ofRelativeTime used in instances ofProcessingParameters,
SchedulingParameters, andReleaseParameters are measured from the time at
which the associated thread (or first such thread) is started.

10. PriorityScheduler.getNormPriority() shall be set to
((PriorityScheduler.getMaxPriority() -

PriorityScheduler.getMinPriority())/3) +

PriorityScheduler.getMinPriority().

11. If instances ofRealtimeThread or NoHeapRealtimeThread are constructed
without a reference to a SchedulingParameters object aSchedulingParamters

object is created and assigned the values of the current thread. This does no

34 NOHEAPREALTIMETHREAD

 to

tions
 all

 not
y

red

ble

g
le

ted

 for

, 32

ity
ue

will

rtj.book Page 34 Sunday, April 30, 2000 4:37 PM
imply that other schedulers should follow this rule. Other schedulers are free
define the default scheduling parameters in the absence of a given
SchedulingParameters object.

12. The policy and semantics embodied in 1 through 15 above and by the descrip
of the refered to classes, methods, and their interactions must be available in
implementations of this specification.

13. This specification does not require any particular feasibility algorithm be
implemented in the Scheduler object. Those implementations that choose to
implement a feasibility algorithm shall return success whenever the feasibilit
algorithm is executed.

14. Implementations that provide a scheduler with a feasibility algorithm are requi
to clearly document the behavior of that algorithm

The following hold for thePriorityScheduler:

1. A blocked thread that becomes ready to run is added to the tail of any runna
queue for that priority.

2. For a thread whose effective priority is changed as a result of explicitly settin
priorityLevel this thread or another thread is added to the tail of the runnab
queue for the newpriorityLevel.

3. A thread that performs ayield() goes to the tail of the runnable queue for its
priorityLevel.

Rationale

As specified the required semantics and requirements of this section establish a
scheduling policy that is very similar to the scheduling policies found on the vast
majority of real-time operating systems and kernels in commercial use today. By
requirement 16, the specification accommodates existing practice, which is a sta
goal of the effort.

The semantics of the classes, constructors, methods, and fields within allow
the natural extension of the scheduling policy by implementations that provide
different scheduler objects.

Some research shows that, given a set of reasonable common assumptions
unique priority levels are a reasonable choice for close-to-optimal scheduling
efficiency when using the rate-monotonic priority assignment algorithm (256 prior
levels better provide better efficiency). This specification requires at least 28 uniq
priority levels as a compromise noting that implementations of this specification

SCHEDULING 35

y

ntil

rtj.book Page 35 Sunday, April 30, 2000 4:37 PM
exist on systems with logic executing outside of the Java Virtual Machine and ma
need priorities above, below, or both for system activities.

4.1 Schedulable

Syntax:public interface Schedulable extends java.lang.Runnable

All Superinterfaces:java.lang.Runnable

All Known Implementing Classes:AsyncEventHandler129, RealtimeThread23

Handlers and other objects can be run by aScheduler36 if they provide arun()
method and the methods defined below. TheScheduler36 uses this information to
create a suitable context to execute therun() method.

4.1.1 Methods
public void addToFeasibility()

Inform theScheduler36 and cooperating facilities that this thread’s
feasibility parameters should be considered in feasibility analysis until
further notified.

public MemoryParameters79 getMemoryParameters()
Return theMemoryParameters79 of this schedulable object.

public ReleaseParameters43 getReleaseParameters()
Return theReleaseParameters43 of this schedulable object.

public Scheduler36 getScheduler()
Return theScheduler36 for this schedulable object.

public SchedulingParameters40 getSchedulingParameters()
Return theSchedulingParameters40 of this scheduable object.

public void removeFromFeasibility()
Inform theScheduler36 and cooperating facilities that this thread’s
feasibility parameters should not be considered in feasibility analysis u
further notified.

public void setMemoryParameters(MemoryParameters79 memory)
Set theMemoryParameters79 of this schedulable object.

Parameters:
memory - TheMemoryParameters79 object. If null nothing happens.

36 SCHEDULER

ay

rity

of the
ed

rtj.book Page 36 Sunday, April 30, 2000 4:37 PM
public void setReleaseParameters(ReleaseParameters43 release)
Set theReleaseParameters43 for this schedulable object.

Parameters:
release - TheReleaseParameters43 object. If null nothing

happens.

public void setScheduler(Scheduler36 scheduler)
Set theScheduler36 for this schedulable object.

Parameters:
scheduler - TheScheduler36 object. If null nothing happens.

public void setSchedulingParameters(SchedulingParameters40
scheduling)

Set theSchedulingParameters40 of this scheduable object.

Parameters:
scheduling - TheSchedulingParameters40 object. If null nothing

happens.

4.2 Scheduler

Syntax:public abstract class Scheduler

Direct Known Subclasses:PriorityScheduler38

An instance ofScheduler manages the execution of schedulable objects and m
implement a feasibility algorithm. The feasibility algorithm may determine if the
known set of schedulable objects, given their particular execution ordering (or prio
assignment), is a feasible schedule. Subclasses ofScheduler are used for alternative
scheduling policies and should define aninstance() class method to return the
default instance of the subclass. The name of the subclass should be descriptive
policy, allowing applications to deduce the policy available for the scheduler obtain
via public static Scheduler36 getDefaultScheduler()37 (e.g.,EDFScheduler).

4.2.1 Constructors
public Scheduler()

4.2.2 Methods
protected abstract void addToFeasibility(Schedulable35 schedulable)

SCHEDULING 37

d. If
no

d

ts.

et

rtj.book Page 37 Sunday, April 30, 2000 4:37 PM
Inform the scheduler that this thread’sReleaseParameters43 should be
considered in feasibility analysis until further notified.

public boolean changeIfFeasible(Schedulable35 schedulable,
ReleaseParameters43 release,
MemoryParameters79 memory)

Returns true if, after changing theSchedulable35 ’s release and GC
parameters isFeasible would return true. The parameters wil be change
the resulting system would not be feasible, this method returns false and
changes are made.

Parameters:
schedulable - TheSchedulable35 object for which to check

addmitance. If null nothing happens.
release - The proposedReleaseParameters43 . If null, no change

is made.
memory - The proposedMemoryParameters79 . If null, no change is

made.

public static Scheduler36 getDefaultScheduler()
Return a reference to the default scheduler.

public abstract java.lang.String getPolicyName()
Used to determine the policy of theScheduler.

Returns: A String object which is the name of the scheduling policy use
by this.

public abstract boolean isFeasible()
Returns true if and only if the system is able to satisfy the constraints
expressed in the release parameters of the existing schedulable objec

protected abstract void removeFromFeasibility(Schedulable35
schedulable)

Inform the scheduler that this thread’sReleaseParameters43 should not
be considered in feasibility analysis until further notified.

public static void setDefaultScheduler(Scheduler36 scheduler)
Set the default scheduler. This is the scheduler given to instances of
RealtimeThread23 when they are constructed. The default scheduler is s
to the requiredPriorityScheduler38 at startup.

Parameters:
scheduler - TheScheduler that becomes the default scheduler

assigned to new threads. If null nothing happens.

38 PRIORITYSCHEDULER

rity

d. If
no

rtj.book Page 38 Sunday, April 30, 2000 4:37 PM
4.3 PriorityScheduler

Syntax:public class PriorityScheduler extends Scheduler36

Class for priority-based scheduling. The default instance is the required prio
scheduler which does fixed priority, preemptive scheduling.

4.3.1 Constructors
public PriorityScheduler()

4.3.2 Methods
protected void addToFeasibility(Schedulable35 s)

Inform the scheduler that this thread’sReleaseParameters43 should be
considered in feasibility analysis until further notified.

Overrides:protected abstract void
addToFeasibility(Schedulable35 schedulable)36 in class
Scheduler36

public boolean changeIfFeasible(Schedulable35 schedulable,
ReleaseParameters43 release,
MemoryParameters79 memory)

Returns true if, after changing theSchedulable35 ’s release and GC
parameters isFeasible would return true. The parameters wil be change
the resulting system would not be feasible, this method returns false and
changes are made.

Overrides:public boolean changeIfFeasible(Schedulable35
schedulable, ReleaseParameters43 release,

MemoryParameters79 memory)37 in classScheduler36

Parameters:
schedulable - TheSchedulable35 object for which to check

addmitance. If null nothing happens.
release - The proposedReleaseParameters43 . If null, no change

is made.
memory - The proposedMemoryParameters79 . If null, no change is

made.

public void fireSchedulable(Schedulable35 schedulable)
Triggers the execution of aSchedulable35 object (like an
AsyncEventHandler129).

SCHEDULING 39

rtj.book Page 39 Sunday, April 30, 2000 4:37 PM
Parameters:
schedulable - TheSchedulable35 object to make active.

public int getMaxPriority()
Returns the maximum priority available for a thread managed by this
scheduler.

public static int getMaxPriority(java.lang.Thread thread)
If the given thread is scheduled by the requiredPriorityScheduler the
maximum priority of thePriorityScheduler is returned otherwise
Thread.MAX_PRIORITY is returned.

Parameters:
thread - An instance of Thread. If null the maximum priority of the

requiredPriorityScheduler is returned.

public int getMinPriority()
Returns the minimum priority available for a thread managed by this
scheduler.

public static int getMinPriority(java.lang.Thread thread)
If the given thread is scheduled by the requiredPriorityScheduler the
minimum priority of thePriorityScheduler is returned otherwise
Thread.MIN_PRIORITY is returned.

Parameters:
thread - An instance of Thread. If null the minimum priority of the

requiredPriorityScheduler is returned.

public int getNormPriority()
Returns the normal priority available for a thread managed by this
scheduler.

public static int getNormPriority(java.lang.Thread thread)
If the given thread is scheduled by the requiredPriorityScheduler the
normal priority of thePriorityScheduler is returned otherwise
Thread.NORM_PRIORITY is returned.

Parameters:
thread - An instance of Thread. If null the normal priority of the

requiredPriorityScheduler is returned.

public java.lang.String getPolicyName()
Used to determine the policy of the Scheduler.

Overrides:public abstract java.lang.String getPolicyName()37 in
classScheduler36

40 SCHEDULINGPARAMETERS

d

the

de
s

ons
ers of
a

rtj.book Page 40 Sunday, April 30, 2000 4:37 PM
Returns: A String object which is the name of the scheduling policy use
by this.

public static PriorityScheduler38 instance()
Return a pointer to an instance ofPriorityScheduler.

public boolean isFeasible()
Returns true iff the system is able to satisfy the constraints expressed in
release parameters of the existing schedulable objects.

Overrides:public abstract boolean isFeasible()37 in class
Scheduler36

protected void removeFromFeasibility(Schedulable35 s)
Inform the scheduler that this thread’sReleaseParameters43 should not
be considered in feasibility analysis until further notified.

Overrides:protected abstract void
removeFromFeasibility(Schedulable35 schedulable)37 in
classScheduler36

4.4 SchedulingParameters

Syntax:public abstract class SchedulingParameters

Direct Known Subclasses:PriorityParameters41

Subclasses ofSchedulingParameters (PriorityParameters41 ,
ImportanceParameters42 , and any others defined for particular schedulers) provi
the parameters to be used by theScheduler36 . Changes to the values in a parameter
object affects the scheduling behaviour of all theSchedulable35 objects to which it is
bound.

Caution: Subclasses of this class are explicitly unsafe in multithreaded situati
when they are being changed. No synchronization is done. It is assumed that us
this class who are mutating instances will be doing their own synchronization at
higher level.

4.4.1 Constructors
public SchedulingParameters()

SCHEDULING 41

e
e

rtj.book Page 41 Sunday, April 30, 2000 4:37 PM
4.5 PriorityParameters

Syntax:public class PriorityParameters extends SchedulingParameters40

Direct Known Subclasses:ImportanceParameters42

Instances of this class should be assigned to threads that are managed by
schedulers which use a single integer to determine execution order. The base
scheduler required by this specification and represented by the class
PriorityScheduler38 is such a scheduler.

4.5.1 Constructors
public PriorityParameters(int priority)

Create an instance ofSchedulingParameters40 with the given priority.

Parameters:
priority - The priority assigned to a thread. This value is used in

place of the value returned by
java.lang.Thread.setPriority(int) .

4.5.2 Methods
public int getPriority()

Get the priority.

public void setPriority(int priority)
Set the priority.

Parameters:
priority - The new value of priority.

Throws: IllegalArgumentException - Thrown if the given priority value
is less than the minimum priority of the scheduler of any of th
associated threads or greater then the maximum priority of th
scheduler of any of the associated threads.

public java.lang.String toString()

Overrides:java.lang.Object.toString() in class java.lang.Object

42 IMPORTANCEPARAMETERS

rity-

od of
any

re the
thers
eads

rtj.book Page 42 Sunday, April 30, 2000 4:37 PM
4.6 ImportanceParameters

Syntax:public class ImportanceParameters extends PriorityParameters41

Importance is an additional scheduling metric that may be used by some prio
based scheduling algorithms during overload conditions to differentiate execution
order among threads of the same priority.

In some real-time systems an external physical process determines the peri
many threads. If rate-monotonic priority assignment is used to assign priorities m
of the threads in the system may have the same priority because their periods a
same. However, it is conceivable that some threads may be more important that o
and in an overload situation importance can help the scheduler decide which thr
to execute first. The base scheduling algorithm represented byPriorityScheduler38
is not required to use importance. However, the RTSJ strongly suggests to
implementers that a fairly simple subclass ofPriorityScheduler38 that uses
importance can offer value to some real-time applications.

4.6.1 Constructors
public ImportanceParameters(int priority, int importance)

Create an instance ofImportanceParameters.

Parameters:
priority - The priority assigned to a thread. This value is used in

place of java.lang.Thread.priority.
importance - The importance value assigned to a thread.

4.6.2 Methods
public int getImportance()

Get the importance value.

public void setImportance(int importance)
Set the importance.

public java.lang.String toString()

Overrides:public java.lang.String toString()41 in class
PriorityParameters41

SCHEDULING 43

e
 to

hip

s who

inst

h

st.

ble

rtj.book Page 43 Sunday, April 30, 2000 4:37 PM
4.7 ReleaseParameters

Syntax:public abstract class ReleaseParameters

Direct Known Subclasses:AperiodicParameters47, PeriodicParameters45

The abstract top-level class for release characteristics of threads. When a
reference to aReleaseParameters object is given as a parameter to a constructor, th
ReleaseParameters object becomes bound to the object being created. Changes
the values in theReleaseParameters object affect the constructed object. If given to
more than one constructor, then changes to the values in theReleaseParameters

object affectall of the associated objects. Note that this is a one-to-many relations
andnot a many-to-many.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this clas
are mutating instances will be doing their own synchronization at a higher level.

Caution: Thecost parameter time should be considered to be measured aga
the target platform.

4.7.1 Constructors
protected ReleaseParameters(RelativeTime102 cost,

RelativeTime102 deadline,
AsyncEventHandler129 overrunHandler,
AsyncEventHandler129 missHandler)

Subclasses use this constructor to create aReleaseParameters type object.

Parameters:
cost - Processing time units per interval. On implementations whic

can measure the amount of time a schedulable object is
executed, this value is the maximum amount of time a
schedulable object receives per interval. On implementations
which cannot measure execution time, this value is used as a
hint to the feasibility algorithm. On such systems it is not
possible to determine when any particular object exceeds co
Equivalent toRelativeTime(0,0) if null.

deadline - The latest permissible completion time measured from
the release time of the associated invocation of the schedula
object. Changing the deadline might not take effect after the
expiration of the current deadline. More detail provided in the
subclasses.

44 RELEASEPARAMETERS

d

. If

al
 of
m

er

the

rtj.book Page 44 Sunday, April 30, 2000 4:37 PM
overrunHandler - This handler is invoked if an invocation of the
schedulable object exceeds cost. Not required for minimum
implementation. If null, nothing happens on the overrun
condition, and waitForNextPeriod returns false immediatly an
updates the start time for the next period.

missHandler - This handler is invoked if therun() method of the
schedulable object is still executing after the deadline has
passed. Although minimum implementations do not consider
deadlines in feasibility calculations, they must recognize
variable deadlines and invoke the miss handler as appropriate
null, nothing happens on the miss deadline condition.

4.7.2 Methods
public RelativeTime102 getCost()

Get the cost value.

public AsyncEventHandler129 getCostOverrunHandler()
Get the cost overrun handler.

public RelativeTime102 getDeadline()
Get the deadline.

public AsyncEventHandler129 getDeadlineMissHandler()
Get the deadline miss handler.

public void setCost(RelativeTime102 cost)
Set the cost value.

Parameters:
cost - Processing time units per period or per minimum interarriv

interval. On implementations which can measure the amount
time a schedulable object is executed, this value is the maximu
amount of time a schedulable object receives per period or p
minimum interarrival interval. On implementations which
cannot measure execution time, this value is used as a hint to
feasibility algorithm. On such systems it is not possible to
determine when any particular object exceeds or will exceed
cost time units in a period or interval. Equivalent to
RelativeTime(0,0) if null.

public void setCostOverrunHandler(AsyncEventHandler129 handler)
Set the cost overrun handler.

Parameters:

SCHEDULING 45

e
n.

ble

e.

e

s who

rtj.book Page 45 Sunday, April 30, 2000 4:37 PM
handler - This handler is invoked if an invocation of the schedulabl
object exceeds cost. Not required for minimum implementatio
See comments insetCost().

public void setDeadline(RelativeTime102 deadline)
Set the deadline value.

Parameters:
deadline - The latest permissible completion time measured from

the release time of the associated invocation of the schedula
object. For a minimum implementation for purposes of
feasibility analysis, the deadline is equal to the period or
minimum interarrival interval. Other implementations may use
this parameter to compute execution eligibility.

public void setDeadlineMissHandler(AsyncEventHandler129 handler)
Set the deadline miss handler.

Parameters:
handler - This handler is invoked if therun() method of the

schedulable object is still executing after the deadline has
passed. Although minimum implementations do not consider
deadlines in feasibility calculations, they must recognize
variable deadlines and invoke the miss handler as appropriat

4.8 PeriodicParameters

Syntax:public class PeriodicParameters extends ReleaseParameters43

This release parameter indicates that thepublic boolean

waitForNextPeriod()26 method on the associatedSchedulable35 object will be
unblocked at the start of each period. When a reference to aPeriodicParameters

object is given as a parameter to a constructor thePeriodicParameters object
becomes bound to the object being created. Changes to the values in the
PeriodicParameters object affect the constructed object. If given to more than on
constructor then changes to the values in thePeriodicParameters object affectall of
the associated objects. Note that this is a one-to-many relationship andnota many-to-
many.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this clas
are mutating instances will be doing their own synchronization at a higher level.

46 PERIODICPARAMETERS

of

n
,
ct
ure

en
 a

ble

ion

s

. If

rtj.book Page 46 Sunday, April 30, 2000 4:37 PM
4.8.1 Constructors
public PeriodicParameters(HighResolutionTime97 start,

RelativeTime102 period, RelativeTime102 cost,
RelativeTime102 deadline,
AsyncEventHandler129 overrunHandler,
AsyncEventHandler129 missHandler)

Create aPeriodicParameters object.

Parameters:
start - Time at which the first period begins. If aRelativeTime102 ,

this time is relative to the first time the schedulable object
becomes schedulable(schedulable time) (e.g., whenstart() is
called on a thread). If anAbsoluteTime99 and it is before the
schedulable time, start is equivalent to the schedulable time.

period - The period is the interval between successive unblocks
public boolean waitForNextPeriod()26 . Must be greater
than zero when entering feasibility analysis.

cost - Processing time per period. On implementations which ca
measure the amount of time a schedulable object is executed
this value is the maximum amount of time a schedulable obje
receives per period. On implementations which cannot meas
execution, time this value is used as a hint to the feasibility
algorithm. On such systems it is not possible to determine wh
any particular object exceeds or will exceed cost time units in
period. Equivalent toRelativeTime(0,0) if null.

deadline - The latest permissible completion time measured from
the release time of the associated invocation of the schedula
object. For a minimum implementation for purposes of
feasibility analysis, the deadline is equal to the period. Other
implementations may use this parameter to compute execut
eligibility. If null, deadline will equal the period.

overrunHandler - This handler is invoked if an invocation of the
schedulable object exceeds cost in the given period. Not
required for minimum implementation. If null, nothing happen
on the overrun condition.

missHandler - This handler is invoked if therun() method of the
schedulable object is still executing after the deadline has
passed. Although minimum implementations do not consider
deadlines in feasibility calculations, they must recognize
variable deadlines and invoke the miss handler as appropriate
null, nothing happens on the miss deadline condition.

SCHEDULING 47

of

s who

rtj.book Page 47 Sunday, April 30, 2000 4:37 PM
4.8.2 Methods
public RelativeTime102 getPeriod()

Get the period.

public HighResolutionTime97 getStart()
Get the start time.

public void setPeriod(RelativeTime102 period)
Set the period.

Parameters:
period - The period is the interval between successive unblocks

public boolean waitForNextPeriod()26 . Also used in the
feasibility analysis and admission control algorithms.

public void setStart(HighResolutionTime97 start)
Set the start time.

Parameters:
start - Time at which the first period begins.

4.9 AperiodicParameters

Syntax:public class AperiodicParameters extends ReleaseParameters43

Direct Known Subclasses:SporadicParameters48

This release parameter object characterizes a schedulable object that may
become active at any time. When a reference to aAperiodicParameters47 object is
given as a parameter to a constructor theAperiodicParameters47 object becomes
bound to the object being created. Changes to the values in the
AperiodicParameters47 object affect the constructed object. If given to more than
one constructor then changes to the values in theAperiodicParameters47 object
affectall of the associated objects. Note that this is a one-to-many relationship andnot
a many-to-many.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this clas
are mutating instances will be doing their own synchronization at a higher level.

4.9.1 Constructors

48 SPORADICPARAMETERS

ot

nt

ble

. If

will

ges

rtj.book Page 48 Sunday, April 30, 2000 4:37 PM
public AperiodicParameters(RelativeTime102 cost,
RelativeTime102 deadline,
AsyncEventHandler129 overrunHandler,
AsyncEventHandler129 missHandler)

Create anAperiodicParameters47 object.

Parameters:
cost - Processing time per invocation. On implementations which

can measure the amount of time a schedulable object is
executed, this value is the maximum amount of time a
schedulable object receives. On implementations which cann
measure execution time, this value is used as a hint to the
feasibility algorithm. On such systems it is not possible to
determine when any particular object exceeds cost. Equivale
to RelativeTime(0,0) if null.

deadline - The latest permissible completion time measured from
the release time of the associated invocation of the schedula
object. Not used in feasibility analysis for minimum
implementation. If null, the deadline will be
RelativeTime(Long.MAX_VALUE,999999).

overrunHandler - This handler is invoked if an invocation of the
schedulable object exceeds cost. Not required for minimum
implementation. If null, nothing happens on the overrun
condition.

missHandler - This handler is invoked if therun() method of the
schedulable object is still executing after the deadline has
passed. Although minimum implementations do not consider
deadlines in feasibility calculations, they must recognize
variable deadlines and invoke the miss handler as appropriate
null, nothing happens on the miss deadline condition.

4.10 SporadicParameters

Syntax:public class SporadicParameters extends AperiodicParameters47

A notice to the scheduler that the associated schedulable object’s run method
be released aperiodically but with a minimum time between releases. When a
reference to aSporadicParameters object is given as a parameter to a constructor,
theSporadicParameters object becomes bound to the object being created. Chan
to the values in theSporadicParameters object affect the constructed object. If given

SCHEDULING 49

hip

s who

ill

ble

l

rtj.book Page 49 Sunday, April 30, 2000 4:37 PM
to more than one constructor, then changes to the values in theSporadicParameters

object affectall of the associated objects. Note that this is a one-to-many relations
andnot a many-to-many.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this clas
are mutating instances will be doing their own synchronization at a higher level.

4.10.1Constructors
public SporadicParameters(RelativeTime102 minInterarrival,

RelativeTime102 cost, RelativeTime102 deadline,
AsyncEventHandler129 overrunHandler,
AsyncEventHandler129 missHandler)

Create aSporadicParameters object.

Parameters:
minInterarrival - The release times of the schedulable object w

occur no closer than this interval. Must be greater than zero
when entering feasibility analysis.

cost - Processing time per minimum interarrival interval. On
implementations which can measure the amount of time a
schedulable object is executed, this value is the maximum
amount of time a schedulable object receives per interval. On
implementations which cannot measure execution time, this
value is used as a hint to the feasibility algorithm. On such
systems it is not possible to determine when any particular
object exceeds cost. Equivalent toRelativeTime(0,0) if null.

deadline - The latest permissible completion time measured from
the release time of the associated invocation of the schedula
object. For a minimum implementation for purposes of
feasibility analysis, the deadline is equal to the minimum
interarrival interval. Other implementations may use this
parameter to compute execution eligibility. If null, deadline wil
equal the minimum interarrival time.

overrunHandler - This handler is invoked if an invocation of the
schedulable object exceeds cost. Not required for minimum
implementation. If null, nothing happens on the overrun
condition.

missHandler - This handler is invoked if therun() method of the
schedulable object is still executing after the deadline has
passed. Although minimum implementations do not consider
deadlines in feasibility calculations, they must recognize

50 PROCESSINGGROUPPARAMETERS

. If

o

m
n

y

hip

s who

inst

rtj.book Page 50 Sunday, April 30, 2000 4:37 PM
variable deadlines and invoke the miss handler as appropriate
null, nothing happens on the miss deadline condition.

4.10.2Methods
public RelativeTime102 getMinimumInterarrival()

Get the minimum interarrival time.

public void setMinimumInterarrival(RelativeTime102 minimum)
Set the minimum interarrival time.

Parameters:
minimum - The release times of the schedulable object will occur n

closer than this interval. Must be greater than zero when
entering feasibility analysis.

4.11 ProcessingGroupParameters

Syntax:public class ProcessingGroupParameters

This is associated with one or more schedulable objects for which the syste
guarantees that the associated objects will not be given more time per period tha
indicated by cost. For all threads with a reference to an instance of
ProcessingGroupParameters p and a reference to an instance of
AperiodicParameters47 no more than p.cost will be allocated to the execution of
these threads in each interval of time given by p.period after the time indicated b
p.start. When a reference to aProcessingGroupParameters object is given as a
parameter to a constructor theProcessingGroupParameters object becomes bound
to the object being created. Changes to the values in the
ProcessingGroupParameters object affect the constructed object. If given to more
than one constructor, then changes to the values in theProcessingGroupParameters

object affectall of the associated objects. Note that this is a one-to-many relations
andnot a many-to-many.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this clas
are mutating instances will be doing their own synchronization at a higher level.

Caution: Thecost parameter time should be considered to be measured aga
the target platform.

SCHEDULING 51

of

ot

at

rtj.book Page 51 Sunday, April 30, 2000 4:37 PM
4.11.1Constructors
public ProcessingGroupParameters(HighResolutionTime97 start,

RelativeTime102 period, RelativeTime102 cost,
RelativeTime102 deadline,
AsyncEventHandler129 overrunHandler,
AsyncEventHandler129 missHandler)

Create aProcessingGroupParameters object.

Parameters:
start - Time at which the first period begins.
period - The period is the interval between successive unblocks

waitForNextPeriod().
cost - Processing time per period.
deadline - The latest permissible completion time measured from

the start of the current period. Changing the deadline might n
take effect after the expiration of the current deadline.

overrunHandler - This handler is invoked if therun() method of
the schedulable object of the previous period is still executing
the start of the current period.

missHandler - This handler is invoked if therun() method of the
schedulable object is still executing after the deadline has
passed.

4.11.2Methods
public RelativeTime102 getCost()

Get the cost value.

public AsyncEventHandler129 getCostOverrunHandler()
Get the cost overrun handler.

Returns: An AsyncEventHandler129 object that is cost overrun handler of
this.

public RelativeTime102 getDeadline()
Get the deadline value.

Returns: A RelativeTime102 object that represents the deadline of this.

public AsyncEventHandler129 getDeadlineMissHandler()
Get the deadline missed handler.

Returns: An AsyncEventHandler129 object that is deadline miss handler
of this.

public RelativeTime102 getPeriod()
Get the period.

52 PROCESSINGGROUPPARAMETERS

f

f

e

er
as

es
lity

rtj.book Page 52 Sunday, April 30, 2000 4:37 PM
Returns: A RelativeTime102 object that represents the period of time o
this.

public HighResolutionTime97 getStart()
Get the start time.

Returns: A HighResolutionTime97 object that represents the start time o
this.

public void setCost(RelativeTime102 cost)
Set the cost value.

Parameters:
cost - The schedulable objects with a reference to this receive

cumulatively no more than cost time per period on
implementations that can collect execution time per thread.

public void setCostOverrunHandler(AsyncEventHandler129 handler)
Set the cost overrun handler.

Parameters:
handler - This handler is invoked if therun() method of the

schedulable object of the previous period is still executing at th
start of the current period.

public void setDeadline(RelativeTime102 deadline)
Set the deadline value.

Parameters:
deadline - The latest permissible completion time measured from

the start of the current period. Not used in a minimum
implementation. Other implmentations may use this paramet
to compute execution eligibility. The default value is the same
period.

public void setDeadlineMissHandler(AsyncEventHandler129 handler)
Set the deadline miss handler.

Parameters:
handler - This handler is invoked if therun() method of the

schedulable object is still executing after the deadline has
passed.

public void setPeriod(RelativeTime102 period)
Set the period.

Parameters:
period - Interval used to enforce allocation of processing resourc

to the associated schedulable objects. Also used in the feasibi
analysis and admission control algorithms.

SCHEDULING 53

 find
y be

wing
ance

erty
the

rtj.book Page 53 Sunday, April 30, 2000 4:37 PM
public void setStart(HighResolutionTime97 start)
Set the start time.

Parameters:
start - Time at which the first period begins.

Scheduler Example

An implementation may provide a scheduler other than the required minimum
scheduler. If you wish to use that scheduler to manage your threads, you need to
out about the alternative scheduler. In some cases, the alternative scheduler ma
installed as the default scheduler for the implementation. In others, it may be
necessary to locate the scheduler in order to use it to schedule threads. The follo
method shows how a scheduler implementing a policy can be located and the inst
to the singleton object obtained:

public static Scheduler findScheduler(String policy) {
String className = System.getProperty(“javax.realtime.scheduler.

