
READLINE REFERENCE

Definitions ... 1
Readline .. 2
Readline Directives .. 2
Readline Key Bindings 2
Readline Variables .. 3
Readline Emacs Mode.. 4
Readline VI Mode ... 8

CONTENTS

This online reference card describes the readline
library that comes with version 2.02.0 of bash. It is a
companion to SSC’s BASH REFERENCE, which simply
didn’t have room for the full readline description.

Several typefaces are used to clarify the meaning:
• Serifa Bold is used for computer input.
• Serifa Italic is used to indicate user input and for

syntactic placeholders, such as variable or cmd.
• Serifa Roman is used for explanatory text.

blank − separator between words. Blanks consist of one
or more spaces and/or tab characters. In addition,
words are terminated by any of the following
characters:

; & () | < > space tab newline

n − an integer.

name − a variable, alias, function or command name.

word − a generic argument; a word. Quoting may be
necessary if it contains special characters.

DEFINITIONS

This reference card was written by Arnold Robbins. We
thank Chet Ramey (bash’s maintainer) for his help.

Specializ ed Systems Consultants, Inc.
(206)FOR-UNIX/(206)782-7733

FAX: (206)782-7191
E-mail: sales@ssc.com

URL: http://www.ssc.com

Linux Journal—The Premier Linux Magazine
Technical Books and CDs

Effective AWK Programming
SAMBA: Integrating UNIX and Windows

BASH Reference
Shell Tutorials, KSH Reference

VI & Emacs References, VI Tutorial

OTHER SSC PRODUCTS:

© Copyright 1999 Specialized Systems Consultants, Inc.,
P.O. Box 55549, Seattle, WA 98155-0549.
All Rights Reserved.

1

The readline library implements command-line editing.
By default, it provides an emacs editing interface,
although a vi interface is available. readline is
initialized either from the file named by $INPUTRC (if
set), or from ˜/.inputrc. In that file, you can use
conditionals, define key bindings for macros and
functions, and set variables.

From the bash level, the bind command allows you to
add, remove and change macro and key bindings.
There are five input mode map names that control the
action taken for each input character. The map names
are emacs, emacs-standard, emacs-meta, emacs-ctlx,
vi, vi-command, and vi-insert. emacs is the same as
emacs-standard, and vi is the same as vi-command.

You choose which editor you prefer with set −o emacs
or set −o vi in your ˜/.bashrc file, or at runtime.

readline understands the character names DEL, ESC,
LFD, NEWLINE, RET, RETURN, RUBOUT, SPACE, SPC and
TAB.

READLINE

Directives in the .inputrc file provide conditionals and
include facilities similar to the C preprocessor.

$include
include a file, e.g., a system-wide /etc/inputrc file

$if
star t a conditional, for terminal or application-
specific settings. You can test the following:

application= test the application, e.g., bash or gdb
mode= test the editing mode, emacs or vi
term= test the terminal type

The use of application= is optional; e.g., $if Bash
$else

star t the ‘‘else’’ par t of a conditional
$endif

finish a conditional

READLINE DIRECTIVES

Keys bound to a macro place the macro text into the
input; keys bound to a function run the function.

You can use these escape sequences in bindings:

\a aler t (bell) \r carriage return
\b backspace \t horizontal tab (TAB)
\C− control prefix \v ver tical tab
\d delete (DEL) \\ backslash
\e escape (ESC) \" literal "
\f form feed \´ literal ´
\M− meta prefix \ddd octal value ddd
\n newline \xhhh hex value hhh

Macros and function bindings look like:

macro: key-seq :"text"
function: key-seq :function-name

Macros have quoted text on the right of the colon;
functions have function names. A key-seq is either a
single character or character name (such as Control−o),
or a quoted string of characters (single or double
quotes).

