
ibm.com/redbooks

Draft Document for Review June 15, 2000 5:51 pm SG24-5754-00

Design and Implement
Servlets/JSPs/EJBs
for IBM WebSphere 

Joaquin Picon
Martin Weiss

Andreas Hutfless
Regis Coqueret

Gopal Indurkhya

Build scalable applications with IBM 
WebSphere Application Server

Apply design patterns to your 
applications

Improve performances

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/




Servlet/JSP/EJB
Design and Implementation Guide
for IBM WebSphere Application Severs

June 2000

SG24-5754-00

International Technical Support Organization

Draft Document for Review June 15, 2000 5:49 pm



5754edno.fm Draft Document for Review June 15, 2000 5:49 pm

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (June 2000)

This edition applies to Version 3.02 of WebSphere Application Server, VisualAge for Java, for use with
the Windows NT Operating System

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix A, “Special notices” on page 191.

Take Note!



Draft Document for Review June 15, 2000 5:49 pm 5754TOC.fm
Contents

Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ix

Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
The team that wrote this redbook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Comments welcome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Part 1. Choosing Appropriate Web technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2. A Scalable and Reliable Topology . . . . . . . . . . . . . . . . . . . . . 7
2.1 TCP/IP load balancing and Failover . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 How the Dispatcher works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 High availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Servlets Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Cloning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Servlets/EJB Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Demilitarized Zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Authentication and Autorization . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 3. Support for Pervasive Computing . . . . . . . . . . . . . . . . . . . . 19
3.1 What is pervasive computing and why do we care? . . . . . . . . . . . . . . 19
3.2 What is the problem about supporting multiple types of client? . . . . . . 19
3.3 Description of the solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 4. WebSphere Command Framework . . . . . . . . . . . . . . . . . . . 25
4.1 Command Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.3 Display Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.4 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.5 What’s the value? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.6 Granularity issues about the Command Bean . . . . . . . . . . . . . . . 30
4.1.7 Relationship of Command Beans and EJB . . . . . . . . . . . . . . . . . 30
4.1.8 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 The command pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.1 Pattern description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.2 Command programming model. . . . . . . . . . . . . . . . . . . . . . . . . . 41
© Copyright IBM Corp. 2000 iii



5754TOC.fm Draft Document for Review June 15, 2000 5:49 pm
4.2.3 Command Target and Server implementation . . . . . . . . . . . . . . . 43
4.2.4 Command client model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Chapter 5. Need for the EJB technology . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1 Multiple client types accessing shared data . . . . . . . . . . . . . . . . . . . . 49
5.2 Concurrent read and update access to shared data . . . . . . . . . . . . . . 50
5.3 Accessing multiple datasources with transactional capabilities . . . . . . 50
5.4 Method-level object security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.5 Portable component-based architecture . . . . . . . . . . . . . . . . . . . . . . . 51
5.6 Multiple servers to handle throughput and availability . . . . . . . . . . . . . 51
5.7 Adopting enterprise bean technology . . . . . . . . . . . . . . . . . . . . . . . . . 52

Chapter 6. Access Beans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1 Wrappers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Copy helpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Rowsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.4 Access beans and associations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.5 Access beans and WLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.6 Use of Access Beans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Chapter 7. Associations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.2 Description of the association solution . . . . . . . . . . . . . . . . . . . . . . . . 68
7.3 Association developer and user responsibilities . . . . . . . . . . . . . . . . . 77

7.3.1 Implementation of ejbCreate / ejbPostCreate methods . . . . . . . . 77
7.3.2 Delete cascading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.3.3 Usage of associations with required roles. . . . . . . . . . . . . . . . . . 87
7.3.4 Many-to-many relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.4 Hints and tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.4.1 Usage of the multi-valued getters . . . . . . . . . . . . . . . . . . . . . . . . 99
7.4.2 Associations with subtypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.5 Association deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.5.1 Deployment descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.5.2 Deployment on WebSphere Advanced Edition . . . . . . . . . . . . . 102
7.5.3 Deployment on WebSphere Enterprise Edition (CB) . . . . . . . . . 102
7.5.4 Deployment on non WebSphere application servers . . . . . . . . . 102
7.5.5 Runtime requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.6 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.6.1 Inverse association maintenance . . . . . . . . . . . . . . . . . . . . . . . 103
7.6.2 Maintaining association members . . . . . . . . . . . . . . . . . . . . . . . 103
7.6.3 Association method types (read-only /update) . . . . . . . . . . . . . 103