” +
policy);
Class clazz;
try {

if (className != null
&& (clazz = Class.forName(className)) != null) {
return (Scheduler)clazz.getMethod(“instance”,null).invoke(null,n

ull);
}

} catch (ClassNotFoundException notFound) {
} catch (NoSuchMethodException noSuch) {
} catch (SecurityException security) {
} catch (IllegalAccessException access) {
} catch (IllegalArgumentException arg) {
} catch (InvocationTargetException target) {
}
return null;

}
To find, say, an EDF scheduler, the above method requires that the system prop
javax.realtime.scheduler.EDF have been set to the fully qualified class name for

54 PROCESSINGGROUPPARAMETERS

riodic

r all

ic or

out
have
will

rtj.book Page 54 Sunday, April 30, 2000 4:37 PM
EDF scheduler class. Thus, to get an EDF scheduler and use it to schedule a pe
thread, t1, we do:

Scheduler scheduler = findScheduler(“EDF”);
if (scheduler != null) {
RealtimeThread t1 =

new RealtimeThread(
null, /* default scheduling parameters */
new PeriodicParameters(

null, /*start immediately*/
new RelativeTime(100, 0), /* period */
new RelativeTime(5, 0), /* cost */
new RelativeTime(50, 0), /* deadline */
null,
null),

null,
null,
null) {
public void run() {

thread processing

}
Once the scheduler is found, it is also possible to set it as the default scheduler fo
subsequent thread creations. This is done with a call to
Scheduler.setDefaultScheduler:

try {
Scheduler.setDefaultScheduler(scheduler);

} catch (SecurityException security) {
};

Finally, you can test the current default scheduler to see if it implements the
scheduling policy you want:

boolean useEDF = false;
try {
if (Scheduler.getDefaultScheduler().getPolicyName().equals(“EDF”

)) {
Life is grand, use EDF to your heart’s content.

useEDF = true;

ProcessingGroup Example

Processing groups are used to provide information to the scheduler about aperiod
sporadic activities —- either threads or asynchronous event handlers —- for the
purposes of the feasibility analysis. The processing group carries information ab
the cost, period and deadline associated with aperiodic or sporadic activities that
been grouped together for the purposes of completing the analysis. The following

SCHEDULING 55

e to
rtant
n
nce.

rtj.book Page 55 Sunday, April 30, 2000 4:37 PM
identify a processing group that accounts for up to 10 milliseconds of execution
during any 100 millisecond interval:

SchedulingParameters sp =
new SchedulingParameters(RealtimeThread.getNormPriority());

ProcessingGroupParameters group =
new ProcessingGroupParameters(null, /* start when released */
new RelativeTime(100, 0), /* period */
new RelativeTime(10, 0), /* cost */
null, /* deadline == period */
null, /* cost overrun handler */
null); /* deadline miss handler */

Every thread that is created within this processing group should have a referenc
the same processing group parameters object. The identity of the object is impo
to convey to the feasibility algorithm what group it is, in addition to the informatio
about the group itself, so that the cost and period aren’t accounted for more than o
Thus, after the first thread is added:

RealtimeThread t1 = new RealtimeThread(
sp, /* scheduling parameters */
new AperiodicParameters(

new RelativeTime(10,0), /* cost */
new RelativeTime(300, 0), /* deadline */
null, /* cost overrun handler */
null), /* deadline miss handler */

null, /* memory parameters */
group,
null) {
public void run() {

do thread task

}
we can add a second thread that goes in the same group:

RealtimeThread t2 = new RealtimeThread(
sp, /* scheduling parameters */
new AperiodicParameters(

new RelativeTime(5,0), /* cost */
new RelativeTime(200, 0), /* deadline */
null, /* cost overrun handler */
null), /* deadline miss handler */

null, /* memory parameters */
group,
null) {
public void run() {

do thread task

}

56 PROCESSINGGROUPPARAMETERS

eriod
ill

sis,
:

nly
dline

dline

ill
read

rtj.book Page 56 Sunday, April 30, 2000 4:37 PM
The priority of the SchedulingParameters should be assigned according to the p
of the processing group (relative to the periods of other periodic activities). This w
effect both threads:

try {
sp.setPriority(GROUP_PRIORITY);

} catch(AdmissionControlException ace) {
System.out.print(“Not allowed to set priority\n”);

}
When we release the first thread, the group is factored in to the feasibility analsy
and the thread will be admitted if the group can be accomodated in the schedule

try {
t1.release();

} catch (AdmissionControlException ae1) {
}

When we release the second thread, the group is already in the schedule. The o
admission control is performed by the scheduler on the basis of the cost and dea
for the thread. If it fits in the processing group, it will be admitted.

try {
t2.release();

} catch (AdmissionControlException ae2) {
The processing group has too much to complete the thread’s work before the dea

}
NOTE: Cost overrun is unique for processing groups. The cost overrun handler w
be invoked at the end of any period when there is still work to be done for any th
in the group, assuming the scheduler implementation can do cost accounting.

}

MEMORY MANAGEMENT 57

t

es

.

t

n
due

t C.

ds.

rtj.book Page 57 Sunday, April 30, 2000 4:37 PM
C H A P T E R 5
Memory Managemen

This section contains classes that:

• Allow the definition of regions of memory outside of the traditional Java heap.
• Allow the definition of regions of scoped memory, that is, memory regions with a

limited lifetime.
• Allow the definition of regions of memory containing objects whose lifetime match

that of the application.
• Allow the definition of regions of memory mapped to specific physical addresses
• Allow the specification of maximum memory area consumption and maximum

allocation rates for individual real-time threads.
• Allow the programmer to query information characterizing the behavior of the

garbage collection algorithm, and to some limited ability, alter the behavior of tha
algorithm.

Semantics and Requirements

The following list establishes the semantics and requirements that are applicable
across the classes of this section. Semantics that apply to particular classes,
constructors, methods and fields will be found in the class description and the
constructor, method, and field detail sections.

1. SomeMemoryArea classes are required to have linear (in object size) allocatio
time. The linear time attribute requires that, ignoring performance variations
to hardware caches or similar optimizations and execution of any static
initializers the execution time of new must be bounded by a polynomial, f(n),
where n is the size of the object and for all n>0, f(n) <= Cn for some constan

2. Execution time of object constructors is explicitly not considered in any boun

58 PROCESSINGGROUPPARAMETERS

uctor

e

g

 in

each

mory

ations
cope
in

ss

ss

rtj.book Page 58 Sunday, April 30, 2000 4:37 PM
3. A memory scope is represented by an instance of theScopedMemory class. When
a new scope is entered, by calling theenter() method of the instance or by
starting an instance ofRealtimeThread or NoHeapRealtimeThread whose
constructors were given a reference to an instance ofScopedMemory, all
subsequent uses of thenew keyword within the program logic of the scope will
allocate the memory from the memory represented by that instance of
ScopedMemory. When the scope is exited by returning from theenter() method
of the instance ofScopedMemory, all subsequent uses of thenew operation will
allocate the memory from the area of memory associated with the enclosing
scope.

4. Each instance of the classScopedMemory or its subclasses must contain a
reference count of the number of scopes in which it is being used.

5. The reference count for an instance ofScopedMemory or one of its subclasses is
increased by one each time a reference to the instance is given to the constr
of aRealtimeThread or aNoHeapRealtimeThread, when a scope is opened for
the instance (by calling theenter() method of the instance), and for each scop
opened within its scope (whether for this instance or another instance)..

6. The reference count for aScopedMemory area is decreased by one when returnin
from an invocation of itsenter() method, when an instance ofRealtimeThread

or NoHeapRealtimeThread to which the area is associated through a reference
the thread’sMemoryParameters object exits, or when an inner scope returns from
its enter() method (whether for this instance or another instance).

7. When the reference count for an instance of the classScopedMemory or its
subclasses is decremented from one to zero, all objects within that area are
considered unreachable and as candidates for reclamation. The finalizers for
object in the memory associated with an instance ofScopedMemory are executed
to completion before any statement in any thread attempts to access the me
area.

8. Scopes may be nested. When a nested scope is entered, all subsequent alloc
are taken from the memory associated with the new scope. When the nested s
is exited, the previous scope is restored and subsequent allocations are aga
taken from that scope.

9. Any MemoryArea that is associated with aNoHeapRealtimeThread may not move
any objects.

10. Objects created in any immortal memory area live for the duration of the
application. The finalizers are only run when the application is terminated.

11. Each instance of the virtual machine will have exactly one instance of the cla
ImmortalMemory.

12. Each instance of the virtual machine will have exactly one instance of the cla

MEMORY MANAGEMENT 59

mory

vent
a.

 the

hat
led
the
, the
wn
 a

d to
red

low
ose
m.

rtj.book Page 59 Sunday, April 30, 2000 4:37 PM
HeapMemory.

13. Each instance of the virtual machine will behave as if there is an area of me
into which allClass objects are placed and which is unexceptionally
referenceable byNoHeapRealtimeThreads.

14. Strict assignment rules placed on assignments to or from memory areas pre
the creation of dangling pointers, and thus maintain the pointer safety of Jav
The restrictions are listed in the following table:

15. An implementation must ensure that the above checks are performed before
statement is executed. (This includes the possibility of static analysis of the
application logic).

Rationale

Languages that employ automatic reclamation of blocks of memory allocated in w
is traditionally called the heap by program logic also typically use an algorithm cal
a garbage collector. Garbage collection algorithms and implementations vary in
amount of non-determinancy they add to the execution of program logic. To date
expert group believes that no garbage collector algorithm or implementation is kno
that allows preemption at points that leave the inter-object pointers in the heap in
consistent state and are sufficiently close in time to minimize the overhead adde
task switch latencies to a sufficiently small enough value which could be conside
appropriate for all real-time systems.

Thus, this specification provides the above described areas of memory to al
program logic to allocate objects in a Java-like style, ignore the reclamation of th
objects, and not incur the latency of the implemented garbage collection algorith

Reference to
Heap

Reference to
Immortal

Reference to
Scoped

Heap Yes Yes No

Immortal Yes Yes No

Scoped Yes Yes
Yes, if same, outer,

or shared scope

Local
Variable

Yes Yes
Yes, if same, outer,

or shared scope

60 MEMORYAREA

ons
ory

tion

e

d

rtj.book Page 60 Sunday, April 30, 2000 4:37 PM
5.1 MemoryArea

Syntax:public abstract class MemoryArea

Direct Known Subclasses:HeapMemory61, ImmortalMemory62,
ImmortalPhysicalMemory70, ScopedMemory62

MemoryArea is the abstract base class of all classes dealing with representati
of allocatable memory areas, including the immortal memory area, physical mem
and scoped memory areas.

5.1.1 Constructors
protected MemoryArea(long sizeInBytes)

Parameters:
sizeInBytes - The size of theMemoryArea to allocate, in bytes.

5.1.2 Methods
public void enter(java.lang.Runnable logic)

Associate this memory area to the current real-time thread for the dura
of the execution of therun() method of the givenjava.lang.Runnable .
During this bound period of execution, all objects are allocated from th
memory area until another one takes effect, or theenter() method is
exited. A runtime exception is thrown if this method is called from threa
other than aRealtimeThread23 or NoHeapRealtimeThread27 .

Parameters:
logic - The runnable object whoserun() method should be

executed.

public static MemoryArea60 getMemoryArea(java.lang.Object object)
Return theMemoryArea in which the given object is located.

public long memoryConsumed()
An exact count, in bytes, of the all of the memory currently used by the
system for the allocated objects.

Returns: The amount of consumed in bytes.

public long memoryRemaining()
An approximation to the total amount of memory currently available for
future allocated objects, measured in bytes.

MEMORY MANAGEMENT 61

act,

ize.
wed

ed

rtj.book Page 61 Sunday, April 30, 2000 4:37 PM
Returns: The amount of remaining memory in bytes.

public synchronized java.lang.Object newArray(java.lang.Class type,
int number)

Allocate an array of T in this memory area.

Parameters:
type - The class of the elements of the new array.
number - The number of elements in the new array.

Returns: A new array of classtype, of number elements.

Throws: IllegalAccessException - The class or initializer is
inaccessible.

InstantiationException - The array cannot be instantiated.
OutOfMemoryError - Space in the memory area is exhausted.

public synchronized java.lang.Object newInstance(java.lang.Class
type)

Allocate an object in this memory area.

Parameters:
type - The class of which to create a new instance.

Returns: A new instance of classtype.

Throws: IllegalAccessException - The class or initializer is
inaccessible.

InstantiationException - The specified class object could not be
instantiated. Possible causes are: it is an interface, it is abstr
it is an array, or an exception was thrown by the constructor.

OutOfMemoryError - Space in the memory area is exhausted.

public long size()
Query the size of the memory area. The returned value is the current s
Current size may be larger than initial size for those areas that are allo
to grow.

Returns: The size of the memory area in bytes.

5.2 HeapMemory

Syntax:public final class HeapMemory extends MemoryArea60

TheHeapMemory class is a singleton object that allows logic within other scop
memory to allocate objects in the Java heap.

62 IMMORTALMEMORY

ects

ava

d for

t

rtj.book Page 62 Sunday, April 30, 2000 4:37 PM
5.2.1 Methods
public static HeapMemory61 instance()

Return a pointer to the singletonHeapMemory space

Returns: The singletonHeapMemory object.

5.3 ImmortalMemory

Syntax:public final class ImmortalMemory extends MemoryArea60

ImmortalMemory is a memory resource that is shared among all threads. Obj
allocated in the immortal memory live until the end of the application. Objects in
immortal memory are never subject to garbage collection, although some GC
algorithms may require a scan of the immortal memory. Animmortalobject may only
contain reference to other immortal objects or to heap objects. Unlike standard J
heap objects, immortal objects continue to exist even after there are no other
references to them.

5.3.1 Methods
public static ImmortalMemory62 instance()

Return a pointer to the singletonImmortalMemory space.

5.4 ScopedMemory

Syntax:public abstract class ScopedMemory extends MemoryArea60

Direct Known Subclasses:LTMemory65, ScopedPhysicalMemory71, VTMemory65

ScopedMemory is the abstract base class of all classes dealing with
representations of memory spaces with a limited lifetime. TheScopedMemory area is
valid as long as there are real-time threads with access to it. A reference is create
each accessor when either a real-time thread is created with theScopedMemory object
as its memory area, or a real-time thread runs thepublic void

enter(java.lang.Runnable logic)64 method for the memory area. When the las

MEMORY MANAGEMENT 63

tied.

e
sents

by

ory

e

nces
ling

rtj.book Page 63 Sunday, April 30, 2000 4:37 PM
reference to the object is removed, by exiting the thread or exiting theenter()

method, finalizers are run for all objects in the memory area, and the area is emp

A ScopedMemory area is a connection to a particular region of memory and
reflects the current status of it. The object does not necessarily contain direct
references to the region of memory that is implementation dependent.

When aScopedMemory area is instantiated, the object itself is allocated from th
current memory allocation scheme in use, but the memory space that object repre
is not. Typically, the memory for aScopedMemory area might be allocated using native
method implementations that make appropriate use ofmalloc() andfree() or
similar routines to manipulate memory. Theenter() method ofScopedMemory is the
mechanism used to activate a new memory scope. Entry into the scope is done
calling the method:

public void enter(Runnable r)

Wherer is a Runnable object whoserun() method represents the entry point to
the code that will run in the new scope. Exit from the scope occurs when ther.run()

completes. Allocations of objects withinr.run() are done with theScopedMemory
area. Whenr.run() is complete, the scoped memory area is no longer active. Its
reference count will be decremented and if it is zero all of the objects in the mem
area finalized and collected.

Objects allocated from aScopedMemory area have a unique lifetime. They ceas
to exist on exiting apublic void enter(java.lang.Runnable logic)64 method or
upon exiting the last real-time thread referencing the area, regardless of any refere
that may exist to the object. Thus, to maintain the safety of Java and avoid dang
references, a very restrictive set of rules apply toScopedMemory area objects:

1. A reference to an object inScopedMemory can never be stored in an Object
allocated in the Java heap.

2. A reference to an object inScopedMemory can never be stored in an Object
allocated inImmortalMemory62 .

3. A reference to an object inScopedMemory can only be stored in Objects allocated
in the sameScopedMemory area, or into a —- more inner —-ScopedMemory area
nested by the use of itsenter() method.

4. References to immortal or heap objectsmaybe stored into an object allocated in a
ScopedMemory area.

5.4.1 Constructors
public ScopedMemory(long size)

Create a newScopedMemory area with a particular size.

64 SCOPEDMEMORY

r
d

e

by

l

rtj.book Page 64 Sunday, April 30, 2000 4:37 PM
Parameters:
size - The size of the newScopedMemory area in bytes. If size is less

than or equal to zero nothing happens.

5.4.2 Methods
public void enter(java.lang.Runnable logic)

Associate thisScopedMemory area to the current real-time thread for the
duration of the execution of therun() method of the given
java.lang.Runnable . During this bound period of execution, all objects
are allocated from theScopedMemory area until another one takes effect, o
theenter() method is exited. A runtime exception is thrown if this metho
is called from thread other than aRealtimeThread23 or
NoHeapRealtimeThread27 .

Overrides:public void enter(java.lang.Runnable logic)60 in class
MemoryArea60

Parameters:
logic - The runnable object which contains the code to execute.

public int getMaximumSize()
Get the maximum size this memory area can attain. If this is a fixed siz
memory area, the returned value will be equal to the initial size.

public MemoryArea60 getOuterScope()
Find theScopedMemory area in effect, for the currentRealtimeThread23 ,
prior to the current invocation of aScopedMemoryenter} method.

Returns: The containing scope. If this is the outermost scoped memory
then theMemoryArea60 associated with the thread.

public java.lang.Object getPortal()
Return a reference to the portal object in this instance ofScopedMemory.

Returns: The portal object or null if there is no portal object.

public void setPortal(java.lang.Object object)
Set the argument to the portal object in the memory area represented
this instance ofScopedMemory.

Parameters:
object - The object which will become the portal for this. If null the

previous portal object remains the portal object for this or if
there was no previous portal object then there is still no porta
object for this.

MEMORY MANAGEMENT 65

n

to.

on.
,

l
that

rtj.book Page 65 Sunday, April 30, 2000 4:37 PM
5.5 VTMemory

Syntax:public class VTMemory extends ScopedMemory62

The execution time of an allocation from aVTMemory area may take a variable
amount of time. However, sinceVTMemory areas are not subject to garbage collectio
and object wihtin may not be moved these areas can be used by instances of
NoHeapRealtimeThread27 .

5.5.1 Constructors
public VTMemory(int initial, int maximum)

Create aVTMemory of the given size.

Parameters:
initial - The size in bytes of the memory to initially allocate for

this area.
maximum - The maximum size in bytes this memory area can grow

5.6 LTMemory

Syntax:public class LTMemory extends ScopedMemory62

LTMemory represents a memory area, allocated perRealtimeThread23 , or for a
group of real-time threads, guaranteed by the system to have linear time allocati
The memory area described by aLTMemory instance does not exist in the Java heap
and is not subject to garbage collection. Thus, it is safe to use aLTMemory object as the
memory area associated with aNoHeapRealtimeThread27 , or to enter the memory
area using thepublic void enter(java.lang.Runnable logic)64 method within a
NoHeapRealtimeThread27 . An LTMemory area has an initial size. Enough memory
must be committed by the completion of the constructor to satisfy this initial
requirement. (Committed means that this memory must always be available for
allocation). The initial memory allocation must behave, with respect to successfu
allocation, as if it were contiguous; i.e., a correct implementation must guarantee
any sequence of object allocations that could ever succeed without exceeding a
specified initial memory size will always succeed without exceeding that initial
memory size and succeed for any instance ofLTMemory with that initial memory size.
(Note: It is important to understand that the above statement doesnot require that if

66 LTMEMORY

.)
e
ry
em
ys
d

Java
ys:
rea.

ol

rtj.book Page 66 Sunday, April 30, 2000 4:37 PM
the initial memory size is N and (sizeof(object1) + sizeof(object2) + ... +
sizeof(objectn) = N) the allocations of objects 1 through n will necessarily succeed
Execution time of an allocator allocating from this initial area must be linear in th
size of the allocated object. Execution time of an allocator allocating from memo
between initial and maximum is allowed to vary. Furthermore, the underlying syst
is not required to guarantee that memory between initial and maximum will alwa
be available. (Note: to ensure that all requested memory is available set inital an
maximum to the same value) See also:MemoryArea60 ScopedMemory62
RealtimeThread23 NoHeapRealtimeThread27

5.6.1 Constructors
public LTMemory(long initialSizeInBytes, long maxSizeInBytes)

Create aLTMemory of the given size.

Parameters:
initialSizeInBytes - The size in bytes of the memory to allocate

for this area. This memory must be committed before the
completion of the constructor.

maxSizeInBytes - The size in bytes of the memory to allocate for
this area.

ScopedMemory Example

A real-time thread —- including the primordial thread will perform allocations from
within the memory area assigned to the thread. The default memory area is the
heap. Allocations can be performed from a different memory area in one of two wa
entering a new scope, or calling newInstance or newArray on a different memory a
To enter a new scope that has constant time allocation:

final ScopedMemory scope = new CTMemory(16 * 1024);
enter will call the run method of the given object with memory area as the object po
for allocations. Allnewoperations will come from the constant-time pool until a new
scope is entered, or the run method completes.

scope.enter(new Runnable() {
public void run() {

Do some time-critical operations

try {
To allocate from the heap within this scope:

HeapMemory.instance().newInstance(Class.forName(“Foo”));

MEMORY MANAGEMENT 67

e

ill be

rtj.book Page 67 Sunday, April 30, 2000 4:37 PM
To allocate from the previous scope within this one

scope.getOuterScope().newInstance(Class.forName(“Foo”));
} catch (ClassNotFoundException e) {
} catch (IllegalAccessException ia) {
} catch (InstantiationException ie) {
}

}
});

}
}

ScopedMemory Example 2

A real-time thread may be associated with a memory area when it is created. Allnew
operations will allocate objects for the thread from the object pool provided by th
memory area.

final ScopedMemory scope = new CTMemory(16 * 1024);
RealtimeThread t1 = new RealtimeThread(null, null,
new MemoryParameters(scope), null,
new Runnable() {
public void run() {

do some stuff

}
Additional threads can share the same memory area, and the reference count w
incremented.

RealtimeThread t2 = new RealtimeThread(null, null,
new MemoryParameters(scope), null,
new Runnable() {
public void run() {

do some other stuff

}

68 PHYSICALMEMORYFACTORY

 to
ry

to

areas

rtj.book Page 68 Sunday, April 30, 2000 4:37 PM
Wait for the threads to finish

boolean interrupted = false;
do {
try {

t1.join();
} catch (InterruptedException ie) {

interrupted = true;
}

} while (interrupted);
interrupted = false;
do {
try {

t2.join();
} catch (InterruptedException ie) {

interrupted = true;
}

} while (interrupted);
After this point, the threads are dead, and the reference count will have dropped
zero so finalizersmay be run. If we now try to create a new thread using the memo
area:

RealtimeThread t3 = new RealtimeThread(null, null,
new MemoryParameters(scope), null,
new Runnable() {
public void run() {

do some other stuff

}
The constructor will block until the finalizers have completed. It will then be safe
release the thread:

try {
t3.release();

} catch (AdmissionControlException ac2) {
}

Errors encountered in the example
Exception in thread “main” java.lang.NoSuchMethodError: main

5.7 PhysicalMemoryFactory

Syntax:public class PhysicalMemoryFactory

ThePhysicalMemoryFactory is available for use by the various physical
memory accessor objects to create objects of the correct type that are bound to
of physical memory with the appropriate characteristics —- or with appropriate

MEMORY MANAGEMENT 69

least

rtj.book Page 69 Sunday, April 30, 2000 4:37 PM
accessor behavior. Examples of characteristics that might be specified are: DMA
memory, accessors with byte swapping, etc. The implementation will provide a
default factory. OEMs may provide derived factories that allow additional
characteristics to be specified.

5.7.1 Fields
public static final java.lang.String ALIGNED

Specify this to identify aligned memory.

public static final java.lang.String BYTESWAP
Specify this if byte swapping should be used.

public static final java.lang.String DMA
Specify this to identify DMA memory.

public static final java.lang.String SHARED
Specify this to identify shared memory.

5.7.2 Methods
protected synchronized java.lang.Object create(java.lang.Object

memoryType, java.lang.Class physMemType,
long base, long size)

Used to actually create the physical memory accessor.

Parameters:
memoryType - Description of the memory type required.
physMemType - Indicates the type of physical memory object to

construct.
base - The physical address of the start of the region.
size - The size of the region in bytes.

protected synchronized long getTypedMemoryBase(java.lang.Object
memoryType, long size)

Get the base address of a range of memory of the correct type that is at
the size specified.

Parameters:
size - The desired size of the memory range.

70 IMMORTALPHYSICALMEMORY

e
or

rtj.book Page 70 Sunday, April 30, 2000 4:37 PM
5.8 ImmortalPhysicalMemory

Syntax:public class ImmortalPhysicalMemory extends MemoryArea60

An instance ofImmortalPhysicalMemory allows objects to be allocated from a
range of physical memory with particular attributes, determined by theirmemory type.
This memory area has the same restrictive set of assignment rules as
ImmortalMemory62 memory areas and may be used in any constructor where
ImmortalMemory62 is appropriate. Objects allocated in immortal physical memory
have a lifetime greater than the application as do objects allocated in immortal
memory.

5.8.1 Constructors
protected ImmortalPhysicalMemory(ImmortalPhysicalMemory70 memory,

long base, long size)
Constructor for use by the memory object factory.

protected ImmortalPhysicalMemory(long base, long size)

5.8.2 Methods
public static ImmortalPhysicalMemory70 create(java.lang.Object

type, long size)

Parameters:
type - An object representing the type of memory required (e.g.,

dma, shared) - used to define the base address and control th
mapping. The passed object is typically provided by the vend
of the physical memory or the implementation vendor.

size - The size of the memory area in bytes.

Throws: SecurityException - The application doesn’t have permissions
to access physical memory or the given type of memory.

SizeOutOfBoundsException159 - The size is negative or extends
into an invalid range of memory.

UnsupportedPhysicalMemoryException160 - Thrown if the
underlying hardware does not support the given type.

public static ImmortalPhysicalMemory70 create(java.lang.Object
type, long base, long size)

Parameters:

MEMORY MANAGEMENT 71

.

rtj.book Page 71 Sunday, April 30, 2000 4:37 PM
type - An object representing the type of memory required (e.g.,
dma, shared). The passed object is typically provided by the
vendor of the physical memory or the implementation vendor

base - The physical memory address of the region
size - The size of the memory area in bytes.

Throws: SecurityException - The application doesn’t have permissions
to access physical memory or the given range of memory.

OffsetOutOfBoundsException158 - The address is invalid.
SizeOutOfBoundsException159 - The size is negative or extends

into an invalid range of memory.
UnsupportedPhysicalMemoryException160 - Thrown if the

underlying hardware does not support the given type.

public static void setFactory(PhysicalMemoryFactory68 factory)
Set the physical memory factory to the given argument.

Parameters:
factory - A physical memory factory which will be the factory for

PhysicalMemoryFactory68 at the completion of this method.

5.9 ScopedPhysicalMemory

Syntax:public class ScopedPhysicalMemory extends ScopedMemory62

An instance ofScopedPhysicalMemory allows objects to be allocated from a
range of physical memory with particular attributes, determined by their memory
type. This memory area has the same restrictive set of assignment rules as
ScopedMemory62 memory areas.

5.9.1 Constructors
protected ScopedPhysicalMemory(long base, long size)

Constructor for use by the memory object factory.

protected ScopedPhysicalMemory(ScopedPhysicalMemory71 memory,
long base, long size)

Constructor for use by the memory object factory.

5.9.2 Methods

72 RAWMEMORYACCESS

d-
ts of

ted as

e

w-

rtj.book Page 72 Sunday, April 30, 2000 4:37 PM
public static ScopedPhysicalMemory71 create(java.lang.Object type,
long base, long size)

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared)
base - The physical memory address of the area.
size - The size of the area in bytes.

Throws: SecurityException - The application doesn’t have permissions
to access physical memory or the given range of memory.

OffsetOutOfBoundsException158 - The address is invalid.
SizeOutOfBoundsException159 - The size is negative or extends

into an invalid range of memory.
UnsupportedPhysicalMemoryException160 - Thrown if the

underlying hardware does not support the given type.

public static void setFactory(PhysicalMemoryFactory68 factory)
Sets the factory that will be used to generateScopedPhysicalMemory

instances.

Parameters:
factory - ThePhysicalMemoryFactory68 which will become the

factory for this. If null the previous factory remains as the
factory for this.

5.10 RawMemoryAccess

Syntax:public class RawMemoryAccess

Direct Known Subclasses:RawMemoryFloatAccess77

An instance ofRawMemoryAccess models a range of physical memory as a fixe
size sequence of bytes. A full complement of accessor methods allow the conten
the physical memory area to be accessed through offsets from the base, interpre
byte, short, int, or long data values or as arrays of these types.

Whether the offset addresses the high-order or low-order byte is based on th
value of the BYTE_ORDER static boolean variable in classRealtimeSystem152 .

TheRawMemoryAccess class allows a real-time program to implement device
drivers, memory-mapped I/O, flash memory, battery-backed RAM, and similar lo
level software.

MEMORY MANAGEMENT 73

bility
r-
ava

e

 an

e

rtj.book Page 73 Sunday, April 30, 2000 4:37 PM
A raw memory area cannot contain references to Java objects. Such a capa
would be unsafe (since it could be used to defeat Java’s type checking) and erro
prone (since it is sensitive to the specific representational choices made by the J
compiler).

Many of the constructors and methods in this class throw
OffsetOutOfBoundsException158 . This exception means that the value given in th
offset parameter is either negative or outside the memory area.

Many of the constructors and methods in this class throw
SizeOutOfBoundsException159 . This exception means that the value given in the
size parameter is either negative, larger than an allowable range, or would cause
accessor method to access an address outside of the memory area.

5.10.1Constructors
protected RawMemoryAccess(long base, long size)

protected RawMemoryAccess(RawMemoryAccess72 memory, long base,
long size)

Constructor reserved for use by the memory object factory.

5.10.2Methods
public static RawMemoryAccess72 create(java.lang.Object type,

long size)

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared) - used to define the base address and control th
mapping

size - The size of the area in bytes.

Throws: SecurityException - The application doesn’t have permissions
to access physical memory or the given type of memory.

OffsetOutOfBoundsException158 - The address is invalid.
SizeOutOfBoundsException159 - The size is negative or extends

into an invalid range of memory.
UnsupportedPhysicalMemoryException160 - Thrown if the

underlying hardware does not support the given type.

public static RawMemoryAccess72 create(java.lang.Object type,
long base, long size)

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared)

74 RAWMEMORYACCESS

he

rtj.book Page 74 Sunday, April 30, 2000 4:37 PM
base - The physical memory address of the region
size - The size of the area in bytes.

Throws: SecurityException - The application doesn’t have permissions
to access physical memory or the given range of memory.

OffsetOutOfBoundsException158 - The address is invalid.
SizeOutOfBoundsException159 - The size is negative or extends

into an invalid range of memory.
UnsupportedPhysicalMemoryException160 - Thrown if the

underlying hardware does not support the given type.

public byte getByte(long offset)
Get the byte at the givenoffset.