READLINE KEY BINDINGS

2

Variables control different aspects of readline’s
behavior. You set a variable with

set variable value

Unless otherwise noted, value should be either On or
Off. The descriptions below describe the effect when
the variable is On. Default values are shown in
parentheses.

bell-style (audible)
defines how readline should ring the bell:

audible ring the bell
none never ring the bell
visible flash the screen

comment-begin (#)
inser t this string for readline-insert-comment
(bound to M-# in emacs mode and to # in vi mode)

completion-ignore-case (Off)
ignore case when doing completions

completion-query-items (100)
if the number of completion items is less than this
value, place them in the command line. Otherwise,
ask the user if they should be shown

convert-meta (On)
treat characters with the eighth bit set as the meta
version of the equivalent seven-bit character

disable-completion (Off)
do not do completion

editing-mode (emacs)
set the initial editing mode. Possible values are
emacs or vi

enable-keypad (Off)
attempt to enable the application keypad. This may
be needed to make the arrow keys work

expand-tilde (Off)
attempt tilde expansion as part of word completion

input-meta (Off)
meta-flag (Off)

enable eight bit input. The two variable names are
synonyms

keymap (emacs)
set the current keymap. See Readline for a list of
allowed values. The editing-mode variable also
affects the keymap

mark-directories (On)
append a / to completed directory names

mark-modified-lines (Off)
place a * at the front of modified history lines

output-meta (Off)
print characters with the eighth bit set directly, not
as M-x

print-completions-horizontally (Off)
display completions horizontally, with the matches
sor ted alphabetically, instead of vertically down the
screen

show-all-if-ambiguous (Off)
immediately list words with multiple possible
completions, instead of ringing the bell

visible-stats (Off)
when listing possible completions, append a
character that denotes the file’s type

READLINE VARIABLES

3

Every regular character you type goes into the input
line. Control characters and meta-characters move the
cursor or perform editing operations. C- precedes
control keys. M- precedes meta-characters. Case
matters only for meta-characters. You can have meta-
control characters.

The mark is a saved position on the line. Many
operations work relative to the current position (point)
and the mark. Text between them is called the region.

Numeric parameters give a repeat count for the
command. To enter a numeric parameter, press ESC ,
the number, and then the command character.

The descriptions below show the default key binding
with the function name and description. indicates an
unbound function.

Histor y Search Commands
CR accept-line. Run the command (carriage return

or linefeed)
C-p previous-history. Get previous history line
C-n next-history. Get next history line
M-< beginning-of-history. Get oldest history line
M-> end-of-history. Get youngest history line
C-r reverse-search-history. Incrementally search

backward (up) through history
C-s forward-search-history. Incrementally search

forward (down) through history
M-p non-incremental-reverse-search-history.

Non-incrementally search backward (up)
through history

M-n non-incremental-forward-search-history.
Non-incrementally search forward (down)
through history
history-search-backward. Non-incremental
search backward (up) through history for the
text between the start of the line and point
history-search-forward. Non-incremental
search forward (down) through history for the
text between the start of the line and point

M-C-y yank-nth-arg. With argument, retrieve n’th
argument from previous command. Count
star ts at 0, default is 1. Negative count goes
from left

M-. yank-last-arg. Inser t last argument from
previous command. With argument, just like
yank-nth-arg. Successive commands retrieve
the last argument from successively older
commands. insert-last-arg is another name

M-_ yank-last-arg
M-C-e shell-expand-line. Expand the line the way

the shell would
M-ˆ history-expand-line. Do history substitution

on the current line
magic-space. Do history substitution on the
current line and insert a space
alias-expand-line. Do alias expansion on the
current line
history-and-alias-expand-line. Do history and
alias expansion on the current line

C-o operate-and-get-next. Execute current line
and fetch next history line. Any arguments are
ignored

READLINE EMACS MODE

4

Line Change Commands
C-d delete-char. Delete the character under the

cursor. At the beginning of the line with no
characters, generate EOF

DEL backward-delete-char. Delete the character
left of the cursor. With argument, save the
text on the kill-ring

C-q quoted-insert. Treat the next character
literally

C-v quoted-insert
C-v TAB tab-insert. Inser t a tab character
Any key self-insert. Inser t the typed character. All

regular characters are bound to this function
C-t transpose-chars. Transpose the current and

previous characters and advance the cursor
M-t transpose-words. Transpose the current and

previous words and advance the cursor
M-u upcase-word. Uppercase the current or next

word. With negative argument, uppercase
the previous word, but don’t move point

M-l downcase-word. Lowercase the current or
next word. With negative argument,
lowercase the previous word, but don’t move
point

M-c capitalize-word. Capitalize the current or
next word. With negative argument,
capitalize the previous word, but don’t move
point