Chapter 8. Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.1 What we mean by collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
iv Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:49 pm 5754TOC.fm
8.2 Enumerations with Finders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.2.1 Finders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.2.2 Greedy and Lazy enumerations . . . . . . . . . . . . . . . . . . . . . . . . 109
8.2.3 Enumerations Test scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.3 Using the JDBC API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.3.1 ResultSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.3.2 RowSet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.3.3 Using JDBC with a stateless session bean . . . . . . . . . . . . . . . . 124

8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Part 2. Design Patterns and Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Chapter 9. Servlets/JSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.1 Organizing the application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.1.1 Intent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.1.2 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.1.3 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
9.1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
9.1.5 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
9.1.6 Collaborations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
9.1.7 Consequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
9.1.8 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
9.1.9 Related Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

9.2 XML Data Islands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.2.1 Intent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.2.2 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.2.3 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.2.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.2.5 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
9.2.6 Collaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
9.2.7 Consequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
9.2.8 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
9.2.9 Sample Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
9.2.10 Related Patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.3 Applet to server communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
9.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
9.3.2 Applet to servlet communication . . . . . . . . . . . . . . . . . . . . . . . . 145
9.3.3 Outlook: applet to server-object communication . . . . . . . . . . . . 148

9.4 Pushing content to the client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.4.1 Introducing Push technology. . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.4.2 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.4.3 Consequences of using push technology . . . . . . . . . . . . . . . . . 157
v



5754TOC.fm Draft Document for Review June 15, 2000 5:49 pm
Chapter 10. EJB Design Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
10.1 Factory for EJB Homes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

10.1.1 Intent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
10.1.2 Also known as . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
10.1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
10.1.4 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
10.1.5 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
10.1.6 Collaborations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
10.1.7 Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.1.8 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.1.9 Known uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
10.1.10 Related patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

10.2 EJB Session Facade to Entity Beans . . . . . . . . . . . . . . . . . . . . . . . 169
10.2.1 Intent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
10.2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
10.2.3 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
10.2.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
10.2.5 Related patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

10.3 Optimistic Locking Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
10.3.1 Intent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
10.3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
10.3.3 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
10.3.4 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
10.3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
10.3.6 Sample code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
10.3.7 Related patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Chapter 11. EJB Performance Guidelines . . . . . . . . . . . . . . . . . . . . . . 185
11.1 Database access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

11.1.1 Read-only methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
11.1.2 Transaction lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
11.1.3 Database deadlocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
11.1.4 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Appendix A. Special notices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Appendix B. Related publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
B.1 IBM Redbooks publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
B.2 IBM Redbooks collections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
B.3 Other resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
B.4 Referenced Web sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

How to get IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
IBM Redbooks fax order form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
vi Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:49 pm 5754TOC.fm
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

IBM Redbooks review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
vii



5754TOC.fm Draft Document for Review June 15, 2000 5:49 pm
viii Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:49 pm 5754LOF.fm
Figures