Throws: SizeOutOfBoundsException159,
OffsetOutOfBoundsException158

public void getBytes(long offset, byte[] bytes, int low,
int number)

Getnumber bytes starting at the given offset in this and assign them into t
byte array starting at positionlow.

Throws: SizeOutOfBoundsException159,
OffsetOutOfBoundsException158

public int getInt(long offset)
Get theint at the givenoffset.

Throws: SizeOutOfBoundsException159,
OffsetOutOfBoundsException158

public void getInts(long offset, int[] ints, int low, int number)
Getnumber int values starting at the givenoffset in this, to theint array
starting at positionlow.

Throws: SizeOutOfBoundsException159,
OffsetOutOfBoundsException158

public long getLong(long offset)
Get the long value at the givenoffset.

Throws: SizeOutOfBoundsException159,
OffsetOutOfBoundsException158

public void getLongs(long offset, long[] longs, int low,
int number)

Getnumber long values starting at the givenoffset in this, to thelong
array starting at positionlow.

MEMORY MANAGEMENT 75

ed.

y

m

rtj.book Page 75 Sunday, April 30, 2000 4:37 PM
Throws: SizeOutOfBoundsException159,
OffsetOutOfBoundsException158

public long getMappedAddress()
Return the virtual memory location at which the memory region is mapp

Returns: The virtual address to which this is mapped (for reference
purposes). Same as the base address if virtual memory isn’t
supported.

public short getShort(long offset)
Get the short at the givenoffset.

Throws: SizeOutOfBoundsException159,
OffsetOutOfBoundsException158

public void getShorts(long offset, short[] shorts, int low,
int number)

Getnumber shorts starting at the given offset in this, from the short arra
starting at positionlow.

Throws: SizeOutOfBoundsException159,
OffsetOutOfBoundsException158

public long map()
Map the physical address range into virtual memory. No-op if the syste
doesn’t support virtual memory.

Returns: The virtual address to which this is mapped (for reference
purposes).

public long map(long base)
Map the physical address range into virtual memory at the specified
location. No-op if the system doesn’t support virtual memory.

Parameters:
base - The location to map to in the virtual address space.

Returns: The virtual address to which this is mapped (for reference
purposes).

public long map(long base, long size)
Map the physical address range into virtual memory at the specified
location. No-op if the system doesn’t support virtual memory.

Parameters:
base - The location to map to in the virtual address space.
size - The size of the block to map in.

Returns: The virtual address to which this is mapped (for reference
purposes).

76 RAWMEMORYACCESS

rtj.book Page 76 Sunday, April 30, 2000 4:37 PM
public void setByte(long offset, byte value)
Set the byte at the givenoffset.

Throws: SizeOutOfBoundsException159,
OffsetOutOfBoundsException158

public void setBytes(long offset, byte[] bytes, int low,
int number)

Setnumber bytes starting at the givenoffset in this, from the byte array
starting at positionlow.

Throws: SizeOutOfBoundsException159,
OffsetOutOfBoundsException158

public void setInt(long offset, int value)
Set theint value at the givenoffset.

Throws: SizeOutOfBoundsException159,
OffsetOutOfBoundsException158

public void setInts(long offset, int[] ints, int low, int number)
Setnumber int values starting at the givenoffset in this, from theint
array starting at positionlow.

Throws: SizeOutOfBoundsException159,
OffsetOutOfBoundsException158

public void setLong(long offset, long value)
Set thelong value at the givenoffset starting at positionlow.

Throws: SizeOutOfBoundsException159,
OffsetOutOfBoundsException158

public void setLongs(long offset, long[] longs, int low, int n)
Setnumber long valuesstarting at the givenoffset in this, from thelong
array starting at positionlow.

Throws: SizeOutOfBoundsException159,
OffsetOutOfBoundsException158

public void setShort(long offset, short value)
Set the short at the givenoffset.

Throws: SizeOutOfBoundsException159,
OffsetOutOfBoundsException158

public void setShorts(long offset, short[] shorts, int low,
int number)

Setnumber shorts starting at the givenoffset in this, from the short array
starting at positionlow.

MEMORY MANAGEMENT 77

 float
ly if

e

 an

e

rtj.book Page 77 Sunday, April 30, 2000 4:37 PM
Throws: SizeOutOfBoundsException159,
OffsetOutOfBoundsException158

public void unmap()
Unmap the physical address range from virtual memory. No-op if the
system doesn’t support virtual memory.

5.11 RawMemoryFloatAccess

Syntax:public class RawMemoryFloatAccess extends RawMemoryAccess72

This class holds the accessor methods for accessing a raw memory area by
and double types. Implementations are required to implement this class if and on
the underlying Java Virtual Machine supports floating point data types.

Many of the constructors and methods in this class throw
OffsetOutOfBoundsException158 . This exception means that the value given in th
offset parameter is either negative or outside the memory area.

Many of the constructors and methods in this class throw
SizeOutOfBoundsException159 . This exception means that the value given in the
size parameter is either negative, larger than an allowable range, or would cause
accessor method to access an address outside of the memory area.

5.11.1Constructors
protected RawMemoryFloatAccess(long base, long size)

protected RawMemoryFloatAccess(RawMemoryAccess72 memory, long base,
long size)

Constructor reserved for use by the memory object factory

5.11.2Methods
public static RawMemoryFloatAccess77

createFloatAccess(java.lang.Object type,
long size)

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared) - used to define the base address and control th
mapping

size - The size of the area in bytes.

78 RAWMEMORYFLOATACCESS

rtj.book Page 78 Sunday, April 30, 2000 4:37 PM
Throws: SecurityException - The application doesn’t have permissions
to access physical memory or the given type of memory.

OffsetOutOfBoundsException158 - The address is invalid.
SizeOutOfBoundsException159 - The size is negative or extends

into an invalid range of memory.
UnsupportedPhysicalMemoryException160 - Thrown if the

underlying hardware does not support the given type.

public static RawMemoryFloatAccess77
createFloatAccess(java.lang.Object type,
long base, long size)

Parameters:
type - An Object representing the type of memory required (e.g.,

dma, shared)
base - The physical memory address of the area.
size - The size of the rea in bytes.

Throws: SecurityException - The application doesn’t have permissions
to access physical memory or the given range of memory.

OffsetOutOfBoundsException158 - The address is invalid.
SizeOutOfBoundsException159 - The size is negative or extends

into an invalid range of memory.
UnsupportedPhysicalMemoryException160 - Thrown if the

underlying hardware does not support the given type.

public byte getDouble(long offset)
Get the double at the givenoffset.

Throws: SizeOutOfBoundsException159,
OffsetOutOfBoundsException158

public void getDoubles(long offset, double[] doubless, int low,
int number)

Getnumber double values starting at the givenoffset in this, and assigns
them into thedouble array starting at positionlow.

Throws: SizeOutOfBoundsException159,
OffsetOutOfBoundsException158

public byte getFloat(long offset)
Get the float at the givenoffset.

Throws: SizeOutOfBoundsException159,
OffsetOutOfBoundsException158

public void getFloats(long offset, float[] floats, int low,
int number)

MEMORY MANAGEMENT 79

tisfy

s to

rtj.book Page 79 Sunday, April 30, 2000 4:37 PM
Getnumber float values starting at the givenoffset in this and assign
them into thebyte array starting at positionlow.

Throws: SizeOutOfBoundsException159,
OffsetOutOfBoundsException158

public void setDouble(long offset, double value)
Set the double at the givenoffset.

Throws: SizeOutOfBoundsException159,
OffsetOutOfBoundsException158

public void setDoubles(long offset, double[] doubles, int low,
int number)

Setnumber double values starting at the givenoffset in this, from the
double array starting at positionlow.

Throws: SizeOutOfBoundsException159,
OffsetOutOfBoundsException158

public void setFloat(long offset, float value)
Set the float at the givenoffset.

Throws: SizeOutOfBoundsException159,
OffsetOutOfBoundsException158

public void setFloats(long offset, float[] floats, int low,
int number)

Setnumber float values starting at the givenoffset in this,from thebyte
array starting at positionlow.

Throws: SizeOutOfBoundsException159,
OffsetOutOfBoundsException158

5.12 MemoryParameters

Syntax:public class MemoryParameters

Memory parameters can be given on the constructor ofRealtimeThread23 and
AsyncEventHandler129 . These can be used both for the purposes of admission
control by the scheduler and for the purposes of pacing the garbage collector to sa
all of the thread allocation rates. When a reference to aMemoryParameters object is
given as a parameter to a constructor, theMemoryParameters object becomes bound
to the object being created. Changes to the values in theMemoryParameters object
affect the constructed object. If given to more than one constructor, then change

80 MEMORYPARAMETERS

s who

e

e

e

rtj.book Page 80 Sunday, April 30, 2000 4:37 PM
the values in theMemoryParameters object affectall of the associated objects. Note
that this is a one-to-many relationship andnot a many-to-many.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this clas
are mutating instances will be doing their own synchronization at a higher level.

5.12.1Fields
public static final long NO_MAX

5.12.2Constructors
public MemoryParameters(long maxMemoryArea, long maxImmortal)

Create aMemoryParameters object with the given values.

Parameters:
maxMemoryArea - A limit on the amount of memory the thread may

allocate in the memory area. Units are in bytes. If zero, no
allocation allowed in the memoryArea. To specify no limit, us
NO_MAX or a value less than zero.

maxImmortal - A limit on the amount of memory the thread may
allocate in the immortal area. Units are in bytes. If zero, no
allocation allowed in immortal. To specify no limit, use
NO_MAX or a value less than zero.

Throws: IllegalArgumentException

public MemoryParameters(long maxMemoryArea, long maxImmortal,
long allocationRate)

Create aMemoryParameters object with the given values.

Parameters:
maxMemoryArea - A limit on the amount of memory the thread may

allocate in the memory area. Units are in bytes. If zero, no
allocation allowed in the memoryArea. To specify no limit, us
NO_MAX or a value less than zero.

maxImmortal - A limit on the amount of memory the thread may
allocate in the immortal area. Units are in bytes. If zero, no
allocation allowed in immortal. To specify no limit, use
NO_MAX or a value less than zero.

allocationRate - A limit on the rate of allocation in the heap. Units
are in bytes per second. If zero, no allocation is allowed in th
heap. To specify no limit, use NO_MAX or a value less than
zero.

MEMORY MANAGEMENT 81

d

e
s

he

s

he

rtj.book Page 81 Sunday, April 30, 2000 4:37 PM
Throws: IllegalArgumentException

5.12.3Methods
public long getAllocationRate()

Get the allocation rate. Units are bytes per second.

public long getMaxImmortal()
Get the limit on the amount of memory the thread may allocate in the
immortal area. Units are in bytes.

public long getMaxMemoryArea()
Get the limit on the amount of memory the thread may allocate in the
memory area. Units are in bytes.

public void setAllocationRate(long rate)
A limit on the rate of allocation in the heap.

Parameters:
rate - Units are in bytes per second. If zero, no allocation is allowe

in the heap. To specify no limit, use NO_MAX or a value less
than zero.

public boolean setMaxImmortal(long maximum)
Set the limit on the amount of memory the thread may allocate in the
immortal area.

Parameters:
maximum - Units are in bytes. If zero, no allocation is allowed in th

immortal area. To specify no limit, use NO_MAX or a value les
than zero.

Returns: False if any of the threads have already allocated more than t
given value. In this case the call has no effect.

public boolean setMaxMemoryArea(long maximum)
Set the limit on the amount of memory the thread may allocate in the
memory area.

Parameters:
maximum - Units are in bytes. If zero, no allocation allowed in the

memoryArea. To specify no limit, use NO_MAX or a value les
than zero.

Returns: False if any of the threads have already allocated more than t
given value. In this case the call has no effect.

82 GARBAGECOLLECTOR

via

fully

f

rtj.book Page 82 Sunday, April 30, 2000 4:37 PM
5.13 GarbageCollector

Syntax:public abstract class GarbageCollector

Direct Known Subclasses:IncrementalCollectorExample83,
MarkAndSweepCollectorExample84

The system shall provide dynamic and static information characterizing the
temporal behavior and imposed overhead of any garbage collection algorithm
provided by the system. This impormation shall be made available to applications
methods on subclasses ofGarbageCollector. Implementations are allowed to
provide any set of methods in subclasses as long as the temporal behavior and
overhead are sufficiently categorized. The implementations are also required to
document the subclasses. In addition, the method(s) inGarbageCollector shall be
made available by all implementations. See:IncrementalCollectorExample83 and
MarkAndSweepCollectorExample84

5.13.1Constructors
public GarbageCollector()

5.13.2Methods
public abstract RelativeTime102 getPreemptionLatency()

Instances ofRealtimeThread23 are allowed to preempt the execution of
the garbage collector (instances ofNoHeapRealtimeThread27 preempt
immediately but instances ofRealtimeThread23 must wait until the
collector reaches a preemption-safe point). Preemption latency is a
measure of the maximum time aRealtimeThread23 may have to wait for
the collector to reach a preemption-safe point.

Returns: The preempting latency of this if applicable. May return zero i
there is no collector avaiable.

MEMORY MANAGEMENT 83

eir

rtj.book Page 83 Sunday, April 30, 2000 4:37 PM
5.14 IncrementalCollectorExample

Syntax:public class IncrementalCollectorExample extends
GarbageCollector82

This class is provided as an example only and is not required on any
implementation, even ones which employ an incremental collector.

5.14.1Constructors
public IncrementalCollectorExample()

5.14.2Methods
public long getMaximumReclamationRate()

Maximum reclamation rate the garbage collector can sustain. This is a
dynamically assigned value dependent on schedule.

Returns: Return value is measured in kilobytes per second.

public RelativeTime102 getPreemptionLatency()
The instantiation of the abstract method in GarbageCollector.

Overrides:public abstract RelativeTime102
getPreemptionLatency()82 in classGarbageCollector82

public int getReadBarrierOverhead()
Overhead of the read barrier. Given in percentage of the cost of a field
access.

public int getWriteBarrierOverhead()
Overhead of the write barrier. Given in percentage of the cost of an
assignment.

public void setReclamationRate(int rate)
The reclamation rate as a ratio: 1 / number of kilobytes scanned per
kilobyte allocated. Used by incremental collection algorithms to pace th
reclamation rate.

Parameters:
rate - The new reclamation rate. Ignored if collector does not

84 MARKANDSWEEPCOLLECTOREXAMPLE

rtj.book Page 84 Sunday, April 30, 2000 4:37 PM
5.15 MarkAndSweepCollectorExample

Syntax:public class MarkAndSweepCollectorExample extends
GarbageCollector82

This class is provided as an example only and is not required on any
implementation, even ones which employ an incremental collector.

5.15.1Constructors
public MarkAndSweepCollectorExample()

5.15.2Methods
public RelativeTime102 getPreemptionLatency()

The instantiation of the abstract method in GarbageCollector.

Overrides:public abstract RelativeTime102
getPreemptionLatency()82 in classGarbageCollector82

SYNCHRONIZATION 85

.

ds.
al-

ed

ared

he

hod,

rtj.book Page 85 Sunday, April 30, 2000 4:37 PM
C H A P T E R 6
Synchronization

This section contains classes that:

• Allow the application of the priority ceiling emulation algorithm to individual objects
• Allow the setting of the system default priority inversion algorithm.
• Allow wait-free communication between real-time threads and regular Java threa

The specification strengthens the semantics of Java synchronization for use in re
time systems by mandating monitor execution eligibility control, commonly referr
to as priority inversion control. AMonitorControl class is defined as the superclass
of all such execution eligibility control algorithms.PriorityInheritance is the
default monitor control policy; the specification also defines a
PriorityCeilingEmulation option.

The wait-free queue classes provide protected, concurrent access to data sh
between instances ofjava.lang.Thread andNoHeapRealtimeThread.

Semantics and Requirements

This list establishes the semantics and requirements that are applicable across t
classes of this section. Semantics that apply to particular classes, constructors,
methods and fields will be found in the class description and the constructor, met
and field detail sections.

1. Threads waiting to enter synchronized blocks are priority queue ordered. If
threads with the same priority are possible under the active scheduling policy
such threads are queued in FIFO order.

2. Any conforming implementation must provide an implementation of the
synchronized primitive with default behavior that ensures that there is no
unbounded priority inversion. Furthermore, this must apply to code if it is run

86 MONITORCONTROL

thm.

time

ion
on
ce

rce

eans
sses

rtj.book Page 86 Sunday, April 30, 2000 4:37 PM
within the implementation as well as to real-time threads.

3. The Priority Inheritance monitor control policy must be implemented.

4. Implementations that provide a monitor control algorithm in addition to those
described herein are required to clearly document the behavior of that algori

Rationale

Java monitors, and especially the synchronized keyword, provide a very elegant
means for mutual exclusion synchronization. Thus, rather than invent a new real-
synchronization mechanism, this specification strengthens the semantics of Java
synchronization to allow its use in real-time systems. In particular, this specificat
mandates priority inversion control. Priority inheritance and priority ceiling emulati
are both popular priority inversion control mechanisms; however, priority inheritan
is more widely implemented in real-time operating systems and so is the default
mechanism in this specification.

By design the only mechanism required by this specification which can enfo
mutual exclusion in the traditional sense is the keywordsynchronized. Noting that
the specification allows the use ofsynchronized by both instances of
java.lang.Thread, RealtimeThread, andNoHeapRealtimeThread and that such
flexibility precludes the correct implementation ofany known priority inversion
algorithm when locked objects are accessed by instances ofjava.lang.Thread and
NoHeapRealtimeThread, it is incumbent on the specification to provide alternate
means for protected, concurrent data access by both types of threads (protected m
access to data without the possibility of corruption). The three wait-free queue cla
provide such access.

6.1 MonitorControl

Syntax:public abstract class MonitorControl

Direct Known Subclasses:PriorityCeilingEmulation87, PriorityInheritance88

Abstract superclass for all monitor control policy objects.

6.1.1 Constructors

SYNCHRONIZATION 87

licy
ust

.

r
a
ing
en

rtj.book Page 87 Sunday, April 30, 2000 4:37 PM
public MonitorControl()

6.1.2 Methods
public static void setMonitorControl(MonitorControl86 policy)

Control the default monitor behavior for object monitors used by
synchronized statements and methods in the system. The type of the po
object determines the type of behavior. Conforming implementations m
support priority ceiling emulation and priority inheritance for fixed priority
preemptive threads.

Parameters:
policy - The new monitor control policy. If null nothing happens.

public static void setMonitorControl(java.lang.Object monitor,
MonitorControl86 policy)

Has the same affect assetMonitorControl(), except that the policy only
affects the indicated object monitor.

Parameters:
monitor - The monitor for which the new policy will be in use. The

policy will take effect on the first attempt to lock the monitor
after the completion of this method. If null nothing will happen

policy - The new policy for the object. If null nothing will happen.

6.2 PriorityCeilingEmulation

Syntax:public class PriorityCeilingEmulation extends MonitorControl86

Monitor control class specifying use of the priority ceiling emulation protocol fo
monitor objects. Objects under the influence of this protocol have the effect that
thread entering the monitor has its effective priority —- for priority-based dispatch
—- raised to the ceiling on entry, and is restored to its previous effective priority wh
it exits the monitor. See alsoMonitorControl86 andPriorityInheritance88

6.2.1 Constructors
public PriorityCeilingEmulation(int ceiling)

Create aPriorityCeilingEmulation object with a given ceiling.

Parameters:
ceiling - Priority ceiling value.

88 PRIORITYINHERITANCE

a

ve

rtj.book Page 88 Sunday, April 30, 2000 4:37 PM
6.2.2 Methods
public int getDefaultCeiling()

Get the priority ceiling for thisPriorityCeilingEmulation object.

6.3 PriorityInheritance

Syntax:public class PriorityInheritance extends MonitorControl86

Monitor control class specifying use of the priority inheritance protocol for
object monitors. Objects under the influence of this protocol have the effect that
thread entering the monitor will boost the effective priority of the thread in the
monitor to its own effective priority. When that thread exits the monitor, its effecti
priority will be restored to its previous value. See alsoMonitorControl86 and
PriorityCeilingEmulation87

6.3.1 Constructors
public PriorityInheritance()

6.3.2 Methods
public static PriorityInheritance88 instance()

Return a pointer to the singletonPriorityInheritance.

6.4 WaitFreeDequeue

Syntax:public class WaitFreeDequeue

The wait-free queue classes facilitate communication and synchronization
between instances ofRealtimeThread23 andjava.lang.Thread . See
WaitFreeWriteQueue92 or WaitFreeReadQueue90 for more details. Instances of this
class create aWaitFreeWriteQueue92 and aWaitFreeReadQueue90 and make calls
on the respectiveread() andwrite() methods.

6.4.1 Constructors

SYNCHRONIZATION 89

rtj.book Page 89 Sunday, April 30, 2000 4:37 PM
public WaitFreeDequeue(java.lang.Thread writer,
java.lang.Thread reader, int maximum,
MemoryArea60 area)

A queue with unsynchronized and nonblockingread() andwrite()
methods and synchronized and blockingread()andwrite() methods.

Parameters:
writer - An instance of Thread.
reader - An instance of Thread.
maximum - Then maximum number of elements in the both the

WaitFreeReadQueue90 and theWaitFreeWriteQueue92 .
area - TheMemoryArea60 in which this object and internal elements

are allocated.

Throws: InstantiationException, ClassNotFoundException,
IllegalAccessException, IllegalArgumentException

6.4.2 Methods
public java.lang.Object blockingRead()

A synchronized call of theread() method of the underlying
WaitFreeWriteQueue92 . This call blocks on queue empty and will wait
until there is an element in the queue to return.

Returns: An java.lang.Object from this.

public boolean blockingWrite(java.lang.Object object)
A synchronized call of thewrite() method of the underlying
WaitFreeReadQueue90 . This call blocks on queue full and waits until there
is space in this.

Parameters:
object - Thejava.lang.Object to place in this.

Returns: True if object is now in this.

Throws: MemoryScopeException157
public boolean force(java.lang.Object object)

If this is full then this call overwrites the last object written to this with the
given object. If this is not full this call is equivalent to the
nonBlockingWrite() call.

Parameters:
object - Thejava.lang.Object which will overwrite the last

object is this is full. Otherwiseobject will be placed in this.

public java.lang.Object nonBlockingRead()

90 WAITFREEREADQUEUE

 might
ctor.

than

e is

rtj.book Page 90 Sunday, April 30, 2000 4:37 PM
An unsynchronized call of theread() method of the underlying
WaitFreeReadQueue90 .

Returns: An java.lang.Object object read from this. If there are no
elements in this then null is returned.

public boolean nonBlockingWrite(java.lang.Object object)
An unsynchronized call of thewrite() method of the underlying
WaitFreeWriteQueue92 . This call does not block on queue full.

Parameters:
object - Thejava.lang.Object to attempt to place in this.

Returns: True if theobject is now in this otherwise returns false.

Throws: MemoryScopeException157

6.5 WaitFreeReadQueue

Syntax:public class WaitFreeReadQueue

The wait-free queue classes facilitate communication and synchronization
between instances ofRealtimeThread23 andjava.lang.Thread . The problem is
that synchronized access objects shared between real-time threads and threads
cause the real-time threads to incur delays due to execution of the garbage colle

Theread() method of this class does not block on a imagined queue-empty
condition variable. If theread() is called on an empty queue null is returned. If two
real-time threads intend to read from this queue they must provide their own
synchronization.

The write method of this queue is synchronized and may be called by more
one writer and will block on queue empty.

6.5.1 Constructors
public WaitFreeReadQueue(java.lang.Thread writer,

java.lang.Thread reader, int maximum,
MemoryArea60 memory)

A queue with an unsynchronized and nonblockingread() method and a
synchronized and blockingwrite() method. The memory areas of the
given threads are found. If these memory areas are the same the queu

SYNCHRONIZATION 91

eue
 type.

.

e

rtj.book Page 91 Sunday, April 30, 2000 4:37 PM
created in that memory area. If these memory areas are different the qu
is created in the memory area accessible by the most restricted thread

Parameters:
writer - An instance ofjava.lang.Thread .
reader - An instance ofjava.lang.Thread .
maximum - The maximum number of elements in the queue.
memory - TheMemoryArea60 in which this object and internal

elements are stored.

Throws: IllegalAccessException, ClassNotFoundException,
InstantiationException, IllegalArgumentException

public WaitFreeReadQueue(java.lang.Thread writer,
java.lang.Thread reader, int maximum,
MemoryArea60 memory, boolean notify)

A queue with an unsynchronized and nonblockingread() method and a
synchronized and blockingwrite() method.

Parameters:
writer - An instance ofjava.lang.Thread .
reader - An instance ofjava.lang.Thread .
maximum - The maximum number of elements in the queue.
memory - TheMemoryArea60 in which this object and internal

elements are stored.
notify - Whether or not the reader is notified when data is added

Throws: IllegalAccessException, ClassNotFoundException,
InstantiationException, IllegalArgumentException

6.5.2 Methods
public void clear()

Set this to empty.

public boolean isEmpty()
Used to determine if this is empty.

Returns: True if this is empty and false if this is not empty.

public boolean isFull()
Used to determine if this is full.

Returns: True if this is full and false if this is not full.

public java.lang.Object read()
Returns the next element in the queue unless the queue is empty. If th
queue is empty null is returned.

92 WAITFREEWRITEQUEUE

cks

d

 might
ctor.

d.
n

rtj.book Page 92 Sunday, April 30, 2000 4:37 PM
public int size()
Used to determine the number of elements in this.

Returns: An integer which is the number of empty positions in this.

public void waitForData()
If this is emptywaitForData() waits on the event until the writer inserts
data. Note that true priority inversion does not occur since the writer lo
a different object and the notify is executed by theAsyncEventHandler129
which hasnoHeap characteristics.

public synchronized boolean write(java.lang.Object object)
The synchronized and blocking write. This call blocks on queue full an
will wait until there is space in the queue.

Parameters:
object - Thejava.lang.Object that is placed in this.

Throws: MemoryScopeException157

6.6 WaitFreeWriteQueue

Syntax:public class WaitFreeWriteQueue

The wait-free queue classes facilitate communication and synchronization
between instances ofRealtimeThread23 andjava.lang.Thread . The problem is
that synchronized access objects shared between real-time threads and threads
cause the real-time threads to incur delays due to execution of the garbage colle

Thewrite method of this class does not block on a imagined queue-full
condition variable. If thewrite() method is called on an full queue false is returne
If two real-time threads intend to read from this queue they must provide their ow
synchronization.

Theread() method of this queue is synchronized and may be called by more
than one writer and will block on queue empty.

6.6.1 Constructors
public WaitFreeWriteQueue(java.lang.Thread writer,

java.lang.Thread reader, int maximum,
MemoryArea60 memory)

A queue with an unsynchronized and nonblockingwrite() method and a
synchronized and blockingread() method

SYNCHRONIZATION 93

. If

d

e
h
ad

rtj.book Page 93 Sunday, April 30, 2000 4:37 PM
Parameters:
writer - An instance ofjava.lang.Thread .
reader - An instance ofjava.lang.Thread .
maximum - The maximum number of elements in the queue.
memory - TheMemoryArea60 in which this object and internal

elements are allocated

Throws: InstantiationException, ClassNotFoundException,
IllegalAccessException, IllegalArgumentException

6.6.2 Methods
public void bind(java.lang.Thread writer, java.lang.Thread reader,

MemoryArea60 memory)
Binds two threads together for the purpose of using this in each thread
two un-related (by common fixed memory area) threads are bound
together, only immortal objects can be placed in the queue.

Parameters:
writer - Thejava.lang.Thread object which will write to this.
reader - Thejava.lang.Thread object which will read from this.
memory - The newMemoryArea60 to use to test against the memory

area of objects placed into this.

Throws: InstantiationException, IllegalAccessException,
IllegalArgumentException

public void clear()
Set this to empty.

public boolean force(java.lang.Object object)
Force thisjava.lang.Object to replace the last one. If the reader shoul
happen to have just removed the otherjava.lang.Object just as we were
updating it, we will return false. False may mean that it just saw what w
put in there. Either way, the best thing to do is to just write again —- whic
will succeed, and check on the readers side for consecutive identical re
values.

public boolean isEmpty()
Used to determine if this is empty.

Returns: True if this is empty and false if this is not empty.

public boolean isFull()
Used to determine if this is full.

Returns: True if this is full and false if this is not full.

94 WAITFREEWRITEQUEUE

rtj.book Page 94 Sunday, April 30, 2000 4:37 PM
public synchronized java.lang.Object read()
A synchronized read on the queue.

Returns: Thejava.lang.Object read or null if this is empty.

public int size()
Used to determine the number of elements in this.

Returns: An integer which is the number of empty positions in this.

public boolean write(java.lang.Object object)
Try to insert an element into the queue.

Parameters:
object - Thejava.lang.Object to insert.

Returns: True if the insert succeeded, false if not.

Throws: MemoryScopeException157

TIME 95

n

e

MT.

the

he

rtj.book Page 95 Sunday, April 30, 2000 4:37 PM
C H A P T E R 7
Time

This section contains classes that:

• Allow description of a point in time with up to nanosecond accuracy and precisio
(actual accuracy and precision is dependent on the precision of the underlying
system).

• Allow distinctions between absolute points in time, times relative to some starting
point, and a new construct, rational time, which allows the efficient expression of
occurances per some interval of relative time..

The time classes required by the specification areHighResolutionTime,
AbsoluteTime, RelativeTime, andRationalTime.

Instances ofHighResolutionTime are not created, as the class exists to provid
an implementation of the other three classes. An instance ofAbsoluteTime

encapsulates an absolute time expressed relative to midnight January 1, 1970 G
An instance ofRelativeTime encapsulates a point in time that is relative to some
other time value. Instances ofRationalTime express a frequency by a numerator of
typelong (the frequency) and a denominator of typeRelativeTime. If instances of
RationalTime are given to certain constructors or methods the activity occurs for
frequency times every interval. For example, if aPeriodicTimer is given an instance
of RationalTime of (29,232) then the system will guarantee that the timer will fire
exactly 29 times every 232 milliseconds even if the system has to slightly adjust
time between firings.

Semantics and Requirements

This list establishes the semantics and requirements that are applicable across t
classes of this section. Semantics that apply to particular classes, constructors,

96 WAITFREEWRITEQUEUE

hod,

 in

d/

for

le.

ls
oes
gly
l

time
ime
e
e the

th

ning

rtj.book Page 96 Sunday, April 30, 2000 4:37 PM
methods and fields will be found in the class description and the constructor, met
and field detail sections.

1. All time objects must maintain nanosecond precision and report their values
terms of millisecond and nanosecond constituents.

2. Time objects must be constructed from other time objects, or from millisecon
nanosecond values.

3. Time objects must provide simple addition and subtraction operations, both
the entire object and for constituent parts.