Killing and Yanking
C-k kill-line. Kill the text from point to the end

of the line
C-x DEL backward-kill-line. Kill backwards to the

beginning of the line
C-u unix-line-discard. Kill backward from point

to the beginning of the line, save the text on
the kill-ring
kill-whole-line. Kill the whole line, no
matter where cursor is

M-d kill-word. Kill from cursor to end of current
or next word

M-DEL backward-kill-word. Kill the word in front of
the cursor

C-w unix-word-rubout. Kill the word in front of
the cursor, using whitepsace as the boundary

M-\ delete-horizontal-space. Delete all spaces
and tabs around point
kill-region. Kill the text between point and
mark
copy-region-as-kill. Copy the region to the
kill buffer
copy-backward-word. Copy the word before
point to the kill buffer
copy-forward-word. Copy the word after
point to the kill buffer

C-y yank. Yank the top of the kill-ring into the
readline buffer at the current cursor position

M-y yank-pop. Rotate the kill-ring, and yank the
new top into the readline buffer at the
current cursor position

READLINE EMACS MODE (continued)

5

Completing
TAB complete. Attempt variable, username,

hostname or command (including alias and
function) completion. If no match, attempt
filename completion

M-? possible-completions. List the possible
completions for the text before point

M-* insert-completions. Inser t all the completions
that possible-completions would generate
menu-complete. Like complete, but cycles
through the list of possible completions

M-/ complete-filename. Attempt filename
completion on the text before point

C-x / possible-filename-completions. List possible
filename completions for the text before point

M-˜ complete-username. Attempt username
completion on the text before point

C-x ˜ possible-username-completions. List possible
username completions for the text before point

M-$ complete-variable. Attempt variable
completion on the text before point

C-x $ possible-variable-completions. List possible
shell variable completions for the text before
point

M-@ complete-hostname. Attempt hostname
completion on the text before point

C-x @ possible-hostname-completions. List possible
hostname completions for the text before point

M-! complete-command. Attempt command
completion on the text before point. Try
aliases, reserved words, functions, built-ins
and external commands

C-x ! possible-command-completions. List possible
command completions for the text before point

M-TAB dynamic-complete-history. Attempt to
complete text before point with history lines

M-{ complete-into-braces. Perform filename
completion, returning the list enclosed in
braces for use in brace expansion

Keyboard Macros
C-x (start-kbd-macro. Begin saving characters

typed into the current keyboard macro
C-x) end-kbd-macro. Stop saving characters typed

into the current keyboard macro and store the
definition

C-x e call-last-kbd-macro. Execute the last
keyboard macro defined, as if the saved
characters had been typed at the keyboard

Cursor Motion Commands
C-a beginning-of-line. Move to start of line
C-e end-of-line. Move to end of line
C-f forward-char. Move forward one character
C-b backward-char. Move backward one character
M-f forward-word. Move forward one word
M-b backward-word. Move backward one word
C-l clear-screen. Clear the screen. With argument,

just redraw the current line
redraw-current-line. Refresh the current line

READLINE EMACS MODE (continued)

6

Numeric Arguments
M-0, ... digit-argument. Bound to M-0, M-1, etc. Add

the digit to the accumulating argument. M-−
(meta-minus) starts a negative argument
universal-argument. Star t accumulating a
numeric argument, with optional leading sign.
Executing universal-argument again ends the
argument. With no digits, the default
argument is four

Miscellaneous
C-x C-r re-read-init-file. Read the inputrc file, adding

new bindings or variable settings
C-g abort. Abor t the current editing command and

ring the bell
M-x, ... do-uppercase-version. If the metafied

character x is lowercase, run the command
bound to the corresponding uppercase
character

ESC prefix-meta. Metafy the next character typed
C-_ undo. Incremental undo, remembered

separately for each line
C-x C-u undo.
M-r revert-line Undo all changes made to this line
M-& tilde-expand. Attempt tilde expansion on the

current word
C-@ set-mark. Set the mark to the current point.