1. Design Guidelines Scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Design Guidelines Components Environment . . . . . . . . . . . . . . . . . . . . . . . 4
3. Reference Topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4. IBM Network Dispatcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5. Servlet Redirector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6. Clones Including Servlets and Enterprise Beans. . . . . . . . . . . . . . . . . . . . 15
7. Pervasive computing scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8. Satisfying multiple devices with XML and XSL . . . . . . . . . . . . . . . . . . . . . 22
9. Architecture overview for handling multiple types of clients. . . . . . . . . . . . 24
10. Web application model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
11. Using commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
12. Using Display Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
13. Separation of Roles and Responsibilities . . . . . . . . . . . . . . . . . . . . . . . . . 29
14. command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
15. State Diagram of a Command Bean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
16. Remote execution of a command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
17. CommandTarget model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
18. Command and Compensable command state diagram. . . . . . . . . . . . . . . 37
19. Target Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
20. Sequence diagram of a command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
21. Command exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
22. Splitting a Command in Client and Server . . . . . . . . . . . . . . . . . . . . . . . . . 43
23. Using a Command Bean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
24. Access Beans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
25. Access Bean Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
26. Javabean Wrapper Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
27. Association types which work with no added user code . . . . . . . . . . . . . . 66
28. Association types which require added user code or user attention . . . . . 68
29. Personalbanker - Customer association (one-to-many) . . . . . . . . . . . . . . 69
30. Association Editor for Personalbanker - Customer relationship. . . . . . . . . 70
31. One-to-many relationship Personalbanker - Customer . . . . . . . . . . . . . . . 73
32. Interaction Diagram for Customer.setPersonalbanker (simplified, only bean
implementation specific)75
33. Interaction Diagram for Personalbanker.addCustomers (simplified, only bean
implementation specific)76
34. ejbCreate / ejbPostCreate pattern for foreign key holder CMPs . . . . . . . . 78
35. ejbCreate / ejbPostCreate pattern for no foreign key holder CMPs. . . . . . 78
36. Association Editor for Customer - Account relationship. . . . . . . . . . . . . . . 79
37. code snippet for AccountBean.ejbCreate . . . . . . . . . . . . . . . . . . . . . . . . . 79
38. code snippet for AccountBean.ejbPostCreate . . . . . . . . . . . . . . . . . . . . . . 80
© Copyright IBM Corp. 2000 ix



5754LOF.fm Draft Document for Review June 15, 2000 5:49 pm
39. Association Editor for Workstation - Employee relationship . . . . . . . . . . . 81
40. code snippet for EmployeeBean.ejbCreate . . . . . . . . . . . . . . . . . . . . . . . . 81
41. code snippet for EmployeeBean.ejbPostCreate . . . . . . . . . . . . . . . . . . . . 82
42. Class Diagram Customer - Account relationship . . . . . . . . . . . . . . . . . . . . 82
43. Interaction Diagram : Delete of a non composite (officially supported) . . . 83
44. BusinessProcessBean.removeCustomer(String). . . . . . . . . . . . . . . . . . . . 84
45. BusinessProcessBean.removeAllAccountsOfCustomer(Customer) . . . . . 84
46. Interaction Diagram : Delete of a composite (not officially supported). . . . 85
47. Composite setter for CustomerToAddressLink in CustomerBean.ejbcreate .
85
48. Composite setter for CustomerToAddressLink in CustomerBean.ejbLoad 86
49. Customer Properties Panel with checked Reentrant . . . . . . . . . . . . . . . . . 86
50. Association Editor for Customer - Address relation . . . . . . . . . . . . . . . . . . 90
51. Employee - Skill association with an iterrnediary (Competency) . . . . . . . . 93
52. Association Editor for EmployeeToCompetency . . . . . . . . . . . . . . . . . . . . 94
53. Association Editor for EmployeeToCompetency . . . . . . . . . . . . . . . . . . . . 95
54. Properties Panel of Competency after adding the role keys . . . . . . . . . . . 96
55. Method implementation for CompetencyBean.ejbCreate . . . . . . . . . . . . . 96
56. Method implementation for CompetencyBean.ejbPostCreate . . . . . . . . . . 96
57. Create a competency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
58. Get skill descriptions of an employee . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
59. Delete an employee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
60. Delete a skill. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
61. Customer - Account relation with account subtypes . . . . . . . . . . . . . . . . 100
62. Narrow helper method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
63. Source using the narrow helper method . . . . . . . . . . . . . . . . . . . . . . . . . 101
64. Const mark in the Control Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
65. Customized lookupTargetHome method of the LInk class . . . . . . . . . . . 105
66. Enterprise Bean Client Using Greedy Enumeration. . . . . . . . . . . . . . . . . 110
67. Session Bean Using Greedy Enumeration . . . . . . . . . . . . . . . . . . . . . . . 111
68. Client using lazy enumeration from within its originating transaction. . . . 111
69. Client using lazy enumeration outside its originating transaction . . . . . . 112
70. SB returning a Lazy Enumeration after Enumerating it . . . . . . . . . . . . . . 112
71. SB Returning a lazy Enumeration; Client Tries to Enumerate it . . . . . . . 113
72. SB Returning a Copy of an Enumerated Lazy Enumeration . . . . . . . . . . 113
73. SB returning a lazy enumeration; client controls the transaction . . . . . . . 114
74. Client Code for Greedy Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
75. Server Side While the Client Iterates Through the Enumeration . . . . . . . 116
76. Client Code for Lazy Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
77. Server Loads 5 Elements at a Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
78. All Elements of the Enumeration are Loaded . . . . . . . . . . . . . . . . . . . . . 119
79. Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
80. Structure of Data Island . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
x Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:49 pm 5754LOF.fm
81. Class model of the XML Data Island . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
82. specs.xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
83. specs.xsl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
84. Pushing data using frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
85. Using the Observer pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
86. HomeFactory Class Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
87. Collaboration between command pattern and facade pattern . . . . . . . . . 173
88. OptimisticLockable interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
89. OptimisticLockableEntityCopy class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
90. CopyEntity method of OptimisticLockService Session Bean . . . . . . . . . . 179
91. UpdateEntity method of OptimisticLockService Session Bean . . . . . . . . 180
92. Copy method implementation of CustomerBean . . . . . . . . . . . . . . . . . . . 181
93. Update method implemention of CustomerBean . . . . . . . . . . . . . . . . . . . 182
94. Database triggers for timestamp setting . . . . . . . . . . . . . . . . . . . . . . . . . 182
95. Read-for-update custom finder implementation. . . . . . . . . . . . . . . . . . . . 183
96. Implementation of Customer copy class . . . . . . . . . . . . . . . . . . . . . . . . . 184
97. Read-only flag in the control descriptor of VisualAge for Java . . . . . . . . 185
98. withdraw from account with deadlock potential . . . . . . . . . . . . . . . . . . . . 187
99. withdraw from account without deadlock potential. . . . . . . . . . . . . . . . . . 187
xi