4. Time objects must implement theComparable interface if it is available. The
compareTo() method must be implemented even if the interface is not availab

5. Any method of constructor that accepts aRationalTime of (x,y) must gurantee
that its activity occurs exactly x times in every y milliseconds even if the interva
between occurrances of the activity have to be adjusted slightly. The RTSJ d
not impose any required distriibution on the lengths of the intervals but stron
suggests that implementations attempt to make them of approximately equa
lengths.

Rationale

Time is the essence of real-time systems, and a method of expressing absolute
with sub-millisecond precision is an absolute minimum requirement. Expressing t
in terms of nanoseconds has precedent and allows the implementation to provid
time-based services, such as timers, using whatever precision it is capable of whil
application requirements are expressed to an arbitrary level of precision.

The expression of millisecond and nanosecond constituents is consistent wi
other Java interfaces.

The expression of relative times allows for time-based metaphors such as
deadline-based periodic scheduling where the cost of the task is expressed as a
relative time and deadlines are usually represented as times relative to the begin
of the period.

TIME 97

ctly:

e
ound
thin

s who

nt

ion.

or

rtj.book Page 97 Sunday, April 30, 2000 4:37 PM
7.1 HighResolutionTime

Syntax:public abstract class HighResolutionTime implements
java.lang.Comparable

Direct Known Subclasses:AbsoluteTime99, RelativeTime102

All Implemented Interfaces:java.lang.Comparable

Used to express time with nanosecond accuracy. This class is never used dire
it is abstract and has no public constructors. Instead, use one of its subclasses
AbsoluteTime99 , RelativeTime102 , orRationalTime105 . When an API is defined
that has anHighResolutionTime as a parameter, it can take either an absolute,
relative, or rational time and will do something appropriate. All of the arithmetic
functions come in both allocating and non-allocating forms.

The standard Javajava.util.Date class uses milliseconds as its basic unit in
order to provide sufficient range for a wide variety of applications. Real-time
programming generally requires nanosecond resolution, but even a 64 bit real-tim
clock based in nanoseconds would be problematic in some situations, so a comp
format composed of 64 bits of millisecond timing, and 32 bits of nanoseconds wi
a millisecond, was chosen.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this clas
are mutating instances will be doing their own synchronization at a higher level.

7.1.1 Methods
public abstract AbsoluteTime99 absolute(Clock110 clock,

AbsoluteTime99 dest)
Convert this time to an absolute time, relative to some clock. Convenie
for situations where you really need an absolute time, but would like to
allow relative times to be used too. Allocates a destination object if
necessary. See the derived class comments for more specific informat

Parameters:
clock - TheClock110 reference for relative times.
dest - If null, a new object may or may not need to be allocated f

the result.

Returns: AbsoluteTime99 version of this object.

public int compareTo(HighResolutionTime97 time)

98 HIGHRESOLUTIONTIME

l
!=,

 the

rtj.book Page 98 Sunday, April 30, 2000 4:37 PM
Compare thisHighResolutionTime with the specified
HighResolutionTime. This method is provided in preference to individua
methods for each of the six boolean comparison operators (<, ==, >, >=,
<=). The suggested idiom for performing these comparisons is:
(x.compareTo(y) <op> 0), where <op> is one of the six comparison
operators.

public int compareTo(java.lang.Object object)
For the Comparable interface.

public boolean equals(HighResolutionTime97 time)
Return true if the argument object has the same values as this>.

Parameters:
time - Values are compared to this.

public boolean equals(java.lang.Object object)
Return true if the argument is aHighResolutionTime reference and has the
same values as this.

Overrides:java.lang.Object.equals(java.lang.Object) in class
java.lang.Object

Parameters:
object - Values are compared to this.

public final long getMilliseconds()
Return the milliseconds component of this.

Returns: The milliseconds component of the time past the epoch
represented by this.

public final int getNanoseconds()
Return nanoseconds component of this.

Returns: The nanoseconds component of the time past the epoch
represented by this.

public int hashCode()

Overrides:java.lang.Object.hashCode() in class java.lang.Object

public void set(HighResolutionTime97 time)
Changes the time represented by the argument to some time between
invocation of the method and the return of the method.

Parameters:
time - TheHighResolutionTime which will be set to represent the

current time.

public void set(long millis)

TIME 99

t

lid

t

of

tion
lute

s who

rtj.book Page 99 Sunday, April 30, 2000 4:37 PM
Set the millisecond component of this to the given argument.

Parameters:
millis - This value will be the value of the millisecond componen

of this at the completion of the call. Ifmillis is negative the
millisecond value of this is set to the negative value. Although
logically this may represent time before the epoch, invalid
results may occur if aHighResolutionTime representing time
before the epoch is given as a parameter to other methods.

public void set(long millis, int nanos)
Set the millisecond and nanosecond components of this to the given
arguments. Ifmillis plus nanos result in a negative value the time
represented by this is time before the epoch. Although reasonable inva
results may occur if aHighResolutionTime representing time before the
epoch is given as a parameter to other methods.

Parameters:
millis - This value will be the value of the millisecond componen

of this at the completion of the call.
nanos - This value will be the value of the nanosecond component

this at the completion of the call.

7.2 AbsoluteTime

Syntax:public class AbsoluteTime extends HighResolutionTime97

All Implemented Interfaces:java.lang.Comparable

An object that represents a specific point in time given by milliseconds plus
nanoseconds past the epoch (January 1, 1970, 00:00:00 GMT). This representa
was designed to be compatible with the standard Java representation of an abso
time in thejava.util.Date class.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this clas
are mutating instances will be doing their own synchronization at a higher level.

7.2.1 Constructors
public AbsoluteTime()

Equivalent to newAbsoluteTime(0,0)

100 ABSOLUTETIME

.

.

he

rtj.book Page 100 Sunday, April 30, 2000 4:37 PM
public AbsoluteTime(AbsoluteTime99 time)
Make a newAbsoluteTime99 object from the givenAbsoluteTime99
object.

Parameters:
time - TheAbsoluteTime99 object used as the source for the copy

public AbsoluteTime(java.util.Date date)
Equivalent to newAbsoluteTime(date.getTime(),0).

Parameters:
date - Thejava.util.Date representation of time past the epoch

public AbsoluteTime(long millis, int nanos)
Constructs anAbsoluteTime99 object, which means a timemillis
milliseconds plusnanos nanoseconds past 00:00:00 GMT on January 1,
1970. If the addition ofmillis andnanos results in a negative value,
although reasonable in that it represents a time before the epoch, then
invalid output may occur when this is used as an argument to other
methods.

Parameters:
millis - The milliseconds component of the time past the epoch.
nanos - The nanosecond component of the time past the epoch.

7.2.2 Methods
public AbsoluteTime99 absolute(Clock110 clock,

AbsoluteTime99 destination)
Convert this time to an absolute time. For anAbsoluteTime99 , this is real
easy: it just returns itself. Presume that this time is already relative to t
given clock.

Overrides:public abstract AbsoluteTime99 absolute(Clock110
clock, AbsoluteTime99 dest)97 in class
HighResolutionTime97

Parameters:
clock - Clock110 on which this is based.
destination - Converted to an absolute time.

public AbsoluteTime99 add(long millis, int nanos)
A new object is allocated for the result.

Parameters:
millis - Values are added to this.
nanos - Rest of value added to this.

TIME 101

rtj.book Page 101 Sunday, April 30, 2000 4:37 PM
public AbsoluteTime99 add(long millis, int nanos,
AbsoluteTime99 destination)

If destination is non-null, the result is placed there anddestination is
returned. Otherwise a new object is allocated for the result.

Parameters:
millis - Value is added to this.
nanos - Rest of value added to this.
destination - Result is placed here if non-null.

Returns: An AbsoluteTime99 . A result is always returned. A new object is
created ifdestination is null.

public final AbsoluteTime99 add(RelativeTime102 time)
Returnthis+b. A new object is allocated for the result.

Parameters:
time - Values are added to this.

public AbsoluteTime99 add(RelativeTime102 time,
AbsoluteTime99 destination)

Returnthis+time. If dest is non-null, the result is placed there anddest is
returned. Otherwise a new object is allocated for the result.

Parameters:
time - Values are added to this.
destination - Result is placed here if non-null.

Returns: An AbsoluteTime99 . A result is always returned. A new object is
created ifdest is null.

public java.util.Date getDate()
Return the time past the epoch represented by this as ajava.util.Date .

public void set(java.util.Date date)
Change the time represented by this.

Parameters:
date - java.util.Date which becomes the time represented by this

after the completion of this method.

public final RelativeTime102 subtract(AbsoluteTime99 time)
Returnthis-time. A new object is allocated for the result.

Parameters:
time - Values are added to this.

public RelativeTime102 subtract(AbsoluteTime99 time,
RelativeTime102 destination)

102 RELATIVETIME

rtj.book Page 102 Sunday, April 30, 2000 4:37 PM
Returnthis-time. If destination is non-null, the result is placed there
anddestination is returned. Otherwise a new object is allocated for the
result

Parameters:
time - Values are subtracted from this.
destination - Result is placed here if non-null.

Returns: An AbsoluteTime99 . A result is always returned. A new object is
created ifdestination is null.

public final AbsoluteTime99 subtract(RelativeTime102 time)
Returnthis-time. A new object is allocated for the result.

Parameters:
time - Values are added to this.

public AbsoluteTime99 subtract(RelativeTime102 time,
AbsoluteTime99 destination)

Returnthis-time. If destination is non-null, the result is placed there
anddestination is returned. Otherwise a new object is allocated for the
result

Parameters:
time - Values are subtracted from this.
destination - Result is placed here if non-null.

Returns: An AbsoluteTime99 . A result is always returned. A new object is
created ifdestination is null.

public java.lang.String toString()
Return a printable version of this Time, in a format that matches
java.util.Date.toString() with a postfix to detail the sub-second
value

Overrides:java.lang.Object.toString() in class java.lang.Object

7.3 RelativeTime

Syntax:public class RelativeTime extends HighResolutionTime97

Direct Known Subclasses:RationalTime105

All Implemented Interfaces:java.lang.Comparable

TIME 103

. It

s who

rtj.book Page 103 Sunday, April 30, 2000 4:37 PM
An object that represents a time interval millis/1E3+nanos/1E9 seconds long
generally is used to represent a time relative tonow.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this clas
are mutating instances will be doing their own synchronization at a higher level.

7.3.1 Constructors
public RelativeTime()

Equivalent to newRelativeTime(0,0).

public RelativeTime(long millis, int nanos)
Construct a newRelativeTime object from the given millisecond and
nanosecond components.

public RelativeTime(RelativeTime102 time)
Construct a newRelativeTime object from the givenRelativeTime.

7.3.2 Methods
public AbsoluteTime99 absolute(Clock110 clock,

AbsoluteTime99 destination)
Convert this time to an absolute time. For aRelativeTime, this involved
adding the clock’s conception of now to this interval and constructing a
newAbsoluteTime99 based on the sum.

Overrides:public abstract AbsoluteTime99 absolute(Clock110
clock, AbsoluteTime99 dest)97 in class
HighResolutionTime97

Parameters:
clock - If null Clock.getRealtimeClock() is used.
destination - If null it is set toc.getTime() otherwise

c.getTime(dest) is called.

public RelativeTime102 add(long millis, int nanos)
A new object is allocated for the result.

Parameters:
millis - Values are added to this.
nanos - Rest of value added to this.

public RelativeTime102 add(long millis, int nanos,
RelativeTime102 destination)

If destination is non-null, the result is placed there anddestination is
returned. Otherwise a new object is allocated for the result.

104 RELATIVETIME

ts

rtj.book Page 104 Sunday, April 30, 2000 4:37 PM
Parameters:
millis - Value is added to this.
nanos - Rest of value added to this.
destination - Result is placed here if non-null.

Returns: A RelativeTime. A result is always returned. A new object is
created ifdestination is null.

public final RelativeTime102 add(RelativeTime102 time)
Returnthis+time. A new object is allocated for the result.

Parameters:
time - Values are added to this.

public RelativeTime102 add(RelativeTime102 time,
RelativeTime102 destination)

Returnthis+time. If destination is non-null, the result is placed there
anddestination is returned. Otherwise a new object is allocated for the
result.

Parameters:
time - Values are added to this.
destimation - Result is placed here if non-null.

Returns: A RelativeTime. A Result is always returned. A new object is
created ifdestination is null.

public void addInterarrivalTo(AbsoluteTime99 destination)
Add this time to anAbsoluteTime99 . It is almost the same as
destination.add(this,dest) except that it accounts for (i.e., divides by)
the frequency.

public RelativeTime102 getInterarrivalTime(RelativeTime102
destination)

Return the interarrival time that is the result of dividing this interval by i
frequency. For aRelativeTime, andRationalTime105 s with a frequency
of 1, it just returns this. The interarrival time is necessarily an
approximation.

public final RelativeTime102 subtract(RelativeTime102 time)
Returnthis-time. A new object is allocated for the result.

Parameters:
time - Values are added to this.

public RelativeTime102 subtract(RelativeTime102 time,
RelativeTime102 destination)

TIME 105

that

eriod

t

s who

rtj.book Page 105 Sunday, April 30, 2000 4:37 PM
Returnthis-time. If destination is non-null, the result is placed there
anddestination is returned. Otherwise a new object is allocated for the
result

Parameters:
time - Values are subtracted from this.
destination - Result is placed here if non-null.

Returns: A RelativeTime. A result is always returned. A new object is
created ifdestination is null.

public java.lang.String toString()
Return a printable version of this time.

Overrides:java.lang.Object.toString() in class java.lang.Object

7.4 RationalTime

Syntax:public class RationalTime extends RelativeTime102

All Implemented Interfaces:java.lang.Comparable

An object that represents a time interval millis/1E3+nanos/1E9 seconds long
is divided into subintervals by some fequency. This is generally used in periodic
events, threads and feasibility analysis to specify periods where there is a basic p
that must be adhered to strictly (the interval), but within that interval the periodic
events are supposed to happenfrequency times, as uniformly spaced as possible, bu
clock and scheduling jitter is moderately acceptable.

Caution: This class is explicitly unsafe in multithreaded situations when it is
being changed. No synchronization is done. It is assumed that users of this clas
are mutating instances will be doing their own synchronization at a higher level.

7.4.1 Constructors
public RationalTime(int frequency)

Equivalent to newRationalTime(frequency,1000,0) which represents a
cycles-per-second value.

public RationalTime(int frequency, long millis, int nanos)
Create aRationalTime that indicatesfrequency occurrances of something
(e.g. firings of aPeriodicTimer114) in an interval of time millis/
1E3+nanos/1E9 seconds long.

106 RATIONAL TIME

l

nt

ion.

rtj.book Page 106 Sunday, April 30, 2000 4:37 PM
Parameters:
frequency - The number of occurrances indicated for the given

time.
millis - The millisecond component of the time interval.
nanos - The nanosecond component of the time interval.

Throws: IllegalArgumentException - Thrown if thefrequence, millis,
or nanos value is less than zero, or if the computed time interva
is less than or equal to zero.

public RationalTime(int frequency, RelativeTime102 interval)
Create aRationalTime that indicatesfrequency occurrances of something
(e.g. firings of aPeriodicTimer114) in aninterval of time.

Parameters:
frequency - The number of occurrances indicated for the given

interval.
interval - The interval expressed as aRelativeTime102 .

Throws: IllegalArgumentException - Thrown if thefrequence is less
than zero.

7.4.2 Methods
public AbsoluteTime99 absolute(Clock110 clock,

AbsoluteTime99 destination)
Convert this time to an absolute time, relative to some clock. Convenie
for situations where you really need an absolute time, but would like to
allow rational times to be used too. Allocates a destination object if
necessary. See the derived class comments for more specific informat

Overrides:public AbsoluteTime99 absolute(Clock110 clock,
AbsoluteTime99 destination)103 in classRelativeTime102

Parameters:
clock - TheClock110 reference for relative times.
destination - If null, a new object may or may not need to be

allocated for the result.

Returns: An AbsoluteTime99 version of this object.

public void addInterarrivalTo(AbsoluteTime99 destination)
Add this time to anAbsoluteTime99 . It is almost the same as
destination.add(this,destination) except that it accounts for (i.e.,
divides by) the frequency.

TIME 107

s

y
ing

s

 You

s;

rtj.book Page 107 Sunday, April 30, 2000 4:37 PM
Overrides:public void addInterarrivalTo(AbsoluteTime99
destination)104 in classRelativeTime102

public int getFrequency()
Return the frequency component of this.

public RelativeTime102 getInterarrivalTime(RelativeTime102 dest)
Return the interarrival time that is the result of dividing this interval by it’
frequency. ForRationalTime instances with a frequency of 1, it just
returns this. The interarrival time is necessarily an approximation (partl
because of numerical imprecision and partly because of clock/schedul
jitter).

Overrides:public RelativeTime102
getInterarrivalTime(RelativeTime102 destination)104 in
classRelativeTime102

public void set(long millis, int nanos)
Change the indicated interval of this to the sum of the values of the
arguments.

Overrides:public void set(long millis, int nanos)99 in class
HighResolutionTime97

Throws: IllegalArgumentException - Thrown if themillis, ornanos
value is less than zero, or if the computed time interval is les
than or equal to zero.

public void setFrequency(int frequency)
Change the frequency of this to the given value.

Throws: ArithmeticException - Thrown if the frequency is less than
zero.

HighResolutionTime Example

HighResolutionTime defines the base class for AbsoluteTime and RelativeTime.
cannot create HighResolutionTime objects directly, you must use one of the
subclasses:

AbsoluteTime at;
All high resolution times are a normal java time: a long(64 bit) time in millisecond
plus an offset in nanoseconds. All constructors take the same (milliseconds,
nanoseconds) parameters, along with some variants for convenience:

at = new AbsoluteTime(System.currentTimeMillis(), 0);
System.out.print(“at=” + at + “\n”);

108 RATIONAL TIME

tive

his

rtj.book Page 108 Sunday, April 30, 2000 4:37 PM
Relative times refer to an interval and can be added to another time:

RelativeTime step = new RelativeTime(0, 500); // 500 nanoseconds
System.out.print(“sum=” + at.add(step) + “\n”);

Offset computations can be performed more simply with built in methods:

System.out.print(“sum2=” + at.addNanoseconds(500) + “\n”);
All of the math methods return their results as a HighResolutionTime. They all
normally allocate a new object for their return value, but they all also have alterna
forms that allow the destination to be specified:

AbsoluteTime dest = new AbsoluteTime(0, 0);
at.add(step, dest);
System.out.print(“sum3=” + dest + “\n”);

The destination can be the same as the object to which the method is applied. T
allows for in-place modification of the time:

at.addNanoseconds(500, at);
System.out.print(“sum4=” + at + “\n”);

Output from running the example
at=Thu Mar 23 14:01:04 PST 2000+517ms
sum=Thu Mar 23 14:01:04 PST 2000+517000500ns
sum2=Thu Mar 23 14:01:04 PST 2000+517001000ns
sum3=Thu Mar 23 14:01:04 PST 2000+517000500ns
sum4=Thu Mar 23 14:01:04 PST 2000+517001000ns

TIMERS 109

vent

ay

he

hod,

rtj.book Page 109 Sunday, April 30, 2000 4:37 PM
C H A P T E R 8
Timers

This section contains classes that:

• Allow creation of a timer whose expiration is either periodic or set to occur at a
particular time as kept by a system-dependent time base (clock).

• Trigger some behavior to occur on expiration of a timer, using the asynchronous e
mechanisms provided by the specification.

The classes provided by this section areClock, Timer, PeriodicTimer, and
OneShotTimer.

An instance of theClock class is provided by the implementation. There is
normally one clock provided, the system real-time clock. This object provides the
mechanism for triggering behavior on expiration of a timer. It also reports the
resolution of timers provided by the implementation.

An instance ofPeriodicTimer fires an AsyncEvent at constant intervals.

An instance ofOneShotTimer describes an event that is to be triggered exactly
once at either an absolute time, or at a time relative to the creation of the timer. It m
be used as the source for timeouts.

Instances ofTimer are not used. TheTimer class provides the interface and
underlying implementation for both one-shot and periodic timers.

Semantics and Requirements

This list establishes the semantics and requirements that are applicable across t
classes of this section. Semantics that apply to particular classes, constructors,
methods and fields will be found in the class description and the constructor, met
and field detail sections.

110 CLOCK

ers

ly

y to

all

s in
e
odic
 the
e of

mple
onal

 is
me

rtj.book Page 110 Sunday, April 30, 2000 4:37 PM
1. TheClock class shall be capable of reporting the achievable resolution of tim
based on that clock.

2. TheOneShotTimer class shall ensure that a one-shot timer is triggered exact
once, regardless of whether or not the timer is enabled after expiration of the
indicated time.

3. ThePeriodicTimer class shall allow the period of the timer to be expressed in
terms of aRelativeTime or aRationalTime. In the latter case, the
implementation shall provide a best effort to perform any correction necessar
maintain the frequency at which the event occurs.

4. If a periodic timer is enabled after expiration of the start time, the first event sh
occur immediately and thus mark the start of the first period.

Rationale

The importance of the use of one-shot timers for timeout behavior and the vagarie
the execution of code prior to enabling the timer for short timeouts dictate that th
triggering of the timer should be guaranteed. The problem is exacerbated for peri
timers where the importance of the periodic triggering outweighs the precision of
start time. In such cases, it is also convenient to allow, for example, a relative tim
zero to be used as the start time for relative timers.

In many situations, it is important that a periodic task be represented as a
frequency and that the period remain synchronized. In these cases, a relatively si
correction can be enforced by the implementation at the expense of some additi
overhead for the timer.

8.1 Clock

Syntax:public abstract class Clock

A clock advances from the past, through the present, into the future. It has a
concept ofnowthat can be queried throughpublic AbsoluteTime99 getTime()111 ,
and it can have events queued on it which will be fired when their appointed time
reached. There are many possible subclasses of clocks: real-time clocks, user ti
clocks, simulation time clocks. The idea of using multiple clocks may at first seem
unusual but we allow it as a possible resource allocation strategy.

TIMERS 111

rent
n
ave

s
al
f

ces
duced.

ces

te
nts
and

the
e

rtj.book Page 111 Sunday, April 30, 2000 4:37 PM
Consider a real-time system where the natural events of the system have diffe
tolerances for jitter (jitter refers to the distribution of the differences between whe
the events are actually raised or noticed by the software and when they should h
really occurred according to time in the real-world). Assume the system function
properly if eventA is noticed or raised within plus or minus 100 seconds of the actu
time it should occur but eventB must be noticed or raised within 100 microseconds o
its actual time. Further assume, without loss of generality, that eventsA andB are
periodic. An application could then create two instances ofPeriodicTimer114 based
on two clocks. The timer for eventB should be based on aClock which checks its
queue at least every 100 microseconds but the timer for eventA could be based on a
Clock that checked its queue only every 100 seconds. This use of two clock redu
the queue size of the accurate clock and thus queue management overhead is re

8.1.1 Constructors
public Clock()

8.1.2 Methods
public static Clock110 getRealtimeClock()

There is always one clock object available: a realtime clock that advan
in sync with the external world. This is the defaultClock.

Returns: An instance of the defaultClock.

public abstract RelativeTime102 getResolution()
Return the resolution of the clock, that is, the interval between ticks. No
that neither a clock or any software using this clock can know about eve
that occur between ticks. In some sense all events happen in the past
we only care if the past gets too long.

Returns: A RelativeTime102 object representing the resolution of this.

public AbsoluteTime99 getTime()
Return the current time in a freshly allocated object.

Returns: An AbsoluteTime99 that represents the current time of this.

public abstract void getTime(AbsoluteTime99 time)
Return the current time in an existing object. The time represented by
givenAbsoluteTime99 is changed some time between the invocation of th
method and the return of the method.

Parameters:
time - TheAbsoluteTime99 object which will have its time

changed. If null then nothing happens.

112 TIMER

 is

se

n-

is

rtj.book Page 112 Sunday, April 30, 2000 4:37 PM
public abstract void setResolution(RelativeTime102 resolution)
Sets the resolution of this. For some hardware clocks setting resolution
impossible and if called for one those nothing happens.

Parameters:
resolution - The new resolution of this.

8.2 Timer

Syntax:public abstract class Timer extends AsyncEvent127

Direct Known Subclasses:OneShotTimer113, PeriodicTimer114

A Timer is a timed event that measures time relative to a givenClock110 . This
class defines basic functionality available to all timers. Applications will generally u
eitherPeriodicTimer114 to create an event that is fired repeatedly at regular
intervals, orOneShotTimer113 for an event that just fires once at a specific time. A
timer is always based on aClock110 , which provides the basic facilities of something
that ticks along following some time line (real-time, cpu-time, user-time, simulatio
time, etc.). All timers are created disabled and do nothing untilstart() is called.

8.2.1 Constructors
protected Timer(HighResolutionTime97 t, Clock110 c,

AsyncEventHandler129 handler)
Create aTimer.

Parameters:
t - The time to fire the event. Will be converted to absolute time.
c - TheClock110 on which to base this time. If null, the system

realtime clock is used.
handler - The default handler to use for this event. If null, no

handler is associated with it and nothing will happen when th
event fires until a handler is provided.

8.2.2 Methods
public ReleaseParameters43 createReleaseParameters()

Overrides:public ReleaseParameters43
createReleaseParameters()128 in classAsyncEvent127

TIMERS 113

t
nd
d

sed

ime,

rtj.book Page 113 Sunday, April 30, 2000 4:37 PM
public void disable()
Disable this timer, preventing it from firing. It may subsequently be re-
enabled. If the timer is disabled when its fire time occurs, then it will no
fire. However, a disabled timer continues to count while it is disabled, a
if it is subsequently re-enabled before its fire time occurs and is enable
when its fire time occurs it will fire then. If it is enabled after its fire time
has occurred then it will fire immediately.

public void enable()
Re-enable this timer after it has been disabled.

public Clock110 getClock()
Used to determine the clock with which this is associated and is thus u
to decrement the implicit counter for this.

Returns: A Clock110 object which is the clock associated with this.

public AbsoluteTime99 getFireTime()
Get the time at which this event will fire. The value returned is not
dependent on whether or not this is enabled or disabled.

Returns: An AbsoluteTime99 object representing the absolute time at
which this will fire.

public void reschedule(HighResolutionTime97 time)
Change the scheduled time for this event. Can take either absolute or
relative times.

Parameters:
time - The new time at which this will fire. If null the previous fire

time is still the time at which this will fire.

public void start()
A Timer starts measuring time from when it is started.

8.3 OneShotTimer

Syntax:public class OneShotTimer extends Timer112

A timedAsyncEvent127 that is driven by a clock. It will fire off once, when the
clock time reaches the timeout time. If clock time has already passed the timeout t
it will fire immediately.

8.3.1 Constructors

114 PERIODICTIMER

e
s of
will

 it

rtj.book Page 114 Sunday, April 30, 2000 4:37 PM
public OneShotTimer(HighResolutionTime97 time,
AsyncEventHandler129 handler)

Create an instance ofAsyncEvent127 that will execute its fire method at the
expriration of the given time.

Parameters:
time - Will fire attime.absolute(). Null equalsnow.
handler - TheAsyncEventHandler129 that will be scheduled when

AsyncEvent.fire() is executed.

public OneShotTimer(HighResolutionTime97 start, Clock110 clock,
AsyncEventHandler129 handler)

Create an instance ofAsyncEvent127 , based on the given clock, that will
execute its fire method at the expriration of the given time.

Parameters:
start - Will fire atstart.absolute(). Null equalsnow.
clock - The timer will increment based on this clock.
handler - TheAsyncEventHandler129 that will be scheduled when

AsyncEvent.fire() is executed.

8.4 PeriodicTimer

Syntax:public class PeriodicTimer extends Timer112

An AsyncEvent127 whose fire method is executed periodically according to th
given parameters. If a clock is given calculation of the period uses the increment
the clock. If an interval is given or set the system gurantees that the fire method
executeinterval time units after the last execution or its given start time as
appropriate. If one of theHighResolutionTime97 argument types is
RationalTime105 then the system gurantees that the fire method will be executed
exactlyfrequency times every unit time (seeRationalTime105 constructors) by
adjusting the interval between executions offire().

This is similar to a thread withPeriodicParameters45 except that it is lighter
weight.

If a PeriodicTimer is disabled it still counts and if enabled at some later time
will fire at its next scheduled fire time.

8.4.1 Constructors

TIMERS 115

 is

rtj.book Page 115 Sunday, April 30, 2000 4:37 PM
public PeriodicTimer(HighResolutionTime97 start,
RelativeTime102 interval,
AsyncEventHandler129 handler)

Create an instance ofAsyncEvent127 that executes itfire() method
periodically.

Parameters:
start - When the first interval begins. Null equalsnow.
interval - The time between successive executions of thefire()

method.
handler - The instance ofAsyncEventHandler129 that will be

scheduled each time the fire method is executed.

public PeriodicTimer(HighResolutionTime97 start,
RelativeTime102 interval, Clock110 clock,
AsyncEventHandler129 handler)

Create an instance ofAsyncEvent127 that executes itfire() method
periodically.

Parameters:
start - When the first interval begins. Null equalsnow.
interval - The time between successive executions of thefire()

method.
clock - TheClock110 whose increments are used to calculate the

interval.
handler - The instance ofAsyncEventHandler129 that will be

scheduled each time the fire method is executed.

8.4.2 Methods
public ReleaseParameters43 createReleaseParameters()

Create aReleaseParameters43 object with the next fire time as the start
time and the interval of this as the period.

Overrides:public ReleaseParameters43
createReleaseParameters()112 in classTimer112

public void fire()
The only real difference between a periodic timer and a one-shot timer
that a periodic timer contiues to fire once each period.

Overrides:public synchronized void fire()128 in class
AsyncEvent127

public AbsoluteTime99 getFireTime()
Get the next time at which this will fire. The value returned is not
dependent on whether or not this is enabled or disabled.

116 PERIODICTIMER

rtj.book Page 116 Sunday, April 30, 2000 4:37 PM
Overrides:public AbsoluteTime99 getFireTime()113 in classTimer112

Returns: An AbsoluteTime99 object representing the absolute time at
which this will fire.

public RelativeTime102 getInterval()
Return the interval of thisTimer112 .

Returns: A RelativeTime102 object which is the current interval of this.

public void setInterval(RelativeTime102 interval)
Reset the interval of thisTimer112 .