With argument, set it to that position
M-SPC set-mark.
C-x C-x exchange-point-and-mark. Swap point and

mark
C-] character-search. Read a character and move

to the next occurrence of that character. With
negative argument, search backwards

M-C-] character-search-backward. Read a character
and move to the previous occurrence of that
character. With negative argument, search
forwards

M-# insert-comment. Inser t the value of the
comment-begin variable at the beginning of
the current line, which is then accepted

C-x * glob-expand-word. Filename expand the word
before the cursor and insert the resulting list

C-x g glob-list-expansion. Display the list that glob-
expand-word would produce, then redraw the
line
dump-functions. Print all functions and their
key bindings. With numeric argument, print in
inputrc format
dump-variables. Print all settable variables
and their values. With numeric argument,
print in inputrc format
dump-macros. Print all macros and their key
bindings. With numeric argument, print in
inputrc format

C-x C-v display-shell-version. Display bash version
information

READLINE EMACS MODE (continued)

7

Inser t mode is the default. Press ESC to enter command
mode. Press CR to run the command and return to
inser t mode. If the shopt option cmdhist is set, you
may edit multi-line commands. Preceding a vi
command with a number provides a repeat count.

Function names for bindings are omitted to save space.

Input Editing Commands
ESC terminate insert mode (begin command mode)
CR (carriage return or line-feed) run command(s)
INTR (stty(1) intr character) start over
ˆU delete everything to the left of the cursor
ˆW delete the previous blank-separated word
ˆD end-of-file, end the session
ˆQ escape the next character
ˆV escape the next character

Histor y Search Commands
[n]k get previous command; successive k’s keep

going backward (older commands)
[n]− same as k
[n]j get next command; successive j’s keep going

forward (newer commands)
[n]+ same as j
[n]G get command number n
/string search backward (older commands) for string.

Use ˆstring to match string at the beginning of a
line

?string search forward (newer commands) for string
n find next match of last / or ? pattern
N like n, but in the opposite direction

Te xt Modification Commands
a enter input mode, appending after current

character
A enter input mode at end of line, same as $a
[n]cmotion
c[n]motion delete from current character through

character that motion moves to, and enter
input mode; if motion is c, delete the whole
line and enter input mode

C change from current character through end
of the line; same as c$

[n]s replace characters under the cursor; enters
input mode

S same as cc (change the whole line)
[n]dmotion
d[n]motion delete from current character through

character that motion moves to; if motion is
d, delete the whole line

D delete from current character through end
of line; same as d$

i enter input mode, inserting before current
character

I enter input mode at beginning of line (like
0i)

[n]p append previous text change after cursor
[n]P inser t previous text change before cursor
[n]rc replace n characters with c
R enter overlay mode, replacing characters

until pressing ESC

[n]x delete current character
[n]X delete previous character
[n]. repeat last command
[n]˜ inver t the case of n characters

READLINE VI MODE

8

Te xt Modification Commands (continued)
[n]_ inser t n’th word of previous shell command

and enter insert mode; use the last word if no n
(not in real vi)

* append * to current word and do filename
expansion, replacing current word with
matching filenames, then enter insert mode

\ replace current word with longest unique
prefix of matching filenames; if unique, append
/ if directory, otherwise append a space, and
enter insert mode

& do tilde expansion on current word

Motion Commands
[n]l forward one character
[n]w forward one alpha-numeric word
[n]W move to next word after blank
[n]e move to end of word
[n]E move to end of word before blank
[n]h backward one character
[n]b backward one word
[n]B backward one blank delimited word
[n]| move to column n
[n]fc find next c
[n]Fc find previous c
[n]tc like f followed by h
[n]Tc like F followed by l
[n]; do last f, F, t, or T, n times
[n], like ; but in opposite direction
0 move to start of line
ˆ move to first non-blank character of line
$ move to end of line
% find balancing (,), {, }, [, or]

Other Commands
[n]ymotion
y[n]motion yank from current character through where

motion would go to
yy yank the whole line
Y yank from current character through end of

line; same as y$ (differs from real vi)
u undo last command
U undo all editing done to the line
[n]v put fc −e ${VISUAL:−${EDITOR:−vi}} n

into input and run it (net effect is to run an
editor on the current line and to execute
the results when editing is finished)

ˆL clear the screen and re-print current line
= list files that would match the current word

if a * were to be appended; doesn’t modify
line

put a # at the front of the line and send it;
used mainly to save a line in the history
without executing it

@letter macro expansion; look for an alias named
_letter and, if found, read the value as
command mode input

mletter save the current position in the mark
named by letter, which must be uppercase

`letter move to the mark previously saved in letter,
which must be uppercase

On the first word, *, \, and = expand aliases, functions,
and commands.

READLINE VI MODE (continued)

9