5754LOF.fm Draft Document for Review June 15, 2000 5:49 pm
xii Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:49 pm 5754LOT.fm
Tables

1. Customer - Account relation (customer role is part of the primary keyof Account)
87
2. Customer-Accountrelation(customerroleisnotpartoftheprimarykeyofAccount)
89
3. Customer - Address relation (customer role is the primary key of Address)91
4. Customer - Address relation (customer role is not in the primary key of Address)
92
© Copyright IBM Corp. 2000 xiii



5754LOT.fm Draft Document for Review June 15, 2000 5:49 pm
xiv Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754pref.fm
Preface

This redbook provides design guidelines for developing e-business
applications based on Servlets, JSP and Enterprise Javabeans technologies.

Part 1 of the redbook provides guidelines on how to design specific
components of an application. It also explains why and when a designer
should move business logic from JavaBeans to a more powerful technology
like Enterprise JavaBeans. By doing so, we explain what important aspects of
the techonology must be taken in account.

Part 2 is a set of design patterns for building e-business applications. The
reader can go directly to one chapter and use the information directly in his
design.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization San Jose Center.

Joaquin Picon is a consultant at the International Technical Support
Organization, San Jose Center. He writes extensively and teaches IBM classes
worldwide on application development, object technology, CORBA and
Enterprise JavaBeans. Before joining the ITSO, Joaquin worked at the IBM
Application Enabling Center Of Competency in France. Joaquin holds a degree
in telecommunications from the Institut National de Telecommunications
(http://www.int-evry.fr).

Regis Coqueret is an IT specialist at the EMEA WebSphere Technical Sales
Center in La Gaude, France. Working first in french steel industry information
technology, he’s been involved in object technology, Smalltalk then Java
since 1990, has 5 years of experience in development of Applicaton
Development programming tools in the SWS IBM Paris laboratory, and 2
years of experience in technical support on Java, Web technologies and
Enterprise JavaBeans. He holds an engineering degree from the Ecole des
Mines de Paris (http://www.ensmp.fr/) and the Institut Superieur
d’Informatique et d’Automatique.