Timer Example

Here’s a definition of the Scheduling parameters for a high priority task that we’ll
create later:

SchedulingParameters highPriority =
new SchedulingParameters(RealtimeThread.getMaxPriority());

This method is a generic testbed for showing what timers do:

private static void TestTimer(String title, Timer t)
throws AdmissionControlException

{
System.out.print(“\n” + title + “ test:\n”);

Figure out the start time:

final long T0 = t.getFireTime().getMilliseconds();
Ask the timer to create the appropriate release parameters:

ReleaseParameters rp = t.createReleaseParameters();
Fill in a guess at the handlers runtime:

rp.setCost(new RelativeTime(10, 0)); // a guess at runtime in
System.out.print(“ Release parameters=” + rp + “\n”);

Add a handler that prints a message when the timer fires off:

t.addHandler(new AsyncEventHandler(highPriority, rp, null) {
public void handleAsyncEvent() {

System.out.print(“ Timer went off at ”
+ (System.currentTimeMillis() - T0) + “\n”);
}

});
Give the timer a kick:

t.start();

TIMERS 117

rtj.book Page 117 Sunday, April 30, 2000 4:37 PM
And wait a while to watch things happen:

try {
Thread.sleep(1000);

} catch(InterruptedException ie) {
}
System.out.print(“ After sleeping, t=”
+ (System.currentTimeMillis() - T0) + “\n”);

Run the test bed with a one shot timer:

TestTimer(“One Shot”,
new OneShotTimer(new RelativeTime(100, 0), null));

Then with a periodic timer:

TestTimer(“Periodic”,
new PeriodicTimer(new RelativeTime(100, 0),
new RelativeTime(100, 0), null));

118 PERIODICTIMER

rtj.book Page 118 Sunday, April 30, 2000 4:37 PM
Output from running the example
Realtime clock initializer

One Shot test:
Release parameters=javax.realtime.PeriodicParameters@7b7072

12 schedule javax.realtime.OneShotTimer@136228
Clock thread running

20 waiting 83
117 deschedule javax.realtime.OneShotTimer@136228
130 waiting 10000

Timer went off at 33
After sleeping, t=915

Periodic test:
Release parameters=javax.realtime.PeriodicParameters@4672d0
1023 schedule javax.realtime.PeriodicTimer@1bd03e
1029 waiting 91
1127 deschedule javax.realtime.PeriodicTimer@1bd03e
1132 deschedule javax.realtime.PeriodicTimer@1bd03e
1138 schedule javax.realtime.PeriodicTimer@1bd03e
1143 deschedule javax.realtime.PeriodicTimer@1bd03e
1150 deschedule javax.realtime.PeriodicTimer@1bd03e
1155 schedule javax.realtime.PeriodicTimer@1bd03e
1160 deschedule javax.realtime.PeriodicTimer@1bd03e
1165 deschedule javax.realtime.PeriodicTimer@1bd03e
1171 schedule javax.realtime.PeriodicTimer@1bd03e
1176 deschedule javax.realtime.PeriodicTimer@1bd03e
1178 deschedule javax.realtime.PeriodicTimer@1bd03e
1179 schedule javax.realtime.PeriodicTimer@1bd03e
1180 deschedule javax.realtime.PeriodicTimer@1bd03e
1181 deschedule javax.realtime.PeriodicTimer@1bd03e
1182 schedule javax.realtime.PeriodicTimer@1bd03e
1183 deschedule javax.realtime.PeriodicTimer@1bd03e
1184 deschedule javax.realtime.PeriodicTimer@1bd03e
1186 schedule javax.realtime.PeriodicTimer@1bd03e
1187 deschedule javax.realtime.PeriodicTimer@1bd03e
1188 deschedule javax.realtime.PeriodicTimer@1bd03e
1189 schedule javax.realtime.PeriodicTimer@1bd03e
1190 deschedule javax.realtime.PeriodicTimer@1bd03e
1192 deschedule javax.realtime.PeriodicTimer@1bd03e
1193 schedule javax.realtime.PeriodicTimer@1bd03e
1194 deschedule javax.realtime.PeriodicTimer@1bd03e
1195 deschedule javax.realtime.PeriodicTimer@1bd03e
1196 schedule javax.realtime.PeriodicTimer@1bd03e
1199 deschedule javax.realtime.PeriodicTimer@1bd03e
1200 deschedule javax.realtime.PeriodicTimer@1bd03e
1201 schedule javax.realtime.PeriodicTimer@1bd03e
1202 deschedule javax.realtime.PeriodicTimer@1bd03e
1203 deschedule javax.realtime.PeriodicTimer@1bd03e
1205 schedule javax.realtime.PeriodicTimer@1bd03e
1206 deschedule javax.realtime.PeriodicTimer@1bd03e
1208 deschedule javax.realtime.PeriodicTimer@1bd03e
1209 schedule javax.realtime.PeriodicTimer@1bd03e
1210 deschedule javax.realtime.PeriodicTimer@1bd03e
1211 deschedule javax.realtime.PeriodicTimer@1bd03e

TIMERS 119

rtj.book Page 119 Sunday, April 30, 2000 4:37 PM
1212 schedule javax.realtime.PeriodicTimer@1bd03e
1213 deschedule javax.realtime.PeriodicTimer@1bd03e
1214 deschedule javax.realtime.PeriodicTimer@1bd03e
1216 schedule javax.realtime.PeriodicTimer@1bd03e
1217 deschedule javax.realtime.PeriodicTimer@1bd03e
1218 deschedule javax.realtime.PeriodicTimer@1bd03e
1219 schedule javax.realtime.PeriodicTimer@1bd03e
1220 deschedule javax.realtime.PeriodicTimer@1bd03e
1221 deschedule javax.realtime.PeriodicTimer@1bd03e
1223 schedule javax.realtime.PeriodicTimer@1bd03e
1224 deschedule javax.realtime.PeriodicTimer@1bd03e
1225 deschedule javax.realtime.PeriodicTimer@1bd03e
12 Timer went off at 107
Timer went off at 159
Timer went off at 159
Timer went off at 159
Timer went off at 160
Timer went off at 160
Timer went off at 160
Timer went off at 160
Timer went off at 161
Timer went off at 161
Timer went off at 161
Timer went off at 161
Timer went off at 162
Timer went off at 162
Timer went off at 162
Timer went off at 162

26 schedule javax.realtime.PeriodicTimer@1bd03e
Timer went off at 164
1284 deschedule javax.realtime.PeriodicTimer@1bd03e
1285 deschedule javax.realtime.PeriodicTimer@1bd03e
1287 schedule javax.realtime.PeriodicTimer@1bd03e
Timer went off at 168
1289 deschedule javax.realtime.PeriodicTimer@1bd03e
1290 deschedule javax.realtime.PeriodicTimer@1bd03e
1291 schedule javax.realtime.PeriodicTimer@1bd03e
Timer went off at 173
1293 deschedule javax.realtime.PeriodicTimer@1bd03e
1294 deschedule javax.realtime.PeriodicTimer@1bd03e
1295 schedule javax.realtime.PeriodicTimer@1bd03e
Timer went off at 178
1298 deschedule javax.realtime.PeriodicTimer@1bd03e
1299 deschedule javax.realtime.PeriodicTimer@1bd03e
1301 schedule javax.realtime.PeriodicTimer@1bd03e
Timer went off at 182
1303 deschedule javax.realtime.PeriodicTimer@1bd03e
1304 deschedule javax.realtime.PeriodicTimer@1bd03e
1305 schedule javax.realtime.PeriodicTimer@1bd03e
Timer went off at 186
1307 deschedule javax.realtime.PeriodicTimer@1bd03e
1308 deschedule javax.realtime.PeriodicTimer@1bd03e
1309 schedule javax.realtime.PeriodicTimer@1bd03e
Timer went off at 191
1311 deschedule javax.realtime.PeriodicTimer@1bd03e
1312 deschedule javax.realtime.PeriodicTimer@1bd03e

120 PERIODICTIMER

rtj.book Page 120 Sunday, April 30, 2000 4:37 PM
1314 schedule javax.realtime.PeriodicTimer@1bd03e
Timer went off at 195
1315 deschedule javax.realtime.PeriodicTimer@1bd03e
1317 deschedule javax.realtime.PeriodicTimer@1bd03e
1318 schedule javax.realtime.PeriodicTimer@1bd03e
Timer went off at 199
1320 deschedule javax.realtime.PeriodicTimer@1bd03e
1321 deschedule javax.realtime.PeriodicTimer@1bd03e
1322 schedule javax.realtime.PeriodicTimer@1bd03e
Timer went off at 204
1324 deschedule javax.realtime.PeriodicTimer@1bd03e
1325 deschedule javax.realtime.PeriodicTimer@1bd03e
1378 schedule javax.realtime.PeriodicTimer@1bd03e
Timer went off at 260
1380 deschedule javax.realtime.PeriodicTimer@1bd03e
1381 deschedule javax.realtime.PeriodicTimer@1bd03e
1382 schedule javax.realtime.PeriodicTimer@1bd03e
Timer went off at 264
1384 deschedule javax.realtime.PeriodicTimer@1bd03e
1385 deschedule javax.realtime.PeriodicTimer@1bd03e
1387 schedule javax.realtime.PeriodicTimer@1bd03e
Timer went off at 268
After sleeping, t=907

ASYNCHRONY 121

of

f
eal-

ed in

read.

rtj.book Page 121 Sunday, April 30, 2000 4:37 PM
C H A P T E R 9
Asynchrony

This section contains classes that:

• Provide mechanisms that bind the execution of program logic to the occurrence
internal and external events.

• Provide mechanisms that allow the asynchronous transfer of control.
• Provide mechanisms that allow the asynchronous termination of threads.

This specification provides several facilities for arranging asynchronous control o
execution, some of which apply to threads in general while others apply only to r
time threads. These facilities fall into two main categories: asynchronous event
handling and asynchronous transfer of control (ATC), which includes thread
termination.

Asynchronous event handling is captured by the non-abstract classAsyncEvent

and the abstract classesAsyncEventHandler andBoundAsyncEventHandler. An
instance of theAsyncEvent class is an object corresponding to the possibility of an
asynchronous event occurrence. An event occurrence may be initiated by either
application logic or by the occurrence of ahappening external to the JVM (such as a
software signal or a hardware interrupt handler). An event occurrence is express
program logic by the invocation of the fire() method of an instance of the
AsyncEvent class. The initiation of an event occurrence due to a happening is
implementation dependent.

An instance of the classAsyncEventHandler is an object embodying code that is
scheduled in response to the occurrence of an event. Therun() method of an instance
of AsyncEventHandler acts like a thread, and indeed one of its constructors takes
references to instances ofSchedulingParameters, ReleaseParameters, and
MemoryParameters. However, there is not necessarily a separate thread for each
run() method. The classBoundAsyncEventHandler extendsAsyncEventHandler,
and should be used if it is necessary to ensure that a handler has a dedicated th

122 PERIODICTIMER

ead,
n

s

ing
g a

eral
ing
or a
 the

vent
elds
il

)

ndler.

rtj.book Page 122 Sunday, April 30, 2000 4:37 PM
An event count is maintained so that a handler can cope with event bursts —-
situations where an event is fired more frequently than its handler can respond.

Theinterrupt() method injava.lang.Thread provides rudimentary
asynchronous communication by setting a pollable/resettable flag in the target thr
and by throwing a synchronous exception when the target thread is blocked at a
invocation ofwait(), sleep(), orjoin(). This specification extends the effect of
Thread.interrupt() and adds an overloaded version inRealtimeThread, offering a
more comprehensive and non-polling asynchronous execution control facility. It i
based on throwing and propagating exceptions that, though asynchronous, are
deferred where necessary in order to avoid data structure corruption. The main
elements of ATC are embodied in the classAsynchronouslyInterruptedException

(AIE), its subclassTimed, the interfaceInterruptible, and in the semantics of the
interrupt methods inThread andRealtimeThread.

A method indicates its willingness to be asynchronously interrupted by includ
AIE on itsthrows clause. If a thread is asynchronously interrupted while executin
method that identifies AIE on itsthrows clause, then an instance of AIE will be
thrown as soon as the thread is outside of a section in which ATC is deferred. Sev
idioms are available for handling an AIE, giving the programmer the choice of us
catch clauses and a low-level mechanism with specific control over propagation,
higher-level facility that allows specifying the interruptible code, the handler, and
result retrieval as separate methods.

Semantics and Requirements

This list establishes the semantics and requirements that are applicable to AsyncE
objects. Semantics that apply to particular classes, constructors, methods and fi
will be found in the class description and the constructor, method, and field deta
sections.

1. When an instance ofAsyncEvent occurs (by either program logic or a happening
all run() methods of instances of theAsyncEventHandler class that have been
added to the instance ofAsyncEvent by the execution ofaddHandler() are
scheduled for execution. This action may or may not be idempotent. Every
occurrence of an event causes a increments a counter in each associated ha
Handlers may elect to execute logic for each occurrence of the event or not.

2. Instances ofAsyncEvent andAsyncEventHandler may be created and used by
any program logic.

3. More than one instance ofAsyncEventHandler may be added to an instance of
AsyncEvent.

ASYNCHRONY 123

f

,

at

s

ise

 set
es

n

rtj.book Page 123 Sunday, April 30, 2000 4:37 PM
4. An instance ofAsyncEventHandler may be added to more than one instance o
AsyncEvent.

This list establishes the semantics and requirements that are applicable to
AsynchronouslyInterruptedException. Semantics that apply to particular classes
constructors, methods and fields will be found in the class description and the
constructor, method, and field detail sections.

1. Instances of the classAsynchronouslyInterruptedException can be generated
by execution of program logic and by internal virtual machine mechanisms th
are asynchronous to the execution of program logic which is the target of the
exception.

2. Program logic that exists in methods that throw
AsynchronouslyInterruptedException is subject to receiving an instance of
AsynchronouslyInterruptedException at any time during execution.

3. The RTSJ specifically requires that blocking methods injava.io.* must be
prevented from blocking indefinitely when invoked from a method with AIE in it
throws clause. The implementation, when eitherAIE.fire() or
RealtimeThread.interrupt() is called when control is in ajava.io.* method
invoked from an interruptible method, may either unblock the blocked call, ra
anIOException on behalf of the call, or allow the call to complete normally if the
implementation determines that the call would eventually unblock.

4. Program logic executing within asynchronized block within a method with
AsynchronouslyInterruptedException in itsthrows clause is not subject to
receiving an instance of AIE. The interrupted state of the execution context is
to pending and the program logic will receive the instance when control pass
out of thesynchronized block if other semantics in this list so indicate.

5. Constructors are allowed to includeAsynchronouslyInterruptedException in
theirthrows clause and will thus be interruptible.

Definitions

The RTSJ’s approach to ATC is designed to follow these principles. It is based o
exceptions and is an extension of the current Java language rules for
java.lang.Thread.interrupt(). The following terms and abbreviations will be
used:

ATC - Asynchronous Transfer of Control

AIE - (Asynchronously Interrupted Exception) The class
javax.realtime.AsynchronouslyInterruptedException, a subclass of
java.lang.InterruptedException.

124 PERIODICTIMER

ny

e.

the

pt
2,

on
n to
IE.

st

atural

e

rtj.book Page 124 Sunday, April 30, 2000 4:37 PM
AI - (Asynchronously Interruptible) A method is said to be asynchronously
interruptible if it includes AIE in its throws clause.

ATC-deferred section- a synchronized method, a synchronized statement, or a
method or constructor without AIE in its throws clause.

Summary of Operation

In summary, ATC works as follows:

If t is an instance ofRealtimeThread or NoHeapRealtimeThread and
t.interrupt() or AIE.fire() is executed by any thread in the system then:

1. If control is in a ATC-deferred section, then the AIE is put into a pending stat

2. If control is in an AI method and not in atry block or a synchronized block, then
the method from which the AI method had been invoked immediately receives
fired AIE without further execution of the logic in the AI method and the AIE’s
state is set to pending.

3. As with normal Java exception semantics, if control is within atry block
contained within an AI method control transfers to the first statement of the
appropriatecatch clause. If no appropriatecatch clause exists, then the calling
method receives the fired AIE and the AIE’s state is set to pending.

4. If control is in eitherwait(), sleep(), or join(), the thread is awakened and the
fired AIE (which is a subclass of InterruptedException) is thrown. Then ATC
follows option 1, 2, or 3 as appropriate.

5. If control is in a non-AI method, control continues normally until the first attem
to return to an AI method or invoke an AI method. Then ATC follows option 1,
or 3 as appropriate.

6. If control is transferred from a non-AI method to an AI method through the acti
of propagating an exception and if an AIE is pending then when the transitio
the AI-method occurs the thrown exception is discarded and replaced by the A

If an AIE is in a pending state then this AIE is thrown only when:

1. Control enters an AI-method.

2. Control returns to an AI-method.

3. Control leaves a synchronized block within an AI-method.

Whenhappened() is called on an AIE or that AIE is superseded by another the fir
AIE’s state is made non-pending.

An AIE may be raised while another AIE is pending or in action. Because AI
code blocks are nested by method invocation (a stack-based nesting) there is a n
precedence among active instances of AIE. Let AIE_0 be the AIE raised when
t.interrupt() is invoked and AIE_i (i = 1,...,n, for n unique instances of AIE) be th

ASYNCHRONY 125

e
eper

ny

E

er

r

and
ble).

alls
t the
g

ction

ssary

rge
rhaps
 be
. The
ler

rtj.book Page 125 Sunday, April 30, 2000 4:37 PM
AIE raised when AIE_i.fire() is invoked. Assume stacks grow down and therefor
the phrase “a frame lower on the stack than this frame” refers to a method at a de
nesting level. y

1. If the current AIE is an AIE_0 and the new AIE is an AIE_x associated with a
frame on the stack then the new AIE (AIE_x) is discarded.

2. If the current AIE is an AIE_x and the new AIE is an AIE_0, then the current AI
(AIE_x) is replaced by the new AIE (AIE_0).

3. If the current AIE is an AIE_x and the new AIE is an AIE_y from a frame low
on the stack, then the new AIE discarded.

4. If the current AIE is an AIE_x and the new AIE is an AIE_y from a frame highe
on the stack, the current AIE is replaced by the new AIE.

Non-Blocking I/O

The RTSJ will provide mechanisms and programming disciplines to allow
applications to bound waiting on I/O calls. There are two cases: (1) the device on
which I/O is being performed (and thus its associated stream) is no longer needed
(2) timed, non-blocking I/O (where the device and associated streams remain via
For case 1 the RTSJ requires that whenstream.close() is called on a stream all
blocked I/O calls will throw appropriate instances ofIOException. Note that this
requirement adds additional semantics to stream.close() which require blocked c
to throw an appropriate exception in addition to just checking for closed streams a
commencement of the I/O call. For case 2 the RTSJ recommends a programmin
discipline in which one thread uses the blocking calls from java.io.* and provides
timed, non-blocking methods used by other threads. (See the examples in the se
on asynchrony).

Rationale

The design of the asynchronous event handling was intended to provide the nece
functionality while allowing efficient implementations and catering to a variety of
real-time applications. In particular, in some real-time systems there may be a la
number of potential events and event handlers (numbering in the thousands or pe
even the tens of thousands), although at any given time only a small number will
used. Thus it would not be appropriate to dedicate a thread to each event handler
RTSJ addresses this issue by allowing the programmer to specify an event hand
either as not bound to a specific thread (the classAsyncEventHandler) or alternatively
as bound to a thread (BoundAsyncEventHandler).

126 PERIODICTIMER

This
to

here
d the

ly
tten
ould
tion

te.

s

ty to
ote

 of

t a

n
ing
 will
, if a
 as

rtj.book Page 126 Sunday, April 30, 2000 4:37 PM
Events are dataless: the fire method does not pass any data to the handler.
was intentional in the interest of simplicity and efficiency. An application that needs
associate data with anAsyncEvent can do so explicitly by setting up a buffer; it will
then need to deal with buffer overflow issues as required by the application.

The ability for one thread to trigger an ATC in another thread is necessary in
many kinds of real-time applications but must be designed carefully in order to
minimize the risks of problems such as data structure corruption and deadlock. T
is, invariably, a tension between the desire to cause an ATC to be immediate, an
desire to ensure that certain sections of code are executed to completion.

One basic decision was to allow ATC in a method only if the method explicit
permits this. The default of no ATC is reasonable, since legacy code might be wri
expecting no ATC, and asynchronously aborting the execution of such a method c
lead to unpredictable results. Since the natural way to model ATC is with an excep
(AsynchronouslyInterruptedException, or AIE), the way that a method indicates
its susceptibility to ATC is by including AIE on itsthrows clause. Causing this
exception to be thrown in a threadt as an effect of callingt.interrupt() was a
natural extension of the semantics of interrupt as currently defined by
java.lang.Thread.

One ATC-deferred section issynchronized code. This is a context that needs to
be executed completely in order to ensure a program operates correctly. If
synchronized code is aborted, a shared object could be left in an inconsistent sta

Constructors andfinally clauses are subject to interruption. If a constructor i
aborted, an object might be only partially initialized. If afinally clause is aborted,
needed cleanup code might not be performed. It is the programmer’s responsibili
ensure that executing these constructs does not induce unwanted ATC latency. N
that by making synchronized code ATC-deferred, this specification avoids the
problems that causedThread.stop() to be deprecated and that have made the use
Thread.destroy() prone to deadlock.

A potential problem with using the exception mechanism to model ATC is tha
method with a “catch-all” handler (for example acatch clause identifyingException
or evenThrowable as the exception class) can inadvertently intercept an exceptio
intended for a caller. This problem is avoided by having special semantics for catch
an instance of AIE. Even though a catch clause may catch an AIE, the exception
be propagated unless the handler invokes the happened method from AIE. Thus
thread is asynchronously interrupted while in a try block that has a handler such

catch (Throwable e){ return; }

then the AIE instance will still be propagated to the caller.

ASYNCHRONY 127

ad;
ot be

me

 the

ts
a

eing
r

ters

rtj.book Page 127 Sunday, April 30, 2000 4:37 PM
This specification does not provide a special mechanism for terminating a thre
ATC can be used to achieve this effect. This means that, by default, a thread cann
terminated; it needs to invoke methods that have AIE in theirthrows clauses.
Allowing termination as the default would have been questionable, bringing the sa
insecurities that are found inThread.stop() andThread.destroy().

9.1 AsyncEvent

Syntax:public class AsyncEvent

Direct Known Subclasses:Timer112

An asynchronous event represents something that can happen - like a light
turning red. It can have a set of handlers associated with it and the event occurs
handler is scheduled by the scheduler to which it holds a reference (see
AsyncEventHandler129 andScheduler36).

A major motivator for this style of building events is that we expect to have lo
of events and lots of event handlers. An event handler is logically very similar to
thread, but it is intended to have a much lower cost (in both time and space) -
assuming that a relatively small number of events are fired and in the process of b
handled at once.AsyncEvent.fire() differs from a method call because the handle
(a) has scheduling parameters and (b) is executed asynchronously.

9.1.1 Constructors
public AsyncEvent()

9.1.2 Methods
public synchronized void addHandler(AsyncEventHandler129 handler)

Add a handler to the set of handlers associated with this event. An
AsyncEvent may have more than one associated handler.

Parameters:
handler - The new handler to add to the list of handlers already

associated with this. Ifhandler is null then nothing happens.
Since this affects the constraints expressed in the release parame

of the existing schedulable objects, this may change the
feasibility of the current schedule.

128 ASYNCEVENT

f

rs

ith

g

.

f the
ent

,

rtj.book Page 128 Sunday, April 30, 2000 4:37 PM
public void bindTo(java.lang.String happening)
Binds this to an external event (a happening). The meaningful values o
happening are implementation dependent. ThisAsyncEvent is considered
to have occurred whenever the external event occurs.

Parameters:
happening - An implementation dependent value that binds this

AsyncEvent to some external event.

public ReleaseParameters43 createReleaseParameters()
Create aReleaseParameters43 block appropriate to the timing
characteristics of this event. The default is the most pessimistic:
AperiodicParameters47 . This is typically called by code that is setting up
a handler for this event that will fill in the parts of the release paramete
that it knows the values for, like cost.

public synchronized void fire()
Fire (schedule therun() methods of) the handlers associated with this
event.

public boolean handledBy(AsyncEventHandler129 target)
Returns true if and only if this event is handled by this handler.

Parameters:
target - The handler to be tested to determine if it is associated w

this. Returns false iftarget is null.

public synchronized void removeHandler(AsyncEventHandler129
handler)

Remove a handler from the set associated with this event.

Parameters:
handler - The handler to be disassociated from this. If null nothin

happens. If not already associated with this then nothing
happens.

public synchronized void setHandler(AsyncEventHandler129 handler)
Associate a new handler with this event, removing all existing handlers

Since this affects the constraints expressed in the release parameters o
existing schedulable objects, this may change the feasibility of the curr
schedule.

Parameters:
handler - The new and only handler to be associated with this. If

handler is null then no handler will be associated with this (i.e.
remove all handlers).

ASYNCHRONY 129

after

 per
ively

s
ring

ort

ir

se a

d, if

rtj.book Page 129 Sunday, April 30, 2000 4:37 PM
9.2 AsyncEventHandler

Syntax:public abstract class AsyncEventHandler implements Schedulable35

Direct Known Subclasses:BoundAsyncEventHandler134

All Implemented Interfaces:java.lang.Runnable,Schedulable35

An asynchronous event handler encapsulates code that gets run at some time
anAsyncEvent127 occurs.

It is essentially ajava.lang.Runnable with a set of parameter objects - making
it very much like aRealtimeThread23 . The expectation is that there may be
thousands of events, with corresponding handlers, averaging about one handler
event. The number of unblocked (i.e., scheduled) handlers is expected to be relat
small.

It is guaranteed that multiple firings of an event handler will be serialized. It i
also guaranteed that (unless the handler explicitly chooses otherwise) for each fi
of the handler there will be one execution of thehandleAsyncEvent() method.

There is no restriction on what handlers may do. They may run for a long or sh
time, and they may block. (Note: blocked handlers may hold system resources.)

Normally, handlers are bound to an execution context dynamically, when the
AsyncEvent127 occurs. This can introduce a (small) time penalty. For critical
handlers that can not afford the expense, and where this penalty is a problem, u
BoundAsyncEventHandler134 .

9.2.1 Constructors
public AsyncEventHandler()

Create a handler whoseSchedulingParameters40 are inherited from the
current thread and does not have eitherReleaseParameters43 or
MemoryParameters79 .

public AsyncEventHandler(boolean nonheap)
Create a handler whose parameters are inherited from the current threa
it is aRealtimeThread23 , or null otherwise.

Parameters:
nonheap - A flag meaning, when true, that this will have

characteristics identical to aNoHeapRealtimeThread27 . A false
value means this will have characteristics identical to a

130 ASYNCEVENTHANDLER

ill

ill

rtj.book Page 130 Sunday, April 30, 2000 4:37 PM
RealtimeThread23 . If true and the current thread isnot a
NoHeapRealtimeThread27 or aRealtimeThread23 executing
within aScopedMemory62 or ImmortalMemory62 scope then an
IllegalArgumentException is thrown.

public AsyncEventHandler(SchedulingParameters40 scheduling,
ReleaseParameters43 release,
MemoryParameters79 memory, MemoryArea60 area,
ProcessingGroupParameters50 group)

Create a handler with the specified parameters.

Parameters:
release - A ReleaseParameters43 object which will be associated

with the constructed instance of this. If null this will have no
ReleaseParameters43 .

scheduling - A SchedulingParameters40 object which will be
associated with the constructed instance of this. If null this w
be assigned the reference to theSchedulingParameters40 of
the current thread.

memory - A MemoryParameters79 object which will be associated
with the constructed instance of this. If null this will have no
MemoryParameters79 .

area - TheMemoryArea60 for this. If null the memory area will be
that of the current thread.

group - A ProcessingGroupParameters50 object to which this will
be associated. If null this will not be associated with any
processing group.

public AsyncEventHandler(SchedulingParameters40 scheduling,
ReleaseParameters43 release,
MemoryParameters79 memory, MemoryArea60 area,
ProcessingGroupParameters50 group,
boolean nonheap)

Create a handler with the specified parameters.

Parameters:
scheduling - A SchedulingParameters40 object which will be

associated with the constructed instance of this. If null this w
be assigned the reference to theSchedulingParameters40 of
the current thread.

release - A ReleaseParameters43 object which will be associated
with the constructed instance of this. If null this will have no
ReleaseParameters43 .

memory - A MemoryParameters79 object which will be associated
with the constructed instance of this. If null this will have no
MemoryParameters79 .

ASYNCHRONY 131

ity

r
rs

r.

er
his

oid

rtj.book Page 131 Sunday, April 30, 2000 4:37 PM
area - TheMemoryArea60 for this. Must be a refernce to a
ScopedMemory62 or ImmortalMemory62 object ifnH is true.

group - A ProcessingGroupParameters50 object to which this will
be associated. If null this will not be associated with any
processing group.

nonheap - A flag meaning, when true, that this will have
characteristics identical to aNoHeapRealtimeThread27 .

9.2.2 Methods
public void addToFeasibility()

Inform the scheduler and cooperating facilities that this thread’s feasibil
parameters should be considered in feasibility analysis until further
notified.

protected final synchronized int getAndClearPendingFireCount()
Atomically set to zero the number of pending executions of this handle
and returns the value from before it was cleared. This is used in handle
that can handle multiple firings and that want to collapse them togethe
The general form for using this is:

public void handleAsyncEvent() {
int fireCount = getAndClearPendingFireCount();
<handle the events>
}

Returns: The pending fire count.

protected synchronized int getAndDecrementPendingFireCount()
Atomically decrements the number of pending executions of this handl
(if it was non-zero) and returns the value from before the decrement. T
can be used in thehandleAsyncEvent() method in this form to handle
multiple firings:

public void handleAsyncEvent() {
<setup>
do {
<handle the event>
} while(getAndDecrementPendingFireCount()>0);
}

This construction is necessary only in the case where one wishes to av
the setup costs since the framework guarantees thathandleAsyncEvent()

will be invoked the appropriate number of times.

Returns: The pending fire count.

protected synchronized int getAndIncrementPendingFireCount()

132 ASYNCEVENTHANDLER

r

r of

his

ity

rtj.book Page 132 Sunday, April 30, 2000 4:37 PM
Atomically increments the number of pending executions of this handle
and returns the value from before the increment. ThehandleAsyncEvent()

method does not need to do this, since the surrounding framework
guarantees that the handler will be re-executed the appropriate numbe
times. It is only of value when there is common setup code that is
expensive.

Returns: The pending fire count.

public MemoryArea60 getMemoryArea()
Get the current memory area.

Returns: The current memory area in which allocations occur.

public MemoryParameters79 getMemoryParameters()
Get the memory parameters associated with this handler.

Returns: TheMemoryParameters79 object associated with this.

public ProcessingGroupParameters50 getProcessingGroupParameters()
Returns a reference to theProcessingGroupParameters50 object.

public ReleaseParameters43 getReleaseParameters()
Get the release parameters associated with this handler.

Returns: TheReleaseParameters43 object associated with this.

public Scheduler36 getScheduler()
Return theScheduler36 for this handler.

Returns: The instance of the scheduler managing this.

public SchedulingParameters40 getSchedulingParameters()
Returns a reference to the scheduling parameters object.

Returns: TheSchedulingParameters40 object associated with this.

public abstract void handleAsyncEvent()
Override this method to define the action to be taken by this handler. T
method will be invoked repeatedly while fireCount is greater than zero.

public void removeFromFeasibility()
Inform the scheduler and cooperating facilities that this thread’s feasibil
parameters should not be considered in feasibility analysis until further
notified.

public final void run()
Used by the asynchronous event mechanism, seeAsyncEvent127 . This
method invokeshandleAsyncEvent() repeatedly while the fire count is
greater than zero. Applications cannot override this method and should

ASYNCHRONY 133

xt
y

ll.

t
ling.
 be
t

f the
ent

ill

rtj.book Page 133 Sunday, April 30, 2000 4:37 PM
thus overridehandleAsyncEvent() in subclasses with the logic of the
handler.

public void setMemoryParameters(MemoryParameters79 memory)
Set the memory parameters associated with this handler. When it is ne
fired, the executing thread will use these parameters to control memor
allocation. Does not affect the current invocation of therun() of this
handler.

Parameters:
memory - A MemoryParameters79 object which will become the

MemoryParameters79 associated with this after the method ca

public void
setProcessingGroupParameters(ProcessingGroupParam
eters50 parameters)

Sets the reference to theProcessingGroupParameters50 object.

public void setReleaseParameters(ReleaseParameters43 parameters)
Set the release parameters associated with this handler. When it is nex
fired, the executing thread will use these parameters to control schedu
If the scheduling parameters of a handler is set to null, the handler will
executed immediately when it is fired, in the thread of the firer. Does no
affect the current invocation of therun() of this handler.

Since this affects the constraints expressed in the release parameters o
existing schedulable objects, this may change the feasibility of the curr
schedule.

Parameters:
parameters - A ReleaseParameters43 object which will become

theReleaseParameters43 associated with this after the method
call.

public void setScheduler(Scheduler36 scheduler)
Set the scheduler for this handler. A reference to the scheduler which w
manage the execution of this thread.

Parameters:
scheduler - An instance ofScheduler36 (or subclasses) which will

manage the execution of this thread. Ifscheduler is null
nothing happens.

Throws: IllegalThreadStateException

public void setSchedulingParameters(SchedulingParameters40
parameters)

134 BOUNDASYNCEVENTHANDLER

next
ling.

t is
r use

d, if

ill

rtj.book Page 134 Sunday, April 30, 2000 4:37 PM
Set the scheduling parameters associated with this handler. When it is
fired, the executing thread will use these parameters to control schedu
Does not affect the current invocation of therun() of this handler.

Parameters:
parameters - A SchedulingParameters40 object which will

become theSchedulingParameters40 object associated with
this after the method call.

9.3 BoundAsyncEventHandler

Syntax:public abstract class BoundAsyncEventHandler extends
AsyncEventHandler129

All Implemented Interfaces:java.lang.Runnable,Schedulable35

A bound asynchronous event handler is an asynchronous event handler tha
permanently bound to a thread. Bound asynchronous event handlers are meant fo
in situations where the added timeliness is worth the the overhead of binding the
handler to a thread.

9.3.1 Constructors
public BoundAsyncEventHandler()

Create a handler whose parameters are inherited from the current threa
it is aRealtimeThread23 , or null otherwise.

public BoundAsyncEventHandler(SchedulingParameters40 scheduling,
ReleaseParameters43 release,
MemoryParameters79 memory, MemoryArea60 area,
ProcessingGroupParameters50 group,
boolean nonheap)

Create a handler with the specifiedReleaseParameters43 and
MemoryParameters79 .

Parameters:
scheduling - A SchedulingParameters40 object which will be

associated with the constructed instance of this. If null this w
be assigned the reference to theSchedulingParameters40 of
the current thread.

release - TheReleaseParameters43 object for this. A value of null
will construct this without aReleaseParameters43 object.

ASYNCHRONY 135

n to

ber

rtj.book Page 135 Sunday, April 30, 2000 4:37 PM
memory - TheMemoryParameters79 object for this. A value of null
will construct this without aMemoryParameters79 object.

area - TheMemoryArea60 for this. Must be a refernce to a
ScopedMemory62 or ImmortalMemory62 object ifnH is true.

nonheap - A flag meaning, when true, that this will have
characteristics identical to aNoHeapRealtimeThread27 .

group - A ProcessingGroupParameters50 object to which this will
be associated. If null this will not be associated with any
processing group.

9.4 Interruptible

Syntax:public interface Interruptible

Interruptible is an interface implemented by classes that will be used as
arguments on thedoInterruptible() of
AsynchronouslyInterruptedException136 and its subclasses.doInterruptible()
invokes the implementation of the method in this interface. Thus the system can
ensure correctness before invokingrun() and correctly cleaned up afterrun()

returns.

9.4.1 Methods
public void interruptAction(AsynchronouslyInterruptedException136

exception)
This method is called by the system if therun() method is excepted. Using
this the program logic can determine if therun() method completed
normally or had its control asynchronously transferred to its caller.

Parameters:
exception - Used to invoke methods on

AsynchronouslyInterruptedException136 from within the
interruptAction() method.

public void run(AsynchronouslyInterruptedException136 exception)
The main piece of code that is executed when an implemention is give
doInterruptible(). When you create a class that implements this
interface (usually through an anonymous inner class) you must remem
to include thethrows clause to make the method interruptible. If the
throws clause is omitted therun() method will not be interruptible.

136 ASYNCHRONOUSLYINTERRUPTEDEXCEPTION

usly

n

ared

g

, at

rtj.book Page 136 Sunday, April 30, 2000 4:37 PM
Parameters:
exception - Used to invoke methods on

AsynchronouslyInterruptedException136 from within the
run() method.

Throws: AsynchronouslyInterruptedException136

9.5 AsynchronouslyInterruptedException

Syntax:public class AsynchronouslyInterruptedException extends
java.lang.InterruptedException

Direct Known Subclasses:Timed138

All Implemented Interfaces:java.io.Serializable

An special exception that is thrown in response to an attempt to asynchrono
transfer the locus of control of aRealtimeThread23 .

When a method is declared withAsynchronouslyInterruptedException in its
throws clause the platform is expected to asynchonously throw this exception if
RealtimeThread.interrupt() is called while the method is executing, or if such a
interrupt is pending any time control returns to the method. The interrupt isnot
thrown while any methods it invokes are executing, unless they are, in turn, decl
to throw the exception. This is intended to allow long-running computations to be
terminated without the overhead or latency of polling with
java.lang.Thread.interrupted() .

Thethrows AsynchronouslyInterruptedException clause is a marker on a
stack frame which allows a method to be statically marked as asynchronously
interruptible. Only methods that are marked this way can be interrupted.

WhenThread.interrupt(), public synchronized void interrupt()25 , or
this.fire() is called, theAsynchronouslyInterruptedException is compared
against any currently pendingAsynchronouslyInterruptedException on the thread.
If there is none, or if the depth of theAsynchronouslyInterruptedException is less
than the currently pendingAsynchronouslyInterruptedException —- i.e., it is
targeted at a less deeply nested method call —- it becomes the currently pendin
interrupt. Otherwise, it is discarded.

If the current method is interruptible, the exception is thrown on the thread.
Otherwise, it just remains pending until control returns to an interruptible method

ASYNCHRONY 137

tion
ly

rtj.book Page 137 Sunday, April 30, 2000 4:37 PM
which point theAsynchronouslyInterruptedException is thrown. When an
interrupt is caught, the caller should invoke thehappened() method on the
AsynchronouslyInterruptedException in which it is interested to see if it matches
the pendingAsynchronouslyInterruptedException. If so, the pending
AsynchronouslyInterruptedException is cleared from the thread. Otherwise, it
will continue to propagate outward.

SinceThread.interrupt() andRealtimeThread.interupt() generate a
system avalable genericAsynchronouslyInterruptedException which will always
propagate outward through interruptible methods until the generic
AsynchronouslyInterruptedException is identified and stopped. Other sources
(e.g.,this.fire() andTimed138) will generate a specific instance of
AsynchronouslyInterruptedException which applications can identify and thus
limit propogation.

9.5.1 Constructors
public AsynchronouslyInterruptedException()

Create an instance ofAsynchronouslyInterruptedException.

9.5.2 Methods
public synchronized boolean disable()

Defer the throwing of this exception. Ifinterrupt() is called when this
exception is disabled, the exception is put in pending state. The excep
will be thrown if this exception is subsequently enabled. This is valid on
within a call todoInterruptible(). Otherwise it returns false and does
nothing.

Returns: True if this is disabled otherwise returns false.

public boolean doInterruptible(Interruptible135 logic)
Execute therun() method of the givenInterruptible135 . This method
may be on the stack in exactly oneRealtimeThread23 . An attempt to
invoke this method in a thread while it is on the stack of another or the
same thread will cause an immediate return with a value of false.

Parameters:
code - An instance of anInterruptible135 whoserun() method

will be called.

Returns: True if the method call completed normally. Returns false if
another call todoInterruptible has not completed.

public synchronized boolean enable()

138 TIMED

.

is

ot

e

rtj.book Page 138 Sunday, April 30, 2000 4:37 PM
Enable the throwing of this exception. This is valid only within a call to
doInterruptible(). Otherwise it returns false and does nothing.

Returns: True if this is enabled otherwise returns false.

public synchronized boolean fire()
Make this exception the current exception ifdoInterruptible() has been
invoked and not completed.

Returns: True if this was fired. If there is no current invocation of
doInterruptible(), then false is returned with no other effect
False is also returned if there is a currentdoInterruptible()

disable() has been called.

public static AsynchronouslyInterruptedException136 getGeneric()
Return the system genericAsynchronouslyInterruptedException which
is generated whenRealtimeThread.interrupt() is invoked.

public boolean happened(boolean propagate)
Used with an instance of this exception to see if the current exception
this exception.

Parameters:
propagate - Propagate the exception if true and this exception is n

the current one. If false, then the state of this is set to
nonpending (i.e., it will stop propagating).

Returns: True if this is the current exception. Returns false if this is not th
current exception.

public boolean isEnabled()
Query the enabled status of this exception.

Returns: True if this is enabled otherwise returns false.

public void propagate()
Cause the current exception to continue up the stack.

9.6 Timed

Syntax:public class Timed extends AsynchronouslyInterruptedException136

All Implemented Interfaces:java.io.Serializable

ASYNCHRONY 139

en

st

rtj.book Page 139 Sunday, April 30, 2000 4:37 PM
Create a scope in aRealtimeThread23 for whichinterrupt() will be called at
the expiration of a timer. This timer will begin measuring time at some point betwe
the timedoInterruptible() is invoked and the time therun() method of the
Interruptible object is invoked. Each call ofdoInterruptible() on an instance of
Timed will restart the timer for the amount of time given in the constructor or the mo
recent invocation ofresetTime(). All memory use ofTimed occurs during
construction or the first invocation ofdoInterruptible(). Subsequent invokes of
doInterruptible() do not allocate memory.

Usage:new Timed(T).doInterruptible(interruptible);

9.6.1 Constructors
public Timed(HighResolutionTime97 time)

Create an instance ofTimed with a timer set to timeout. If the time is in the
past theAsynchronouslyInterruptedException136 mechanism is
immediately activated.

Parameters:
time - The interval of time between the invocation of

doInterruptible() and wheninterrupt() is called on
currentRealtimeThread(). If null the
java.lang.IllegalArgumentException is thrown.

Throws: IllegalArgumentException

9.6.2 Methods
public boolean doInterruptible(Interruptible135 logic)

Execute a timeout method. Starts the timer and executes therun() method
of the givenInterruptible135 object.

Overrides:public boolean doInterruptible(Interruptible135
logic)137 in classAsynchronouslyInterruptedException136

Parameters:
logic - Implements anInterruptible135 run() method. If null

nothing happens.

public void resetTime(HighResolutionTime97 time)
To reschedule the timeout for the next invocation of doInterruptible().

Parameters:
time - This can be an absolute time or a relative time. If null the

timeout is not changed.

140 TIMED

 is a
nd

thing
dy

ory
eated

rtj.book Page 140 Sunday, April 30, 2000 4:37 PM
AsyncEvent Example

An easy way to construct event handlers is with anonymous inner classes:

AsyncEventHandler h = new AsyncEventHandler() {
public void handleAsyncEvent() {
System.out.print(“The first handler ran!\n”);
}

};
They get associated with events by adding them to the event’s handler list. There
slight naming issue that sometimes causes confusion: in the java.awt package (a
common gui api usage), an `event’ refers to something thathas happened. In the
realtime package, (and common realtime system usage) an event refers to some
thatmay happen in the future. To have our handler h associated with the inputRea
event:

inputReady.addHandler(h);
Sometime in the future, the event gets fired:

System.out.print(“Test 1\n”);
inputReady.fire();
Thread.yield();
System.out.print(“Fired the event\n”);

Event handlers are like threads in that they have Release, Scheduling and Mem
parameters. This complicates the preceeding example: by default, handlers are cr
with the same priority as the creating thread. WheninputReady is fired,h becomes
runnable, but the current thread is already running. Soh just sits in the run queue
waiting for the current process to do something that gives up the processor.

For example, we can create a low and high priority handler like this:
SchedulingParameters low = new SchedulingParameters(Thread.MIN_PRI
ORITY);
inputReady.setHandler(new AsyncEventHandler(low,null,null) {
public void handleAsyncEvent() {
System.out.print(“The low priority handler ran!\n”);
}

});
SchedulingParameters high = new SchedulingParameters(Thread.MAX_PR
IORITY);
inputReady.addHandler(new AsyncEventHandler(high, null, null) {
public void handleAsyncEvent() {
System.out.print(“The high priority handler ran!\n”);
}

});

ASYNCHRONY 141

ey

that
s of

:

tually
hen

e

be
an
 can
point

rtj.book Page 141 Sunday, April 30, 2000 4:37 PM
If we fire the event off, the low priority handler doesn’t run until there’s some idle
time on the processor:

System.out.print(“\nTest 2\n”);
inputReady.fire();
System.out.print(“After the fire\n”);
Thread.sleep(100);
System.out.print(“After the sleep\n”);

ReleaseParameters are somewhat problematic with respect to AsyncEvents. Th
encapsulate the information needed for feasibility analysis, which consists of a
combination of information about when things happen and about the computation
is triggered. In the case of AsyncEvents, the knowledge about those two collection
information is seperated: the event knows about when things happen, while the
handler knows about the computation that is triggered. When setting up
ReleaseParameters for an AsyncEvent, the following pattern should be followed

ReleaseParameters rp = inputReady.createReleaseParameters();
rp.setCost(new RelativeTime(1,0));
AsyncEventHandler h2 = new AsyncEventHandler(high, rp, null){
public void handleAsyncEvent() { System.out.print(“Whatever...\n”

); }};
inputReady.createReleaseParameters() creates a ReleaseParameters object (ac
some subclass of ReleaseParameters) and populates it with information about w
the event will fire. For example, if inputReady were a PeriodicTimer event,
createReleaseParameters would create a PeriodicParameters object and fill in th
periodicity fields.

System.out.close();

Output from running the example
Test 1
The first handler ran!
Fired the event

Test 2
The high priority handler ran!
After the fire
The low priority handler ran!
After the sleep

AIE Example

An AsynchronouslyInterruptedException allows code to be written so that it can
aborted in a controlled fashion in response to an action by another thread, or by
external event. A block of interruptible code is associated with the exception that
be used to terminate its execution. If the asynchronous exception is fired at any

142 TIMED

 the
n’t

tible

f the

hat
ct to

. An

, it

rtj.book Page 142 Sunday, April 30, 2000 4:37 PM
during the execution of the interruptible code, control is transferred to the end of
executable section of code. If the interruptible code calls some other code that is
interruptible and the exception is fired, the exception remains pending until
superseded by a more pertinent exception, or until control returns to the interrup
section. In the latter case, the interruptible section is then terminated. To make a
block of code interruptible by a particular asynchronous exception, it must be
encapsulated in a class that implements the Interruptible interface. An instance o
class is passed to the doInterruptible method on the
AsynchronouslyInterruptedException that AsynchronouslyInterruptedException t
can interrupt the code block. This causes the run method of the interruptible obje
be executed. Execution can be interrupted at any point during the run method.NB.
Only one thread can be executing interruptible code within an asynchronous
exception at a given time. To interrupt more than one thread it is necessary to
multiplex a source, such as an AsyncEvent, to multiple asynchronous exceptions
anonymous inner class can be used to code inline interruptible code, as in the
following:

MyInterrupt aie = new MyInterrupt();
aie.doInterruptible(new Interruptible() {
public void runNonInterruptible() {

do something that can’t be interrupted

}
public void run(AsynchronouslyInterruptedException e)
throws AsynchronouslyInterruptedException {

This method can be interrupted at any point in time do something “interrupt”-safe
Call to a non-interruptible method. If the asynchronous exception is fired during
execution of this method, it will be deferred until return from the method.

runNonInterruptible();
We can also disable the asynchronous exception for a period of time. If it is fired
will be deferred until it’s enabled again:

e.disable();
And enable it again later:

e.enable();
Upon return from run, aie can no longer effect execution of the thread.

}
public void interruptAction(AsynchronouslyInterruptedException e)
{
}

ASYNCHRONY 143

e of
n

ry to

be
n

vent

he

ous

rtj.book Page 143 Sunday, April 30, 2000 4:37 PM
If we want to know whether the method was actually interrupted, we can make us
the interruptAction entry point of the Interruptible object. This is only called if the ru
method was interrupted.

{
aie.doInterruptible(new Interruptible() {

public void run(AsynchronouslyInterruptedException e)
throws AsynchronouslyInterruptedException {

do something interrupt-safe

}
public void interruptAction(AsynchronouslyInterruptedException e)
{
try {

MyInterrupt myAie = (MyInterrupt)e;
myAie.wasInterrupted = true;

} catch (ClassCastException ce) {
}

}
do something about it - abort or retry

}

AIE Example 2

In order to asynchronously interrupt code running in another thread, it is necessa
obtain a reference to the AsynchronouslyInterruptedException that the thread is
expecting. This will usually be stored in a field on the thread, or may be kept in a
globally accessible object. Once the reference is obtained, the other thread can
interrupted by calling the fire method on the asynchronous exception. initializatio
code - spawn some threads

getInterrupt().fire();
An asynchronous exception may be bound to an event, in which case, firing the e
will result in the asynchronous exception being fired automatically. The realtime
extensions package does this to implement timed expressions, where expiry of t
timer automatically interrupts the expression:

(new Timed(new RelativeTime(50,0))).doInterruptible(
new Interruptible() {

public void run(AsynchronouslyInterruptedException e) {
The run method will have 50 ms to execute. At the end of this time an asynchron
exception will be fired, interrupting the run method.

}
public void interruptAction(AsynchronouslyInterruptedException e)
{
}

144 TIMED

le

tself

sary
s
 other
.

rtj.book Page 144 Sunday, April 30, 2000 4:37 PM
AIE Example 3

An asynchronous exception may be bound to an AsyncEvent. This allows a sing
asynchronous event to be used to interrupt multiple threads. It also allows
implementation dependent external events (happenings) to be used to fire
asynchronous exceptions that interrupt threads.

class Interrupt extends AsynchronouslyInterruptedException {
Nested EventHandler class will fire this asynchronous exception when the event i
is fired.

private class EventHandler extends AsyncEventHandler {
AsyncEvent event;
AsynchronouslyInterruptedException aie;
public EventHandler(AsyncEvent event,

AsynchronouslyInterruptedException aie) {
super(new SchedulingParameters(RealtimeThread.MAX_PRIORITY),null

,null);
this.event = event;
this.aie = aie;
try {

event.addHandler(this);
} catch (AdmissionControlException e) {
}

}
public void handleAsyncEvent() {

aie.fire();
}

}
EventHandler handler;
public Interrupt(AsyncEvent event) {

super();
Create the EventHandler for firing the asynchronous exception.

handler = new EventHandler(event, this);
In order to asynchronously interrupt code running in another thread(s), it is neces
to obtain a reference to the AsyncEvent that has been bound to the asynchronou
exceptions that those threads are expecting. Once the reference is obtained, the
threads can be interrupted by calling the fire method on the asynchronous event
initialization code - spawn some threads

getInterrupt().fire();

ASYNCHRONY 145

a

on of

er
 the
ss

to

rtj.book Page 145 Sunday, April 30, 2000 4:37 PM
For the special case of POSIX systems, this can also be initiated in response to
signal:

POSIXSignalHandler.addHandler(POSIXSignalHandler.SIGINT,
new AsyncEventHandler() {

public void handleAsyncEvent() {
AIEExample3.getInterrupt().fire();

}
});

}
}

AIE Example 4

Interruptible blocks of code can be nested. In this case the asynchronous excepti
the less deeply nested interruptible block takes precedence over the more
asynchronous exception of the more deeply nested block. If an asynchronous
exception is “in flight” for the most deeply nested interruptible block when the oth
asynchronous exception is fired, the new exception supersedes the first, causing
interrupt to transfer control to the end of the outer block. An anonymous inner cla
can be used to code inline interruptible code, as in the following:

AsynchronouslyInterruptedException hiPriority =
new AsynchronouslyInterruptedException();

hiPriority.doInterruptible(new Interruptible() {
public void run(AsynchronouslyInterruptedException e)

throws AsynchronouslyInterruptedException {
AsynchronouslyInterruptedException loPriority =
new AsynchronouslyInterruptedException();

This method can be interrupted at any point in time by the hiPriority exception

loPriority.doInterruptible(new Interruptible() {
public void run(AsynchronouslyInterruptedException e)

throws AsynchronouslyInterruptedException {
this method can be interrupted at any point in time by either the hiPriority or the
loPriority exception. In the case of the hiPriority exception, control is transferred
the end of the outer run method.

}
public void interruptAction(AsynchronouslyInterruptedException e)
{
}

146 TIMED

rtj.book Page 146 Sunday, April 30, 2000 4:37 PM

SYSTEM AND OPTIONS 147

s

tem.
 of
e

s.

he

hod,

ions

a

rtj.book Page 147 Sunday, April 30, 2000 4:37 PM
C H A P T E R 10
System and Option

This section contains classes that:

• Provide a common idiom for binding POSIX signals to instances ofAsyncEvent
when POSIX signals are available on the underlying platform.

• Provide a class that contains operations and semantics that affect the entire sys
• Provide the security semantics required by the additional features in the entirety

this specification, which are additional to those required by implementations of th
Java Language Specification.

TheRealtimeSecurity class provides security primarily for physical memory acces

Semantics and Requirements

This list establishes the semantics and requirements that are applicable across t
classes of this section. Semantics that apply to particular classes, constructors,
methods and fields will be found in the class description and the constructor, met
and field detail sections.

1. The POSIX signal handler class is required to be available when implementat
of this specification execute on an underlying platform that provides POSIX
signals or any subset of signals named with the POSIX names.

2. The RealtimeSecurity class is required.

Rationale

This specification accommodates the variation in underlying system variation in
number of ways. One of the most important is the concept of optionally required

148 POSIXSIGNALHANDLER

that
that

em

rtj.book Page 148 Sunday, April 30, 2000 4:37 PM
classes (e.g., the POSIX signal handler class). This class provides a commonality
can be relied upon by program logic that intends to execute on implementations
themselves execute on POSIX compliant systems.

TheRealtimeSystem class functions in similar capacity to java.lang.System.
Similarly, theRealtimeSecurity class functions similarly to
java.lang.SecurityManager.

10.1 POSIXSignalHandler

Syntax:public final class POSIXSignalHandler

Use instances ofAsyncEvent127 to handle POSIX signals. Usage:
POSIXSignalHandler.addHandler(SIGINT, intHandler);

This class is required to be implemented only if the underlying operating syst
supports POSIX signals.

10.1.1Fields
public static final int SIGABRT

Used by abort, replace SIGIOT in the future.

public static final int SIGALRM
Alarm clock.

public static final int SIGBUS
Bus error.

public static final int SIGCANCEL
Thread cancellation signal used by libthread.

public static final int SIGCHLD
Child status change alias (POSIX).

public static final int SIGCLD
Child status change.

public static final int SIGCONT
Stopped process has been continued.

public static final int SIGEMT
EMT instruction.

public static final int SIGFPE
Floating point exception.

SYSTEM AND OPTIONS 149

rtj.book Page 149 Sunday, April 30, 2000 4:37 PM
public static final int SIGFREEZE
Special signal used by CPR.

public static final int SIGHUP
Hangup.

public static final int SIGILL
Illegal instruction (not reset when caught).

public static final int SIGINT
Interrupt (rubout).

public static final int SIGIO
Socket I/O possible (SIGPOLL alias).

public static final int SIGIOT
IOT instruction.

public static final int SIGKILL
Kill (cannot be caught or ignored).

public static final int SIGLOST
Resource lost (eg, record-lock lost).

public static final int SIGLWP
Special signal used by thread library.

public static final int SIGPIPE
Write on a pipe with no one to read it.

public static final int SIGPOLL
Pollable event occured.

public static final int SIGPROF
Profiling timer expired.

public static final int SIGPWR
Power-fail restart.

public static final int SIGQUIT
Quit (ASCII FS).

public static final int SIGSEGV
Segmentation violation.

public static final int SIGSTOP
Stop (cannot be caught or ignored).

public static final int SIGSYS
Bad argument to system call.

public static final int SIGTERM
Software termination signal from kill.

150 POSIXSIGNALHANDLER

rtj.book Page 150 Sunday, April 30, 2000 4:37 PM
public static final int SIGTHAW
Special signal used by CPR.

public static final int SIGTRAP
Trace trap (not reset when caught).

public static final int SIGTSTP
User stop requested from tty.

public static final int SIGTTIN
Background tty read attempted.

public static final int SIGTTOU
Background tty write attempted.

public static final int SIGURG
Urgent socket condition.

public static final int SIGUSR1
User defined signal = 1.

public static final int SIGUSR2
User defined signal = 2.

public static final int SIGVTALRM
Virtual timer expired.

public static final int SIGWAITING
Process’s lwps are blocked.

public static final int SIGWINCH
Window size change.

public static final int SIGXCPU
Exceeded cpu limit.

public static final int SIGXFSZ
Exceeded file size limit.

10.1.2Methods
public static synchronized void addHandler(int signal,

AsyncEventHandler129 handler)
Add the givenAsyncEventHandler129 to the list of handlers of the
AsyncEvent127 of the given signal.

Parameters:
signal - One of the POSIX signals from this (e.g.,this.SIGLOST).
handler - An AsyncEventHandler129 which will be scheduled

when the given signal occurs.

SYSTEM AND OPTIONS 151

e

rtj.book Page 151 Sunday, April 30, 2000 4:37 PM
public static synchronized void removeHandler(int signal,
AsyncEventHandler129 handler)

Remove the givenAsyncEventHandler129 to the list of handlers of the
AsyncEvent127 of the given signal.

Parameters:
signal - One of the POSIX signals from this (e.g.,this.SIGLOST).
handler - An AsyncEventHandler129 which will be scheduled

when the given signal occurs.

public static synchronized void setHandler(int signal,
AsyncEventHandler129 handler)

Set the givenAsyncEventHandler129 as the handler of theAsyncEvent127
of the given signal.

Parameters:
signal - One of the POSIX signals from this (e.g.,this.SIGLOST).
handler - An AsyncEventHandler129 which will be scheduled

when the given signal occurs. If h is null then no handler will b
associated with this (i.e., remove all handlers).

10.2 RealtimeSecurity

Syntax:public class RealtimeSecurity

Security policy object for real-time specific issues. Primarily used to control
access to physical memory.

10.2.1Constructors
public RealtimeSecurity()

10.2.2Methods
public void checkAccessPhysical()

Check whether the application is allowed to access physical memory.

Throws: SecurityException - the application doesn’t have permission.

public void checkAccessPhysicalRange(long base, long size)
Check whether the application is allowed to access physical memory
within the specified range.

152 REALTIMESYSTEM

on
se

p.

his
sed

f

rtj.book Page 152 Sunday, April 30, 2000 4:37 PM
Throws: SecurityException - the application doesn’t have permission.

public void checkSetFactory()
Check whether the application is allowed to set factory objects.

Throws: SecurityException - the application doesn’t have permission.

public void checkSetScheduler()
Check whether the application is allowed to set the scheduler.

Throws: SecurityException - the application doesn’t have permission.

10.3 RealtimeSystem

Syntax:public class RealtimeSystem

RealtimeSystem provides a means for tuning the behavior of the implementati
by specifying parameters such as the maximum number of locks that can be in u
concurrently, and the monitor control policy. In addition,RealtimeSystem provides a
mechanism for obtaining access to the security manager, garbage collector and
scheduler, to make queries from them or to set parameters.

10.3.1Fields
public static final byte BIG_ENDIAN

public static final byte BYTE_ORDER

public static final byte LITTLE_ENDIAN

10.3.2Methods
public static GarbageCollector82 currentGC()

Return a reference to the currently active garbage collector for the hea

Returns: A GarbageCollector82 object which is the current collector
collecting objects on the traditional Java heap.

public int getConcurrentLocksUsed()
Get the maximum number of locks that have been used concurrently. T
value can be used for tuning the concurrent locks parameter, which is u
as a hint by systems that use a monitor cache.

Returns: An int whose value is the number of locks in use at the time o
the invocation of the method.

SYSTEM AND OPTIONS 153

ut

be

-time

ed
 to

at
e

s.

ed

s

rtj.book Page 153 Sunday, April 30, 2000 4:37 PM
public int getMaximumConcurrentLocks()
Get the maximum number of locks that can be used concurrently witho
incurring an execution time increase as set by the
setMaximumConcurrentLocks() methods.

Returns: An int whose value is the maximum number of locks that can
in simultaneous use.

public static RealtimeSecurity151 getSecurityManager()
Get a reference to the security manager used to control access to real
system features such as access to physical memory.

Returns: A RealtimeSecurity151 object representing the default real-
time security manager.

public void setMaximumConcurrentLocks(int number)
Set the anticipated maximum number of locks that may be held or wait
on concurrently. Provide a hint to systems that use a monitor cache as
how much space to dedicate to the cache.

Parameters:
number - An integer whose value becomes the number of locks th

can be in simultaneous use without incurring an execution tim
increase. Ifnumber is less than or equal to zero nothing happen

public void setMaximumConcurrentLocks(int number, boolean hard)
Set the anticipated maximum number of locks that may be held or wait
on concurrently. Provide a limit for the size of the monitor cache on
systems that provide one if hard is true.

Parameters:
number - The maximum number of locks that can be in simultaneou

use without incurring an execution time increase. Ifnumber is
less than or equal to zero nothing happens.

hard - If true,number sets a limit. If a lock is attempted which would
cause the number of locks to exceednumber then a
ResourceLimitError158 is thrown.

public static void setSecurityManager(RealtimeSecurity151 manager)
Set a new real-time security manager.

Parameters:
manager - A RealtimeSecurity151 object which will become the

new security manager.