Andreas Hutfless is an Advisory IT Architect in Germany. He has 7 years of
experience in Information Technology and 4 years of experience in the Web
and Java. Andreas holds a degree in computer science from the University of
Bonn. He has worked at IBM for 3 years.His areas of expertise include Java,
Internet technologies and protocols, Enterprise Java Beans and Linux.
© Copyright IBM Corp. 2000 xv



5754pref.fm Draft Document for Review June 15, 2000 5:50 pm
Gopal Indurkhya is a Tech Lead in E-Commerce division at First Union
National Bank, Charlotte, North Carolina. He has 15 years of experience in
information technology, which includes 10 years of experience in object
technology in C++/Java. He holds a MTech degree in Mechanical Engineering
from IIT, Kanpur, India and a MS degree in Manufacturing Systems
Engineering from University of Nebraska Lincoln, at Lincoln, Nebraska. His
areas of expertise include Internet technologies and Enterprise Java Beans
and Neural Networks.

Martin Weiss is an Advisory IT Specialist in Switzerland. He has been with IBM
since 1978, working in application development (IBM mainframe, AS/400, OS/2,
Windows NT). Since 1993 he has been focusing on object technology as
developer and mentor in VisualAge customer projects (Smalltalk, C++, Java). He
has sound experience in developing Java Enterprise applications for IBM
WebSphere Application Servers. He is co-author of the redbook ‘Enterprise
JavaBeans Development Using VisualAge for Java, SG24-5429-00’.

Thanks to the following people for their invaluable contributions to this project:

Ueli Whali
Yvonne Lyon
ITSO, San Jose

Kyle Brown
Steven Wasleski
Scott Rich
Lucy Barnhill
Ritchie Schacher
Guru Vasudeva
IBM, Raleigh

Graeme Dixon
Keys Botzum
Amber Roy-Chowdbury
Chriss Stephens
Transarc lab, Pittsburgh

Joe Bockhold
IBM, Rochester

George Copeland
Michael Conner
xvi Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754pref.fm
Geoffrey Hambrick
Greg Truty
IBM, Austin

Leonard Theivendra
Teresa Kan
Arthur Ryman
IBM, Toronto

Thomas Alcott
WebSphere Worldwide Tech Sales Support

Kevin J. Williams
IBM, Boulder

Jonathan Adams
Anthony Griffin
Joe Parman
IBM Hursley, Pattern Development Kit

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks evaluation” on page 213
to the fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an Internet note to redbook@us.ibm.com
xvii

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html


5754pref.fm Draft Document for Review June 15, 2000 5:50 pm
xviii Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754p01.fm
Part 1. Choosing Appropriate Web technologies
© Copyright IBM Corp. 2000 1



5754p01.fm Draft Document for Review June 15, 2000 5:50 pm
2 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754ch01.fm
Chapter 1. Introduction

Figure 1 shows a global view of what we attempt to cover in this book. The
main focus is to provide design guidelines or best practices about designing
an e-business application that will be deployed on IBM WebSphere Advanced
Edition.

The main technologies used for such applications are:

• Servlets
• JavaServer Pages (JSP)
• Enterprise JavaBeans (EJB)

The application may interact with other external systems like:

• Tier 1 and Tier 0 devices
• Directory and Security services (LDAP)
• Other e-business applications following a business to business model.

Figure 1. Design Guidelines Scope

IBM WebSphere Application
ServerIBM WebSphere Application

ServerIBM WebSphere Application
Server

Tier 1 devices:
Web Browsers
Java client

Tier 0 devices:
cell phones
handlheld computers

Directory &
Security
Services

e-business
application

Design Guidelines
redbook

IBM WebSphere Application
Server
© Copyright IBM Corp. 2000 3



5754ch01.fm Draft Document for Review June 15, 2000 5:50 pm
Before starting with this book, we recommend to read two additional
redbooks:

• Servlet and JSP Programming with IBM WebSphere Studio and VisualAge
for Java, SG24-5755-00

• Patterns for e-business: User-to-Business Patterns for Topology 1 and 2
using WebSphere Advanced Edition, SG24-5864-00

This book can be considered as a supplement to the books listed above.

It starts by defining a reference topology that serves as the basis for
developing scalable and reliable e-business applications. The main functions
that contribute in creating this topology is described in Chapter 2, “A Scalable
and Reliable Topology” on page 7. On top of it, we analyze how applications
relying on a model/view/controller general pattern can get benefit of some
design patterns we have identified. Figure 2 is used as foot steps across the
book.

Figure 2. Design Guidelines Components Environment

servlets

W eb
browser

EJB
facade
session
bean

EJB
entity
bean

home
factory

EJB implementation

access
bean

cmd
Framework

logic

EJB
entity
bean

1
0..*

JSP
4 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754ch01.fm
The starting point is the ubiquitous scenario based on a Web browser client
talking to a combination of servlets, JSPs and javabeans encapsulating
business logic. As new devices like cell phones or handheld computers
become more and more common, applications must be designed to support
these devices. Chapter 3, “Support for Pervasive Computing” on page 19
describes how to make the design of servlets controller flexible enough to
accomodate existing or yet to be invented disparate devices.

The granularity of artifacts on the server (e.g., objects, tables, procedure
calls, files, etc.) often causes a single client-initiated business logic request to
involve several round-trip messages between the client and server. This
might include several calls to perform the business task and then several
more calls to retrieve the results of that task.

There are several possible styles for how business logic can be implemented,
including EJB, JDBC direct database access, JDBC access to stored
procedures, the Common Connector Framework, file system access, etc. In
addition to different implementation programming models, each of these
styles has a different way to invoke a request to execute business logic.
Chapter 4, “WebSphere Command Framework” on page 25 describes a
generic framework, that can potentially handle multiple protocols to
accommodate any target server objects.

The next step after deciding to use the command framework is to choose how
to implement the business logic. As proponents for the Enterprise JavaBeans
technology, in Chapter 5, “Need for the EJB technology” on page 49, we
attempt to give some good reasons for encapsulating the business logic as
enterprise beans.

If you want to follow the logical flow in Figure 2 on page 4 going from left to
the right, you can go directly to part 2 of this book and read the facade pattern
described in 10.2, “EJB Session Facade to Entity Beans” on page 169. The
facade provides use case oriented services to clients.

When you program directly to the enterprise bean interfaces, you increase
the complexity of your user program and can incur significant performance
problems. Each call to the enterprise proxy object is a remote call, so
accessing a large number of entity bean attributes can take a significant
amount of time. These problems, however, are now largely solved by the use
of access beans. Chapter 6, “Access Beans” on page 55 describes access
beans and explains why we use them between the facade and entity beans.

Associations are relationships between concepts that indicate some
meaningful connection. The Enterprise JavaBeans specification has occulted
Chapter 1. Introduction 5



5754ch01.fm Draft Document for Review June 15, 2000 5:50 pm
this subject. Fortunately, VisualAge for Java and IBM WebSphere Advanced
Edition provide enterprise beans associations support. However, the
generated code for associations may not always fulfill your requirements. The
purpose of Chapter 7, “Associations” on page 65 is to give important
additional information when using associations.

Chapter 8, “Collections” on page 107 addresses the problem of handling
collections of objects. For that purpose, the Enterprise JavaBeans
specification defines finders. How finders are executed by the IBM
WebSphere Advanced Edition application server is explained in this chapter.

This chapter terminates part 1 of the redbook. In part 2, we discuss some
design issues presented as design patterns.
6 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754Topology.fm
Chapter 2. A Scalable and Reliable Topology

In this book, we decided to discuss design guidelines based on a given
reference topology. We want it to be scalable, reliable and it should be able to
accomodate most of large scale e-business applications with the best
performances.