Throws: SecurityException - Thrown if security manager has already
been set.

154 REALTIMESYSTEM

rtj.book Page 154 Sunday, April 30, 2000 4:37 PM

EXCEPTIONS 155

 this

he

hod,

at

rtj.book Page 155 Sunday, April 30, 2000 4:37 PM
C H A P T E R 11
Exceptions

This section contains classes that:

• Add additional exception classes required by the entirety of the other sections of
specification.

• Provide for the ability to asynchronously transfer the control of program logic.

Semantics and Requirements

This list establishes the semantics and requirements that are applicable across t
classes of this section. Semantics that apply to particular classes, constructors,
methods and fields will be found in the class description and the constructor, met
and field detail sections.

1. All classes in this section are required.

2. All exceptions, exceptAsynchronouslyInterruptedException, are required to
have semantics exactly as those of their eventual superclass in thejava.*

hierarchy.

3. Instances of the classAsynchronouslyInterruptedException can be generated
by execution of program logic and by internal virtual machine mechanisms th
are asynchronous to the execution of program logic which is the target of the
exception.

4. Program logic that exists in methods that throw
AsynchronouslyInterruptedException is subject to receiving an instance of
AsynchronouslyInterruptedException at any time during execution.

156 ILLEGALASSIGNMENTERROR

ed
rol

ple,

rtj.book Page 156 Sunday, April 30, 2000 4:37 PM
Rationale

The need for additional exceptions given the new semantics added by the other
sections of this specification is obvious. That the specification attaches new,
nontraditional, exception semantics toAsynchronouslyInterruptedException is,
perhaps, not so obvious. However, after careful though, and given our self-impos
directive that only well-defined code blocks would be subject to having their cont
asynchronously transferred the chosen mechanism is logical.

11.1 IllegalAssignmentError

Syntax:public class IllegalAssignmentError extends java.lang.Error

All Implemented Interfaces:java.io.Serializable

The exception thrown on an attempt to make an illegal assignment. For exam
this will be thrown if logic attempts to assign a reference to an object in
ScopedMemory62 to a field in an object inImmortalMemory62 .

11.1.1Constructors
public IllegalAssignmentError()

A constructor forIllegalAssignmentError.

public IllegalAssignmentError(java.lang.String description)
A descriptive constructor forIllegalAssignmentError.

Parameters:
description - Description of the error

11.2 MemoryAccessError

Syntax:public class MemoryAccessError extends java.lang.Error

All Implemented Interfaces:java.io.Serializable

EXCEPTIONS 157

p.

nds

rtj.book Page 157 Sunday, April 30, 2000 4:37 PM
The exception thrown on an attempt to refer to an object in an inaccessible
MemoryArea60 . For example this will be thrown if logic in a
NoHeapRealtimeThread27 attampts to refer to an onject in the traditional Java hea

11.2.1Constructors
public MemoryAccessError()

A constructor forMemoryAccessError.

public MemoryAccessError(java.lang.String description)
A descriptive constructor forMemoryAccessError.

Parameters:
description - Description of the error.

11.3 MemoryScopeException

Syntax:public class MemoryScopeException extends java.lang.Exception

All Implemented Interfaces:java.io.Serializable

Thrown if construction of any of the wait-free queues is attempted with the e
of the queues in incompatible memory areas.

11.3.1Constructors
public MemoryScopeException()

A constructor forMemoryScopeException.

public MemoryScopeException(java.lang.String description)
A descriptive constructor forMemoryScopeException.

Parameters:
description - A description of the exception.

158 OFFSETOUTOFBOUNDSEXCEPTION

rtj.book Page 158 Sunday, April 30, 2000 4:37 PM
11.4 OffsetOutOfBoundsException

Syntax:public class OffsetOutOfBoundsException extends
java.lang.Exception

All Implemented Interfaces:java.io.Serializable

Thrown if the constructor of aImmortalPhysicalMemory70 ,
ScopedPhysicalMemory71 , RawMemoryFloatAccess77 , orRawMemoryAccess72 is
given an invalid address.

11.4.1Constructors
public OffsetOutOfBoundsException()

A constructor forOffsetOutOfBoundsException.

public OffsetOutOfBoundsException(java.lang.String description)
A descriptive constructor forOffsetOutOfBoundsException.

Parameters:
description - A description of the exception.

11.5 ResourceLimitError

Syntax:public abstract class ResourceLimitError extends java.lang.Error

All Implemented Interfaces:java.io.Serializable

Thrown if an attempt is made to exceed a system resrouce limit, such as the
maximum number of locks.

11.5.1Constructors
public ResourceLimitError()

A constructor forResourceLimitError.

public ResourceLimitError(java.lang.String description)
A descriptive constructor forResourceLimitError.

Parameters:
description - The description of the exception.

EXCEPTIONS 159

ause

rtj.book Page 159 Sunday, April 30, 2000 4:37 PM
11.6 SizeOutOfBoundsException

Syntax:public class SizeOutOfBoundsException extends java.lang.Exception

All Implemented Interfaces:java.io.Serializable

Thrown if the constructor of aImmortalPhysicalMemory70 ,
ScopedPhysicalMemory71 , RawMemoryFloatAccess77 , orRawMemoryAccess72 is
given an invalid size or if an accessor method on one of the above classes would c
access to an invalud address.

11.6.1Constructors
public SizeOutOfBoundsException()

A constructor forSizeOutOfBoundsException.

public SizeOutOfBoundsException(java.lang.String description)
A descriptive constructor for aSizeOutOfBoundsException.

Parameters:
description - The description of the exception.

11.7 ThrowBoundaryError

Syntax:public class ThrowBoundaryError extends java.lang.Error

All Implemented Interfaces:java.io.Serializable

The error thrown bypublic void enter(java.lang.Runnable logic)64
when ajava.lang.Throwable allocated from memory that is not usable in the
surrounding scope tries to propagate out of the scope of thepublic void

enter(java.lang.Runnable logic)64 .

11.7.1Constructors
public ThrowBoundaryError()

A constructor forThrowBoundaryError.

public ThrowBoundaryError(java.lang.String description)
A descriptive constructor forThrowBoundaryError.

160 UNSUPPORTEDPHYSICALMEMORYEXCEPTION

l

rtj.book Page 160 Sunday, April 30, 2000 4:37 PM
Parameters:
description - Description of the error.

11.8 UnsupportedPhysicalMemoryException

Syntax:public class UnsupportedPhysicalMemoryException extends
java.lang.Exception

All Implemented Interfaces:java.io.Serializable

Thrown when the underlying hardware does not support the type of physica
memory given to the a physical memorycreate() method. See:RawMemoryAccess72
RawMemoryFloatAccess77 ImmortalPhysicalMemory70 ScopedPhysicalMemory71

11.8.1Constructors
public UnsupportedPhysicalMemoryException()

A constructor forUnsupportedPhysicalMemoryException.

public UnsupportedPhysicalMemoryException(java.lang.String
description)

A descriptive constructor for aUnsupportedPhysicalMemoryException

Parameters:
description - The description of the exception.

rtj.book Page 161 Sunday, April 30, 2000 4:37 PM
161

162

on,
ent

onal

rtj.book Page 162 Sunday, April 30, 2000 4:37 PM
This is a very condensed summary of all of the classes defined in this specificati
listed alphabetically. It is done in the style introduced by Patrick Chan in his excell
Java Developers Almanac. Here is a legend that shows the meaning of the various
parts of the table:

1. The name of the class.

2. The name of the package containing the class

3. The chain of superclasses. Each class is a subclass of the one above it.

4. The names of the interfaces implemented by each class.

5. A static method.

6. A constructor.

7. The return type of a method or the declared type of an instance variable.

8. The name of the class member. If it is a method, the parameter list and opti
throws clause follows. Members are arranged alphabetically.

ALMANAC 163

rtj.book Page 163 Sunday, April 30, 2000 4:37 PM
C H A P T E R 12
Almanac

Object
➥HighResolutionTime Comparable

➥AbsoluteTime

AbsoluteTime javax.realtime

AbsoluteTime absolute(Clock clock, AbsoluteTime destination)
❉ AbsoluteTime()
❉ AbsoluteTime(AbsoluteTime time)
❉ AbsoluteTime(java.util.Date date)
❉ AbsoluteTime(long millis, int nanos)

AbsoluteTime add(long millis, int nanos)
AbsoluteTime add(long millis, int nanos, AbsoluteTime destination)

● AbsoluteTime add(RelativeTime time)
AbsoluteTime add(RelativeTime time, AbsoluteTime destination)

java.util.Date getDate()
void set(java.util.Date date)

● RelativeTime subtract(AbsoluteTime time)
RelativeTime subtract(AbsoluteTime time, RelativeTime destination)

● AbsoluteTime subtract(RelativeTime time)
AbsoluteTime subtract(RelativeTime time, AbsoluteTime destination)

String toString()

164

rtj.book Page 164 Sunday, April 30, 2000 4:37 PM
Object
➥ReleaseParameters

➥AperiodicParameters

Object
➥AsyncEvent

Object
➥AsyncEventHandler Schedulable

AperiodicParameters javax.realtime

❉ AperiodicParameters(RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

AsyncEvent javax.realtime

void addHandler(AsyncEventHandler handler)
❉ AsyncEvent()

ReleaseParameters createReleaseParameters()
void fire()

boolean handledBy(AsyncEventHandler target)
void removeHandler(AsyncEventHandler handler)
void setHandler(AsyncEventHandler handler)

AsyncEventHandler javax.realtime

void addToFeasibility()
❉ AsyncEventHandler()
❉ AsyncEventHandler(boolean nonheap)
❉ AsyncEventHandler(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory, MemoryArea area,
ProcessingGroupParameters group)

❉ AsyncEventHandler(SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memory, MemoryArea area,
ProcessingGroupParameters group,
boolean nonheap)

●♦ int getAndClearPendingFireCount()
♦ int getAndDecrementPendingFireCount()
♦ int getAndIncrementPendingFireCount()

MemoryArea getMemoryArea()
MemoryParameters getMemoryParameters()

ALMANAC 165

rtj.book Page 165 Sunday, April 30, 2000 4:37 PM
Object
➥Throwable java.io.Serializable

➥Exception
➥InterruptedException

➥AsynchronouslyInterruptedException

ProcessingGroupParame-
ters

getProcessingGroupParameters()

ReleaseParameters getReleaseParameters()
Scheduler getScheduler()

SchedulingParameters getSchedulingParameters()
❍ void handleAsyncEvent()

void removeFromFeasibility()
● void run()

void setMemoryParameters(MemoryParameters memory)
void setProcessingGroupParameters(ProcessingGroupParameter

s parameters)
void setReleaseParameters(ReleaseParameters parameters)
void setScheduler(Scheduler scheduler)

throws IllegalThreadStateException
void setSchedulingParameters(SchedulingParameters paramete

rs)

AsynchronouslyInterrupt-
edException

javax.realtime

❉ AsynchronouslyInterruptedException()
boolean disable()
boolean doInterruptible(Interruptible logic)
boolean enable()
boolean fire()

❏ AsynchronouslyInter-
ruptedException

getGeneric()

boolean happened(boolean propagate)
boolean isEnabled()

void propagate()

166

rtj.book Page 166 Sunday, April 30, 2000 4:37 PM
Object
➥AsyncEventHandler Schedulable

➥BoundAsyncEventHandler

Object
➥Clock

Object
➥GarbageCollector

Object
➥MemoryArea

➥HeapMemory

BoundAsyncEventHandler javax.realtime

❉ BoundAsyncEventHandler()
❉ BoundAsyncEventHandler(SchedulingParameters schedulin

g, ReleaseParameters release,
MemoryParameters memory, MemoryArea area,
ProcessingGroupParameters group,
boolean nonheap)

Clock javax.realtime

❉ Clock()
❏ Clock getRealtimeClock()
❍ RelativeTime getResolution()

AbsoluteTime getTime()
❍ void getTime(AbsoluteTime time)
❍ void setResolution(RelativeTime resolution)

GarbageCollector javax.realtime

❉ GarbageCollector()
❍ RelativeTime getPreemptionLatency()

HeapMemory javax.realtime

❏ HeapMemory instance()

ALMANAC 167

rtj.book Page 167 Sunday, April 30, 2000 4:37 PM
Object
➥HighResolutionTime Comparable

Object
➥Throwable java.io.Serializable

➥Error
➥IllegalAssignmentError

Object
➥MemoryArea

➥ImmortalMemory

HighResolutionTime javax.realtime

❍ AbsoluteTime absolute(Clock clock, AbsoluteTime dest)
int compareTo(HighResolutionTime time)
int compareTo(Object object)

boolean equals(HighResolutionTime time)
boolean equals(Object object)

● long getMilliseconds()
● int getNanoseconds()

int hashCode()
void set(HighResolutionTime time)
void set(long millis)
void set(long millis, int nanos)

IllegalAssignmentError javax.realtime

❉ IllegalAssignmentError()
❉ IllegalAssignmentError(String description)

ImmortalMemory javax.realtime

❏ ImmortalMemory instance()

168

rtj.book Page 168 Sunday, April 30, 2000 4:37 PM
Object
➥MemoryArea

➥ImmortalPhysicalMemory

Object
➥SchedulingParameters

➥PriorityParameters
➥ImportanceParameters

Interruptible

ImmortalPhysicalMemory javax.realtime

❏ ImmortalPhysicalMemory create(Object type, long size)

throws SecurityException, SizeOutOfBoundsEx-
ception, UnsupportedPhysicalMemoryException

❏ ImmortalPhysicalMemory create(Object type, long base, long size)

throws SecurityException, SizeOutOfBoundsEx-
ception, OffsetOutOfBoundsException, Unsupport-
edPhysicalMemoryException

❉♦ ImmortalPhysicalMemory(ImmortalPhysicalMemory memory,
long base, long size)

❉♦ ImmortalPhysicalMemory(long base, long size)
❏ void setFactory(PhysicalMemoryFactory factory)

ImportanceParameters javax.realtime

int getImportance()
❉ ImportanceParameters(int priority, int importance)

void setImportance(int importance)
String toString()

Interruptible javax.realtime

void interruptAction(AsynchronouslyInterruptedException ex
ception)

void run(AsynchronouslyInterruptedException exception)

throws AsynchronouslyInterruptedException

ALMANAC 169

rtj.book Page 169 Sunday, April 30, 2000 4:37 PM
Object
➥MemoryArea

➥ScopedMemory
➥LTMemory

Object
➥Throwable java.io.Serializable

➥Error
➥MemoryAccessError

Object
➥MemoryArea

Object
➥MemoryParameters

LTMemory javax.realtime

❉ LTMemory(long initialSizeInBytes,
long maxSizeInBytes)

MemoryAccessError javax.realtime

❉ MemoryAccessError()
❉ MemoryAccessError(String description)

MemoryArea javax.realtime

void enter(Runnable logic)
❏ MemoryArea getMemoryArea(Object object)
❉♦ MemoryArea(long sizeInBytes)

long memoryConsumed()
long memoryRemaining()

Object newArray(Class type, int number)

throws InstantiationException, IllegalAccess-
Exception

Object newInstance(Class type)

throws InstantiationException, IllegalAccess-
Exception

long size()

MemoryParameters javax.realtime

long getAllocationRate()
long getMaxImmortal()
long getMaxMemoryArea()

170

rtj.book Page 170 Sunday, April 30, 2000 4:37 PM
Object
➥Throwable java.io.Serializable

➥Exception
➥MemoryScopeException

Object
➥MonitorControl

❉ MemoryParameters(long maxMemoryArea,

long maxImmortal)

throws IllegalArgumentException
❉ MemoryParameters(long maxMemoryArea,

long maxImmortal, long allocationRate)

throws IllegalArgumentException
✍■ long NO_MAX

void setAllocationRate(long rate)
boolean setMaxImmortal(long maximum)
boolean setMaxMemoryArea(long maximum)

MemoryScopeException javax.realtime

❉ MemoryScopeException()
❉ MemoryScopeException(String description)

MonitorControl javax.realtime

❉ MonitorControl()
❏ void setMonitorControl(MonitorControl policy)
❏ void setMonitorControl(Object monitor,

MonitorControl policy)

ALMANAC 171

rtj.book Page 171 Sunday, April 30, 2000 4:37 PM
Object
➥Thread Runnable

➥RealtimeThread Schedulable
➥NoHeapRealtimeThread

Object
➥Throwable java.io.Serializable

➥Exception
➥OffsetOutOfBoundsException

Object
➥AsyncEvent

➥Timer
➥OneShotTimer

NoHeapRealtimeThread javax.realtime

❉ NoHeapRealtimeThread(SchedulingParameters scheduling,

MemoryArea area)

throws IllegalArgumentException
❉ NoHeapRealtimeThread(SchedulingParameters scheduling,

ReleaseParameters release, MemoryArea area)

throws IllegalArgumentException
❉ NoHeapRealtimeThread(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory, MemoryArea area,

ProcessingGroupParameters group, Runnable logic)

throws IllegalArgumentException
✍■ int NORM_PRIORITY

OffsetOutOfBoundsExcep-
tion

javax.realtime

❉ OffsetOutOfBoundsException()
❉ OffsetOutOfBoundsException(String description)

OneShotTimer javax.realtime

❉ OneShotTimer(HighResolutionTime time,
AsyncEventHandler handler)

❉ OneShotTimer(HighResolutionTime start, Clock clock,
AsyncEventHandler handler)

172

rtj.book Page 172 Sunday, April 30, 2000 4:37 PM
Object
➥ReleaseParameters

➥PeriodicParameters

Object
➥AsyncEvent

➥Timer
➥PeriodicTimer

Object
➥PhysicalMemoryFactory

PeriodicParameters javax.realtime

RelativeTime getPeriod()
HighResolutionTime getStart()

❉ PeriodicParameters(HighResolutionTime start,
RelativeTime period, RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

void setPeriod(RelativeTime period)
void setStart(HighResolutionTime start)

PeriodicTimer javax.realtime

ReleaseParameters createReleaseParameters()
void fire()

AbsoluteTime getFireTime()
RelativeTime getInterval()

❉ PeriodicTimer(HighResolutionTime start,
RelativeTime interval,
AsyncEventHandler handler)

❉ PeriodicTimer(HighResolutionTime start,
RelativeTime interval, Clock clock,
AsyncEventHandler handler)

void setInterval(RelativeTime interval)

PhysicalMemoryFactory javax.realtime

✍■ String ALIGNED
✍■ String BYTESWAP
♦ Object create(Object memoryType, Class physMemType,

long base, long size)
✍■ String DMA
♦ long getTypedMemoryBase(Object memoryType, long size)

✍■ String SHARED

ALMANAC 173

rtj.book Page 173 Sunday, April 30, 2000 4:37 PM
Object
➥POSIXSignalHandler

POSIXSignalHandler javax.realtime

❏ void addHandler(int signal, AsyncEventHandler handler)
❏ void removeHandler(int signal, AsyncEventHandler handler)
❏ void setHandler(int signal, AsyncEventHandler handler)

✍■ int SIGABRT
✍■ int SIGALRM
✍■ int SIGBUS
✍■ int SIGCANCEL
✍■ int SIGCHLD
✍■ int SIGCLD
✍■ int SIGCONT
✍■ int SIGEMT
✍■ int SIGFPE
✍■ int SIGFREEZE
✍■ int SIGHUP
✍■ int SIGILL
✍■ int SIGINT
✍■ int SIGIO
✍■ int SIGIOT
✍■ int SIGKILL
✍■ int SIGLOST
✍■ int SIGLWP
✍■ int SIGPIPE
✍■ int SIGPOLL
✍■ int SIGPROF
✍■ int SIGPWR
✍■ int SIGQUIT
✍■ int SIGSEGV
✍■ int SIGSTOP
✍■ int SIGSYS
✍■ int SIGTERM
✍■ int SIGTHAW
✍■ int SIGTRAP
✍■ int SIGTSTP
✍■ int SIGTTIN
✍■ int SIGTTOU
✍■ int SIGURG
✍■ int SIGUSR1
✍■ int SIGUSR2
✍■ int SIGVTALRM

174

rtj.book Page 174 Sunday, April 30, 2000 4:37 PM
Object
➥MonitorControl

➥PriorityCeilingEmulation

Object
➥MonitorControl

➥PriorityInheritance

Object
➥SchedulingParameters

➥PriorityParameters

Object
➥Scheduler

➥PriorityScheduler

✍■ int SIGWAITING
✍■ int SIGWINCH
✍■ int SIGXCPU
✍■ int SIGXFSZ

PriorityCeilingEmulation javax.realtime

int getDefaultCeiling()
❉ PriorityCeilingEmulation(int ceiling)

PriorityInheritance javax.realtime

❏ PriorityInheritance instance()
❉ PriorityInheritance()

PriorityParameters javax.realtime

int getPriority()
❉ PriorityParameters(int priority)

void setPriority(int priority)

throws IllegalArgumentException
String toString()

PriorityScheduler javax.realtime

♦ void addToFeasibility(Schedulable s)
boolean changeIfFeasible(Schedulable schedulable,

ReleaseParameters release,
MemoryParameters memory)

void fireSchedulable(Schedulable schedulable)
int getMaxPriority()

❏ int getMaxPriority(Thread thread)

ALMANAC 175

rtj.book Page 175 Sunday, April 30, 2000 4:37 PM
Object
➥ProcessingGroupParameters

Object
➥HighResolutionTime Comparable

➥RelativeTime
➥RationalTime

int getMinPriority()
❏ int getMinPriority(Thread thread)

int getNormPriority()
❏ int getNormPriority(Thread thread)

String getPolicyName()
❏ PriorityScheduler instance()

boolean isFeasible()
❉ PriorityScheduler()
♦ void removeFromFeasibility(Schedulable s)

ProcessingGroupParame-
ters

javax.realtime

RelativeTime getCost()
AsyncEventHandler getCostOverrunHandler()

RelativeTime getDeadline()
AsyncEventHandler getDeadlineMissHandler()

RelativeTime getPeriod()
HighResolutionTime getStart()

❉ ProcessingGroupParameters(HighResolutionTime start,
RelativeTime period, RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

void setCost(RelativeTime cost)
void setCostOverrunHandler(AsyncEventHandler handler)
void setDeadline(RelativeTime deadline)
void setDeadlineMissHandler(AsyncEventHandler handler)
void setPeriod(RelativeTime period)
void setStart(HighResolutionTime start)

RationalTime javax.realtime

AbsoluteTime absolute(Clock clock, AbsoluteTime destination)
void addInterarrivalTo(AbsoluteTime destination)
int getFrequency()

RelativeTime getInterarrivalTime(RelativeTime dest)
❉ RationalTime(int frequency)

176

rtj.book Page 176 Sunday, April 30, 2000 4:37 PM
Object
➥RawMemoryAccess

❉ RationalTime(int frequency, long millis, int nanos)

throws IllegalArgumentException
❉ RationalTime(int frequency, RelativeTime interval)

void set(long millis, int nanos)

throws IllegalArgumentException
void setFrequency(int frequency)

RawMemoryAccess javax.realtime

❏ RawMemoryAccess create(Object type, long size)

throws SecurityException, OffsetOutOfBoundsEx-
ception, SizeOutOfBoundsException, Unsupported-
PhysicalMemoryException

❏ RawMemoryAccess create(Object type, long base, long size)

throws SecurityException, OffsetOutOfBoundsEx-
ception, SizeOutOfBoundsException, Unsupported-
PhysicalMemoryException

byte getByte(long offset)

throws OffsetOutOfBoundsException, SizeOutOf-
BoundsException

void getBytes(long offset, byte[] bytes, int low,

int number) throws OffsetOutOfBoundsException,
SizeOutOfBoundsException

int getInt(long offset)

throws OffsetOutOfBoundsException, SizeOutOf-
BoundsException

void getInts(long offset, int[] ints, int low, int number)

throws OffsetOutOfBoundsException, SizeOutOf-
BoundsException

long getLong(long offset)

throws OffsetOutOfBoundsException, SizeOutOf-
BoundsException

void getLongs(long offset, long[] longs, int low,

int number) throws OffsetOutOfBoundsException,
SizeOutOfBoundsException

long getMappedAddress()
short getShort(long offset)

throws OffsetOutOfBoundsException, SizeOutOf-
BoundsException

ALMANAC 177

rtj.book Page 177 Sunday, April 30, 2000 4:37 PM
void getShorts(long offset, short[] shorts, int low,

int number) throws OffsetOutOfBoundsException,
SizeOutOfBoundsException

long map()
long map(long base)
long map(long base, long size)

❉♦ RawMemoryAccess(long base, long size)
❉♦ RawMemoryAccess(RawMemoryAccess memory, long base,

long size)
void setByte(long offset, byte value)

throws OffsetOutOfBoundsException, SizeOutOf-
BoundsException

void setBytes(long offset, byte[] bytes, int low,

int number) throws OffsetOutOfBoundsException,
SizeOutOfBoundsException

void setInt(long offset, int value)

throws OffsetOutOfBoundsException, SizeOutOf-
BoundsException

void setInts(long offset, int[] ints, int low, int number)

throws OffsetOutOfBoundsException, SizeOutOf-
BoundsException

void setLong(long offset, long value)

throws OffsetOutOfBoundsException, SizeOutOf-
BoundsException

void setLongs(long offset, long[] longs, int low, int n)

throws OffsetOutOfBoundsException, SizeOutOf-
BoundsException

void setShort(long offset, short value)

throws OffsetOutOfBoundsException, SizeOutOf-
BoundsException

void setShorts(long offset, short[] shorts, int low,

int number) throws OffsetOutOfBoundsException,
SizeOutOfBoundsException

void unmap()

178

rtj.book Page 178 Sunday, April 30, 2000 4:37 PM
Object
➥RawMemoryAccess

➥RawMemoryFloatAccess

RawMemoryFloatAccess javax.realtime

❏ RawMemoryFloatAccess createFloatAccess(Object type, long size)

throws SecurityException, OffsetOutOfBoundsEx-
ception, SizeOutOfBoundsException, Unsupported-
PhysicalMemoryException

❏ RawMemoryFloatAccess createFloatAccess(Object type, long base, long size)

throws SecurityException, OffsetOutOfBoundsEx-
ception, SizeOutOfBoundsException, Unsupported-
PhysicalMemoryException

byte getDouble(long offset)

throws OffsetOutOfBoundsException, SizeOutOf-
BoundsException

void getDoubles(long offset, double[] doubless, int low,

int number) throws OffsetOutOfBoundsException,
SizeOutOfBoundsException

byte getFloat(long offset)

throws OffsetOutOfBoundsException, SizeOutOf-
BoundsException

void getFloats(long offset, float[] floats, int low,

int number) throws OffsetOutOfBoundsException,
SizeOutOfBoundsException

❉♦ RawMemoryFloatAccess(long base, long size)
❉♦ RawMemoryFloatAccess(RawMemoryAccess memory,

long base, long size)
void setDouble(long offset, double value)

throws OffsetOutOfBoundsException, SizeOutOf-
BoundsException

void setDoubles(long offset, double[] doubles, int low,

int number) throws OffsetOutOfBoundsException,
SizeOutOfBoundsException

void setFloat(long offset, float value)

throws OffsetOutOfBoundsException, SizeOutOf-
BoundsException

void setFloats(long offset, float[] floats, int low,

int number) throws OffsetOutOfBoundsException,
SizeOutOfBoundsException

ALMANAC 179

rtj.book Page 179 Sunday, April 30, 2000 4:37 PM
Object
➥RealtimeSecurity

Object
➥RealtimeSystem

Object
➥Thread Runnable

➥RealtimeThread Schedulable

RealtimeSecurity javax.realtime

void checkAccessPhysical() throwsSecurityException
void checkAccessPhysicalRange(long base, long size)

throws SecurityException
void checkSetFactory() throwsSecurityException
void checkSetScheduler() throwsSecurityException

❉ RealtimeSecurity()

RealtimeSystem javax.realtime

✍■ byte BIG_ENDIAN
✍■ byte BYTE_ORDER
❏ GarbageCollector currentGC()

int getConcurrentLocksUsed()
int getMaximumConcurrentLocks()

❏ RealtimeSecurity getSecurityManager()
✍■ byte LITTLE_ENDIAN

void setMaximumConcurrentLocks(int number)
void setMaximumConcurrentLocks(int number, boolean hard)

❏ void setSecurityManager(RealtimeSecurity manager)

throws SecurityException

RealtimeThread javax.realtime

void addToFeasibility()
❏ RealtimeThread currentRealtimeThread()

void deschedulePeriodic()
MemoryArea getMemoryArea()

MemoryParameters getMemoryParameters()
ProcessingGroupParame-

ters
getProcessingGroupParameters()

ReleaseParameters getReleaseParameters()
Scheduler getScheduler()

SchedulingParameters getSchedulingParameters()

180

rtj.book Page 180 Sunday, April 30, 2000 4:37 PM
Object
➥HighResolutionTime Comparable

➥RelativeTime

void interrupt()
❉ RealtimeThread()
❉ RealtimeThread(SchedulingParameters scheduling)
❉ RealtimeThread(SchedulingParameters scheduling,

ReleaseParameters release)
❉ RealtimeThread(SchedulingParameters scheduling,

ReleaseParameters release,
MemoryParameters memory, MemoryArea area,
ProcessingGroupParameters group, Runnable logic)

void removeFromFeasibility()
void schedulePeriodic()
void setMemoryParameters(MemoryParameters parameters)
void setProcessingGroupParameters(ProcessingGroupParameter

s parameters)
void setReleaseParameters(ReleaseParameters parameters)
void setScheduler(Scheduler scheduler)

throws IllegalThreadStateException
void setSchedulingParameters(SchedulingParameters scheduli

ng)
❏ void sleep(Clock clock, HighResolutionTime time)

throws InterruptedException
❏ void sleep(HighResolutionTime time)

throws InterruptedException
boolean waitForNextPeriod()

throws IllegalThreadStateException

RelativeTime javax.realtime

AbsoluteTime absolute(Clock clock, AbsoluteTime destination)
RelativeTime add(long millis, int nanos)
RelativeTime add(long millis, int nanos, RelativeTime destination)

● RelativeTime add(RelativeTime time)
RelativeTime add(RelativeTime time, RelativeTime destination)

void addInterarrivalTo(AbsoluteTime destination)
RelativeTime getInterarrivalTime(RelativeTime destination)

❉ RelativeTime()
❉ RelativeTime(long millis, int nanos)
❉ RelativeTime(RelativeTime time)

ALMANAC 181

rtj.book Page 181 Sunday, April 30, 2000 4:37 PM
Object
➥ReleaseParameters

Object
➥Throwable java.io.Serializable

➥Error
➥ResourceLimitError

Schedulable Runnable

● RelativeTime subtract(RelativeTime time)
RelativeTime subtract(RelativeTime time, RelativeTime destination)

String toString()

ReleaseParameters javax.realtime

RelativeTime getCost()
AsyncEventHandler getCostOverrunHandler()

RelativeTime getDeadline()
AsyncEventHandler getDeadlineMissHandler()

❉♦ ReleaseParameters(RelativeTime cost,
RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

void setCost(RelativeTime cost)
void setCostOverrunHandler(AsyncEventHandler handler)
void setDeadline(RelativeTime deadline)
void setDeadlineMissHandler(AsyncEventHandler handler)

ResourceLimitError javax.realtime

❉ ResourceLimitError()
❉ ResourceLimitError(String description)

Schedulable javax.realtime

void addToFeasibility()
MemoryParameters getMemoryParameters()
ReleaseParameters getReleaseParameters()

Scheduler getScheduler()
SchedulingParameters getSchedulingParameters()

void removeFromFeasibility()
void setMemoryParameters(MemoryParameters memory)
void setReleaseParameters(ReleaseParameters release)
void setScheduler(Scheduler scheduler)
void setSchedulingParameters(SchedulingParameters scheduli

ng)

182

rtj.book Page 182 Sunday, April 30, 2000 4:37 PM
Object
➥Scheduler

Object
➥SchedulingParameters

Object
➥MemoryArea

➥ScopedMemory

Scheduler javax.realtime

❍♦ void addToFeasibility(Schedulable schedulable)
boolean changeIfFeasible(Schedulable schedulable,

ReleaseParameters release,
MemoryParameters memory)

❏ Scheduler getDefaultScheduler()
❍ String getPolicyName()
❍ boolean isFeasible()

❍♦ void removeFromFeasibility(Schedulable schedulable)
❉ Scheduler()
❏ void setDefaultScheduler(Scheduler scheduler)

SchedulingParameters javax.realtime

❉ SchedulingParameters()

ScopedMemory javax.realtime

void enter(Runnable logic)
int getMaximumSize()

MemoryArea getOuterScope()
Object getPortal()

❉ ScopedMemory(long size)
void setPortal(Object object)

ALMANAC 183

rtj.book Page 183 Sunday, April 30, 2000 4:37 PM
Object
➥MemoryArea

➥ScopedMemory
➥ScopedPhysicalMemory

Object
➥Throwable java.io.Serializable

➥Exception
➥SizeOutOfBoundsException

Object
➥ReleaseParameters

➥AperiodicParameters
➥SporadicParameters

ScopedPhysicalMemory javax.realtime

❏ ScopedPhysicalMemory create(Object type, long base, long size)

throws SecurityException, SizeOutOfBoundsEx-
ception, OffsetOutOfBoundsException, Unsupport-
edPhysicalMemoryException

❉♦ ScopedPhysicalMemory(long base, long size)
❉♦ ScopedPhysicalMemory(ScopedPhysicalMemory memory,

long base, long size)
❏ void setFactory(PhysicalMemoryFactory factory)

SizeOutOfBoundsException javax.realtime

❉ SizeOutOfBoundsException()
❉ SizeOutOfBoundsException(String description)

SporadicParameters javax.realtime

RelativeTime getMinimumInterarrival()
void setMinimumInterarrival(RelativeTime minimum)

❉ SporadicParameters(RelativeTime minInterarrival,
RelativeTime cost, RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler)

184

rtj.book Page 184 Sunday, April 30, 2000 4:37 PM
Object
➥Throwable java.io.Serializable

➥Error
➥ThrowBoundaryError

Object
➥Throwable java.io.Serializable

➥Exception
➥InterruptedException

➥AsynchronouslyInterruptedException
➥Timed

Object
➥AsyncEvent

➥Timer

ThrowBoundaryError javax.realtime

❉ ThrowBoundaryError()
❉ ThrowBoundaryError(String description)

Timed javax.realtime

boolean doInterruptible(Interruptible logic)
void resetTime(HighResolutionTime time)

❉ Timed(HighResolutionTime time)

throws IllegalArgumentException

Timer javax.realtime

ReleaseParameters createReleaseParameters()
void disable()
void enable()
Clock getClock()

AbsoluteTime getFireTime()
void reschedule(HighResolutionTime time)
void start()

❉♦ Timer(HighResolutionTime t, Clock c,
AsyncEventHandler handler)

ALMANAC 185

rtj.book Page 185 Sunday, April 30, 2000 4:37 PM
Object
➥Throwable java.io.Serializable

➥Exception
➥UnsupportedPhysicalMemoryException

Object
➥MemoryArea

➥ScopedMemory
➥VTMemory

Object
➥WaitFreeDequeue

UnsupportedPhysicalMemo-
ryException

javax.realtime

❉ UnsupportedPhysicalMemoryException()
❉ UnsupportedPhysicalMemoryException(String description

)

VTMemory javax.realtime

❉ VTMemory(int initial, int maximum)

WaitFreeDequeue javax.realtime

Object blockingRead()
boolean blockingWrite(Object object)

throws MemoryScopeException
boolean force(Object object)
Object nonBlockingRead()
boolean nonBlockingWrite(Object object)

throws MemoryScopeException
❉ WaitFreeDequeue(Thread writer, Thread reader,

int maximum, MemoryArea area)

throws IllegalArgumentException, IllegalAcces-
sException, ClassNotFoundException, Instantia-
tionException

186

rtj.book Page 186 Sunday, April 30, 2000 4:37 PM
Object
➥WaitFreeReadQueue

Object
➥WaitFreeWriteQueue

WaitFreeReadQueue javax.realtime

void clear()
boolean isEmpty()
boolean isFull()
Object read()

int size()
void waitForData()

❉ WaitFreeReadQueue(Thread writer, Thread reader,

int maximum, MemoryArea memory)

throws IllegalArgumentException, Instantia-
tionException, ClassNotFoundException, Illega-
lAccessException

❉ WaitFreeReadQueue(Thread writer, Thread reader,

int maximum, MemoryArea memory, boolean notify)

throws IllegalArgumentException, Instantia-
tionException, ClassNotFoundException, Illega-
lAccessException

boolean write(Object object) throwsMemoryScopeException

WaitFreeWriteQueue javax.realtime

void bind(Thread writer, Thread reader, MemoryArea memory)

throws IllegalArgumentException, IllegalAcces-
sException, InstantiationException

void clear()
boolean force(Object object)
boolean isEmpty()
boolean isFull()
Object read()

int size()
❉ WaitFreeWriteQueue(Thread writer, Thread reader,

int maximum, MemoryArea memory)

throws IllegalArgumentException, IllegalAcces-
sException, ClassNotFoundException, Instantia-
tionException

boolean write(Object object) throwsMemoryScopeException

.

e
99,

ion,

s

.

rtj.book Page 187 Sunday, April 30, 2000 4:37 PM
Bibliography

1. J.H. Anderson, S. Ramamurthy, and K. Jeffay,Real-Time Computing with Lock-
Free Shared Objects, IEEE Real-Time Systems Symposium 1995, pp. 28-37.

2. J. Anderson, R. Jain, S. Ramamurthy,Wait-Free Object-Sharing Schemes for
Real-Time Uniprocessors and Multiprocessors, IEEE Real-Time Systems
Symposium 1997, pp. 111-122.

3. H. Attiya and N.A. Lynch,Time Bounds for Real-Time Process Control in the
Presence of Timing Uncertainty, IEEE Real-Time Systems Symposium 1989, pp
268-284.

4. T.P. Baker and A. Shaw,The Cyclic Executive Model and Ada, IEEE Real-Time
Systems Symposium 1988, pp. 120-129.

5. T.P. Baker,A Stack-Based Resource Allocation Policy for Realtime Processes,
IEEE Real-Time Systems Symposium 1990, pp. 191-200.

6. T. Baker and 0. Pazy,Real-Time Features for Ada 9X, IEEE Real-Time Systems
Symposium 1991, pp. 172-180.

7. S.K. Baruah, A.K. Mok, and L.E. Rosier,Preemptively Scheduling Hard-Real-
Time Sporadic Tasks on One Processor, IEEE Real-Time Systems Symposium
1990, pp. 182-190.

8. L. Carnahan and M. Ruark (eds.),Requirements for Real-Time Extensions for th
Java Platform, National Institute of Standards and Technology, September 19
Available at http://www.nist.gov/rt-java.

9. Patrick Chan, Rosanna Lee, and Douglas Kramer,The Java Class Libraries,
Second Edition, Volume 1, Supplement for the Java 2 Platform Standard Edit
v1.2, Addison-Wesley, 1999.

10. M.-Z. Chen and K.J. Lin,A Priority Ceiling Protocol for Multiple-Instance
Resources, IEEE Real-Time Systems Symposium 1991, pp. 140-149.

11. S. Cheng, J.A,Stankovic, and K. Ramamritham,Dynamic Scheduling of Groups
of Tasks with Precedence Constraints in Distributed Hard Real-Time System,
IEEE Real-Time Systems Symposium 1986, pp. 166-174.

12. R.I. Davis, K. W. Tindell, and A. Burns,Scheduling Slack Time in Fixed Priority
Preemptive Systems, IEEE Real-Time Systems Symposium 1993, pp. 222-231

13. B.O. Gallmeister and C. Lanier,Early Experience with POSIX 1003.4 and POSIX
187

188

e
,

me

1.

e

tem

rtj.book Page 188 Sunday, April 30, 2000 4:37 PM
lOO3.4a, IEEE Real-Time Systems Symposium 1991, pp. 190-198.

14. J. Gosling, B. Joy, and G. Steele,The Java Language Specification, Addison-
Wesley, 1996.

15. M.L. Green, E.Y.S. Lee, S. Majumdar, D.C. Shannon,A Distributed Real Time
Operating System, IEEE Real-Time Systems Symposium 1980, pp. 175-184.

16. M.G. Harbour, M.H. Klein, and J.P. Lehoczky,Fixed Priority Scheduling of
Periodic Tasks with Varying Execution Priority, IEEE Real-Time Systems
Symposium 1991, pp. 116-128.

17. F. Jahanian and A.K. Mok,A Graph-Theoretic Approach for Timing Analysis in
Real Time Logic, IEEE Real-Time Systems Symposium 1986, pp. 98-108.

18. K. Jeffay,Analysis of a Synchronization and Scheduling Discipline for Real-Tim
Tasks with Preemption Constraints, IEEE Real-Time Systems Symposium 1989
pp. 295-207.

19. K. Jeffay, D.F. Stanat, and C.U. Martel ,On Non-Preemptive Scheduling of
Periodic and Sporadic Tasks, IEEE Real-Time Systems Symposium 1991, pp.
129-139.

20. K. Jeffay,Scheduling Sporadic Tasks with Shared Resources in Hard-Real-Ti
Systems, IEEE Real-Time Systems Symposium 1992, pp. 89-99.

21. K. Jeffay and D.L. Stone,Accounting for Interrupt Handling Costs in Dynamic
Priority Task Systems, IEEE Real-Time Systems Symposium 1993, pp. 212-22

22. K. Jeffay and D. Bennett,A Rate-Based Execution Abstraction for Multimedia
Computing, Proceedings of the 5th International Workshop on Network and
Operating System Support for Digital Audio and Video (Apr. 1995).

23. E.D. Jensen, C.D. Locke, and H. Tokuda,A Time-Driven Scheduling Model for
Real-Time Operating Systems, IEEE Real-Time Systems Symposium 1985, pp.
112-133.

24. Mark S. Johnstone,Non-Compacting Memory Allocation and Real-Time Garbag
Collection, Ph.D. dissertation, The University of Texas at Austin, December
1997.

25. M.B. Jones,Adaptive Real-Time Resource Management Supporting Modular
Composition of Digital Multimedia Services, Proceedings of the 4th Interna-
tional Workshop on Network and Operating System Support for Digital Audio
and Video (Nov. 1993).

26. M.B. Jones, P.J. Leach, R.P. Draves, and J.S. Barrera,Support for User-centric
Modular Real-Time Resource Management in the Rialto Operating System,
Proceedings of the 5th International Workshop on Network and Operating Sys
Support for Digital Audio and Video (Apr. 1995).

27. I. Lee and S.B. Davidson,Protocols for Timed Synchronous Process

BIBLIOGRAPHY 189

-

,

.

rtj.book Page 189 Sunday, April 30, 2000 4:37 PM
Communications, IEEE Real-Time Systems Symposium 1986, pp. 120-137.

28. J.P. Lehoczky, L, Sha, and J.K. Strosnider,Enhanced Aperiodic Responsiveness
in Hard Real-Time Environments, IEEE Real-Time Systems Symposium 1987,
pp. 261-270.

29. J. Lehoczky, L. Sha, and Y. Ding,The Rate Monotonic Scheduling Algorithm:
Exact Characterization and Average Case Behavior, IEEE Real-Time Systems
Symposium 1989, pp. 166-171.

30. J.P. Lehoczky and T.P. Baker,Fixed Priority Scheduling of Periodic Task Sets
with Arbitrary Deadlines, IEEE Real-Time Systems Symposium 1990, pp. 201
213.

31. J.P. Lehoczky and S. Ramos-Thuel,An Optimal Algorithm for Scheduling Soft-
Aperiodic Tasks in Fixed-Priority Preemptive System, IEEE Real-Time Systems
Symposium 1992, pp. 110-124.

32. K.-J. Lin, S. Natarajan, and J.W.-S, Liu,Imprecise Results: Utilizing Partial
Computations in Real-Time Systems, IEEE Real-Time Systems Symposium 1987
pp. 210-218.

33. T. Lindholm and F. Yellin,The Java Virtual Machine Specification, Addison-
Wesley, second edition, 1999.

34. C.L. Liu and J.W. Layland,Scheduling Algorithms for Multiprogramming in a
Hard Real-Time Environment, JACM 20, 1 (Jan. 1973), pp. 46-61.

35. J.W.-S. Liu, K.-J. Lin, and S. Natarajan,Scheduling Real-Time, Periodic Jobs
Using Imprecise Results, IEEE Real-Time Systems Symposium 1987, pp. 252-
260.

36. C. Lizzi,Enabling Deadline Scheduling for Java Real-Time Computing, IEEE
Real-Time Systems Symposium 1999.

37. C.D. Locke, D.R. Vogel. and T.J. Mesler,Building a Predictable Avionics
Platform in Ada: A Case Study, IEEE Real-Time Systems Symposium 1991, pp
180-189.

38. N. Lynch and N. Shavit,Timing-Based Mutual Exclusion, IEEE Real-Time
Systems Symposium 1992, pp. 2-11.

39. C.W. Mercer and H. Tokuda,Preemptibility in Real-Time Operating Systems,
IEEE Real-Time Systems Symposium 1992, pp. 78-88.

40. C.W.Mercer,S. Savage, and H. Tokuda,Processor Capacity Reserves for
Multimedia Operating Systems, Proceedings of the IEEE Inter- national
Conference on Multimedia Computing and Systems (May 1994).

41. A. Miyoshi, T. Kitayama, H. Tokuda,Implementation and Evaluation of Real-
Time Java Threads, IEEE Real-Time Systems Symposium 1997, pp. 166-175.

42. J.S. Ostroff and W.M, Wonham,Modelling, Specifying and Verifying Real-Time

190

c.

,

.,

gle

rtj.book Page 190 Sunday, April 30, 2000 4:37 PM
Embedded Computer Systems, IEEE Real-Time Systems Symposium 1987, pp.
124-132.

43. Portable Operating System Interface (POSIX®) Part 1: System Application
Program Interface, International Standard ISO/IEC 9945-1: 1996 (E) IEEE Std
1003.1, 1996 Edition, The Institute of Electrical and Electronics Engineers, In
1996.

44. R. Rajkumar, L. Sha, and J.P, Lehoczky,On Countering the Effects of Cycle-
Stealing in a Hard Real-Time Environment, IEEE Real-Time Systems
Symposium 1987, pp. 2-11.

45. R. Rajkumar, L. Sha, and J.P. Lehoczky,Real-Time Synchronization Protocols for
Multiprocessors, IEEE Real-Time Systems Symposium 1988, pp. 259-271.

46. S. Ramos-Thuel and J.P. Lehoczky,On-Line Scheduling of Hard Deadline
Aperiodic Tasks in Fixed-Priority Systems, IEEE Real-Time Systems Symposium
1993, pp. 160-171.

47. L. Sha, J.P, Lehoczky,and R, Rajkumar,Solutions for Some Practical Problems in
Prioritized Preemptive Scheduling, IEEE Real-Time Systems Symposium 1986
pp. 181-193.

48. L. Sha, R. Rajkumar, and J. Lehoczky,Priority Inheritance Protocols: An
Approach to Real-Time Synchronization, IEEE Transactions on Computers, Sept
1990.

49. L. Sha, R. Rajkumar, and J. Lehoczky,Real-Time Computing using Futurebus+,
IEEE Micro, June, 1991.

50. A.C. Shaw,Software Clocks, Concurrent Programming, and Slice-Based
Scheduling, IEEE Real-Time Systems Symposium 1986, pp. 14-19.

51. F. Siebert,Real-Time Garbage Collection in Multi-Threaded Systems on a Sin
Processor, IEEE Real-Time Systems Symposium 1999.

52. B. Sprunt, J. Lehoczky, and L. Sha,Exploiting Unused Periodic Time for
Aperiodic Service Using the Extended Priority Exchange Algorithm, IEEE Real-
Time Systems Symposium 1988, pp. 251-258.

53. Sun Microsystems, Inc.,The Java Community Process Manual, December 1998,
Available at http://java.sun.com/aboutJava/communityprocess/
java_community_process.html.

54. S.R. Thuel and J.P. Lehoczky,Algorithms for Scheduling Hard Aperiodic Tasks in
Fixed-Priority Systems Using Slack Stealing, IEEE Real-Time Systems
Symposium 1994, pp. 22-35.

55. H. Tokuda, J.W. Wendorf, and H.-Y. Wang,Implementation of a Time-Driven
Scheduler for ReaI-Time Operating System, IEEE Real-Time Systems
Symposium 1987, pp. 271-280.

BIBLIOGRAPHY 191

,

7.

S

rtj.book Page 191 Sunday, April 30, 2000 4:37 PM
56. D.M. Washabaugh and D. Kafura,Incremental Garbage Collection of Concurrent
Objects for Real-Time Applications, IEEE Real-Time Systems Symposium 1990
pp. 21-31.

57. Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles,Dynamic
Storage Allocation: A Survey and Critical Review, In International Workshop on
Memory Management, Kinross, Scotland, UK, September 1995.

58. W. Zhao and K. Ramamritham ,A Virtual Time CSMA Protocol for Hard Real
Time Communication, IEEE Real-Time Systems Symposium 1986, pp. 120-12

59. W. Zhao and J.A. Stankovic,Performance Analysis of FCFS and Improved FCF
Scheduling Algorithms for Dynamic Real-Time Computer Systems, IEEE Real-
Time Systems Symposium 1989, pp. 156-165.

192

rtj.book Page 192 Sunday, April 30, 2000 4:37 PM

files.
t
We
much
e
 was

gh
rful
t.

le at

rtj.book Page 193 Sunday, April 30, 2000 4:37 PM
Colophon

This specification document was generated from a set of Java and HTML source
They were compiled using javadoc and the doclet-from-hell: mifdoclet. The recen
development of mifdoclet was driven largely by the Real Time Java Expert Group.
wanted to be able to produce a specification document that had been checked, as
as possible, by whatever compilation tools we could find. The specification sourc
compiles as a Java program, and even contains a scaffold implementation which
used to compile and run the examples.

The mifdoclet generates its output in MIF format, which was processed throu
Adobe FrameMaker, http://www.adobe.com/products/framemaker, a truely wonde
publishing package without which this book would have been much more difficul

The source files used to produce this specification will eventually be availab
http://www.rtj.org.
193

194

rtj.book Page 194 Sunday, April 30, 2000 4:37 PM

rtj.book Page 195 Sunday, April 30, 2000 4:37 PM
Index

A
absolute 97, 100, 103, 106
AbsoluteTime 99, 100
add 100, 101, 103, 104
addHandler 127, 150
addInterarrivalTo 104, 106
addToFeasibility 24, 35, 37, 38, 131
ALIGNED 69
AperiodicParameters 47, 48
AsyncEvent 127
AsyncEventHandler 129, 130
AsynchronouslyInterruptedException

136, 137

B
BIG_ENDIAN 152
bind 93
bindTo 128
blockingRead 89
blockingWrite 89
BoundAsyncEventHandler 134
BYTE_ORDER 152
BYTESWAP 69

C
changeIfFeasible 37, 38
checkAccessPhysical 151
checkAccessPhysicalRange 151
checkSetFactory 152
checkSetScheduler 152
clear 91, 93
Clock 110, 111
compareTo 97, 98

create 69, 70, 72, 73
createFloatAccess 77, 78
createReleaseParameters 112, 115,

128
currentGC 152
currentRealtimeThread 24

D
deschedulePeriodic 24
disable 113, 137
DMA 69
doInterruptible 137, 139

E
enable 113, 137
enter 60, 64
equals 98

F
fire 115, 128, 138
fireSchedulable 38
force 89, 93

G
GarbageCollector 82
getAllocationRate 81
getAndClearPendingFireCount 131
getAndDecrementPendingFireCount

131
getAndIncrementPendingFireCount

131
getByte 74
195

196 INDEX

rtj.book Page 196 Sunday, April 30, 2000 4:37 PM
getBytes 74
getClock 113
getConcurrentLocksUsed 152
getCost 44, 51
getCostOverrunHandler 44, 51
getDate 101
getDeadline 44, 51
getDeadlineMissHandler 44, 51
getDefaultCeiling 88
getDefaultScheduler 37
getDouble 78
getDoubles 78
getFireTime 113, 115
getFloat 78
getFloats 78
getFrequency 107
getGeneric 138
getImportance 42
getInt 74
getInterarrivalTime 104, 107
getInterval 116
getInts 74
getLong 74
getLongs 74
getMappedAddress 75
getMaxImmortal 81
getMaximumConcurrentLocks 153
getMaximumReclamationRate 83
getMaximumSize 64
getMaxMemoryArea 81
getMaxPriority 39
getMemoryArea 24, 60, 132
getMemoryParameters 24, 35, 132
getMilliseconds 98
getMinimumInterarrival 50
getMinPriority 39
getNanoseconds 98
getNormPriority 39
getOuterScope 64
getPeriod 47, 51
getPolicyName 37, 39

getPortal 64
getPreemptionLatency 82, 83, 84
getPriority 41
getProcessingGroupParameters 24,

132
getReadBarrierOverhead 83
getRealtimeClock 111
getReleaseParameters 24, 35, 132
getResolution 111
getScheduler 24, 35, 132
getSchedulingParameters 24, 35, 132
getSecurityManager 153
getShort 75
getShorts 75
getStart 47, 51
getTime 111
getTypedMemoryBase 69
getWriteBarrierOverhead 83

H
handleAsyncEvent 132
handledBy 128
happened 138
hashCode 98
HeapMemory 61
HighResolutionTime 97

I
IllegalAssignmentError 156
ImmortalMemory 62
ImmortalPhysicalMemory 70
ImportanceParameters 42
IncrementalCollectorExample 83
instance 40, 62, 88
interrupt 24
interruptAction 135
Interruptible 135
isEmpty 91, 93
isEnabled 138
isFeasible 37, 40

197

rtj.book Page 197 Sunday, April 30, 2000 4:37 PM
isFull 91, 93

L
LITTLE_ENDIAN 152
LTMemory 65, 66

M
map 75
MarkAndSweepCollectorExample 84
MemoryAccessError 156, 157
MemoryArea 60
memoryConsumed 60
MemoryParameters 79, 80
memoryRemaining 60
MemoryScopeException 157
MonitorControl 86, 87

N
newArray 61
newInstance 61
NO_MAX 80
NoHeapRealtimeThread 26, 27, 28
nonBlockingRead 89
nonBlockingWrite 90

O
OffsetOutOfBoundsException 158
OneShotTimer 113, 114

P
PeriodicParameters 45, 46
PeriodicTimer 114, 115
PhysicalMemoryFactory 68
POSIXSignalHandler 148
PriorityCeilingEmulation 87
PriorityInheritance 88
PriorityParameters 41
PriorityScheduler 38

ProcessingGroupParameters 50
propagate 138

R
RationalTime 105, 106
RawMemoryAccess 72, 73
RawMemoryFloatAccess 77
read 91, 94
RealtimeSecurity 151
RealtimeSystem 152
RealtimeThread 22, 23
RelativeTime 102, 103
ReleaseParameters 43
removeFromFeasibility 25, 35, 37, 40,

132
removeHandler 128, 151
reschedule 113
resetTime 139
ResourceLimitError 158
run 132, 135

S
Schedulable 35
schedulePeriodic 25
Scheduler 36
SchedulingParameters 40
ScopedMemory 62, 63
ScopedPhysicalMemory 71
set 98, 99, 101, 107
setAllocationRate 81
setByte 76
setBytes 76
setCost 44, 52
setCostOverrunHandler 44, 52
setDeadline 45, 52
setDeadlineMissHandler 45, 52
setDefaultScheduler 37
setDouble 79
setDoubles 79
setFactory 71, 72

198 INDEX

rtj.book Page 198 Sunday, April 30, 2000 4:37 PM
setFloat 79
setFloats 79
setFrequency 107
setHandler 128, 151
setImportance 42
setInt 76
setInterval 116
setInts 76
setLong 76
setLongs 76
setMaxImmortal 81
setMaximumConcurrentLocks 153
setMaxMemoryArea 81
setMemoryParameters 25, 35, 133
setMinimumInterarrival 50
setMonitorControl 87
setPeriod 47, 52
setPortal 64
setPriority 41
setProcessingGroupParameters 25,

133
setReclamationRate 83
setReleaseParameters 25, 36, 133
setResolution 112
setScheduler 25, 36, 133
setSchedulingParameters 25, 36, 133
setSecurityManager 153
setShort 76
setShorts 76
setStart 47, 52
SHARED 69
SIGABRT 148
SIGALRM 148
SIGBUS 148
SIGCANCEL 148
SIGCHLD 148
SIGCLD 148
SIGCONT 148
SIGEMT 148
SIGFPE 148
SIGFREEZE 149

SIGHUP 149
SIGILL 149
SIGINT 149
SIGIO 149
SIGIOT 149
SIGKILL 149
SIGLOST 149
SIGLWP 149
SIGPIPE 149
SIGPOLL 149
SIGPROF 149
SIGPWR 149
SIGQUIT 149
SIGSEGV 149
SIGSTOP 149
SIGSYS 149
SIGTERM 149
SIGTHAW 150
SIGTRAP 150
SIGTSTP 150
SIGTTIN 150
SIGTTOU 150
SIGURG 150
SIGUSR1 150
SIGUSR2 150
SIGVTALRM 150
SIGWAITING 150
SIGWINCH 150
SIGXCPU 150
SIGXFSZ 150
size 61, 92, 94
SizeOutOfBoundsException 159
sleep 25
SporadicParameters 48, 49
start 113
subtract 101, 102, 104

T
ThrowBoundaryError 159
Timed 138, 139

199

rtj.book Page 199 Sunday, April 30, 2000 4:37 PM
Timer 112
toString 41, 42, 102, 105

U
unmap 77
UnsupportedPhysicalMemoryExcepti

on 160

V
VTMemory 65

W
waitForData 92
waitForNextPeriod 26
WaitFreeDequeue 88, 89
WaitFreeReadQueue 90, 91
WaitFreeWriteQueue 92
write 92, 94

200 INDEX

rtj.book Page 200 Sunday, April 30, 2000 4:37 PM

	Contents
	Caveat
	Authors
	Preface
	Dreams
	Realization
	Acknowledgments
	A Note on Format

	Foreword
	Introduction
	Guiding Principles
	Overview of the Seven Enhanced Areas

	Design
	Scheduling
	Memory Management
	Synchronization
	Asynchronous Event Handling
	Asynchronous Transfer of Control
	Asynchronous Thread Termination
	Physical Memory Access
	Exceptions
	Minimum Implementations of the RTSJ
	Optionally Required Components
	Documentation Requirements
	Parameter Objects
	Java Platform Dependencies

	Threads
	Semantics and Requirements
	Rationale
	3.1 RealtimeThread
	3.2 NoHeapRealtimeThread
	Realtime�Thread Example

	Scheduling
	Semantics and Requirements
	Rationale
	4.1 Schedulable
	4.2 Scheduler
	4.3 PriorityScheduler
	4.4 SchedulingParameters
	4.5 PriorityParameters
	4.6 ImportanceParameters
	4.7 ReleaseParameters
	4.8 PeriodicParameters
	4.9 AperiodicParameters
	4.10 SporadicParameters
	4.11 ProcessingGroupParameters
	Scheduler Example
	Processing�Group Example

	Memory Management
	Semantics and Requirements
	Rationale
	5.1 MemoryArea
	5.2 HeapMemory
	5.3 ImmortalMemory
	5.4 ScopedMemory
	5.5 VTMemory
	5.6 LTMemory
	Scoped�Memory Example
	Scoped�Memory Example 2
	5.7 PhysicalMemoryFactory
	5.8 ImmortalPhysicalMemory
	5.9 ScopedPhysicalMemory
	5.10 RawMemoryAccess
	5.11 RawMemoryFloatAccess
	5.12 MemoryParameters
	5.13 GarbageCollector
	5.14 IncrementalCollectorExample
	5.15 MarkAndSweepCollectorExample

	Synchronization
	Semantics and Requirements
	Rationale
	6.1 MonitorControl
	6.2 PriorityCeilingEmulation
	6.3 PriorityInheritance
	6.4 WaitFreeDequeue
	6.5 WaitFreeReadQueue
	6.6 WaitFreeWriteQueue

	Time
	Semantics and Requirements
	Rationale
	7.1 HighResolutionTime
	7.2 AbsoluteTime
	7.3 RelativeTime
	7.4 RationalTime
	High�Resolution�Time Example

	Timers
	Semantics and Requirements
	Rationale
	8.1 Clock
	8.2 Timer
	8.3 OneShotTimer
	8.4 PeriodicTimer
	Timer Example

	Asynchrony
	Semantics and Requirements
	Rationale
	9.1 AsyncEvent
	9.2 AsyncEventHandler
	9.3 BoundAsyncEventHandler
	9.4 Interruptible
	9.5 AsynchronouslyInterruptedException
	9.6 Timed
	Async�Event Example
	AIE Example
	AIE Example 2
	AIE Example 3
	AIE Example 4

	System and Options
	Semantics and Requirements
	Rationale
	10.1 POSIXSignalHandler
	10.2 RealtimeSecurity
	10.3 RealtimeSystem

	Exceptions
	Semantics and Requirements
	Rationale
	11.1 IllegalAssignmentError
	11.2 MemoryAccessError
	11.3 MemoryScopeException
	11.4 OffsetOutOfBoundsException
	11.5 ResourceLimitError
	11.6 SizeOutOfBoundsException
	11.7 ThrowBoundaryError
	11.8 UnsupportedPhysicalMemoryException

	Almanac
	Bibliography
	Colophon
	Index