The topology relies on several IBM products:

• IBM WebSphere Advanced Edition
• DB2
• Network Dispatcher
• IBM HTTP Server
• IBM SecureWay

All these products have been combined in the following topology:
Chapter 2. A Scalable and Reliable Topology 7



5754Topology.fm Draft Document for Review June 15, 2000 5:50 pm
Figure 3. Reference Topology

The goal of the reference topology is to help introducing the elements which
participate in providing scalability, reliability and performance. Variations to
the topology are not discussed. Multiple different choice can be done like
separate clones for servlets and enterprise beans, servlets and enterprise
beans could run on different machines.

This reference topology is further explained in the next sections.

2.1 TCP/IP load balancing and Failover

IBM SecureWay Network Dispatcher is the load balancing component of IBM
WebSphere Performance Pack, and addresses stability availability and critical
load issues. It consists of three functions: the Dispatcher, Interactive Session

Network
Dispatcher

WS
Database

Admin
Server

Servlets

EJB

WLM

clone

Servlets

EJB

WLM

clone

Admin
Server

Servlets

EJB

WLM

clone

Servlets

EJB

WLM

clone

HTTP
Server

Servlet
Redirector

Admin
Agent

HTTP
Server

Servlet
Redirector

Admin
Agent

Network
DispatcherInternet

Client

Host

Host

Host

Host

Host Host

Host

Remote SRP

LDAP

firewall

firewall

RMI/IIOP

TCP/IP

RMI/IIOP

Remote SRP
8 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754Topology.fm
Support (ISS) and the new Content Based Routing (CBR) function. These 3
functions can be deployed separately or together.

For any detailed information refer to the redbook IBM WebSphere
Performance Pack: Load Balancing with IBM SecureWay Network
Dispatcher, SG24-5858.

2.1.1 How the Dispatcher works
The Dispatcher creates the illusion of having just one server by grouping
systems together into a cluster that behaves as a single, virtual server. The
service provided is no longer tied to a specific server system, so you can add
or remove systems from the cluster, or shut down systems for maintenance,
while maintaining continuous service for your clients.

For the clients, the balanced traffic among servers seems to be a single,
virtual server, and the site appears as a single IP address to the world. All
requests are sent to the IP address of the Dispatcher machine, which decides
for each client request which server is the best one to accept requests,
according to certain dynamically set weights. The Dispatcher routes the
client’s request to the selected server, and then the server responds directly
to the client without any further involvement of the Dispatcher. The
Dispatcher can also detect a failed server and route traffic around it.

The Dispatcher receives the packets sent to the cluster. These packets have
a source and a destination address; the destination address is the IP address
of the cluster. All servers in the cluster and in the Dispatcher system have
their own IP address and an alias for the IP address of the cluster; the
Dispatcher system has the cluster address aliased on the network interface,
while all the TCP servers that will be load balanced by this ND machine have
the cluster address aliased on the loopback adapter. The Dispatcher system
checks which server is the next best server to handle the load and routes the
packet to that server. The Dispatcher routes this request based on the
hardware address of the network adapter (MAC address) of the chosen
server. It changes the hardware address of the packet to the hardware
address of the selected server and sends the packet to the server. However,
the Dispatcher does not change the source and destination IP addresses in
the packet. The server receives the packet and accepts it because all servers
in the cluster have an alias for the cluster’s IP address on the loopback
interface. Then, the server sends a response back to the client by inverting
the source and destination IP addresses from the original packet received.
This way, the server can respond directly to the client.
Chapter 2. A Scalable and Reliable Topology 9



5754Topology.fm Draft Document for Review June 15, 2000 5:50 pm
The fact that the server can respond directly to the client makes it possible to
have a small bandwidth network for incoming traffic, such as Ethernet or
token-ring, and a large bandwidth network for outgoing traffic, such as
Asynchronous Transfer Mode (ATM) or Fiber Distributed Data Interface
FDDI).

2.1.2 High availability
The Dispatcher has a high availability feature. It involves the use of a
secondary machine that monitors the main, or primary, machine and stands
by to take over the task of load balancing, should the primary machine fail at
any time.

In case of failure, clients lose only the current connections, but they can
immediately establish a new connection to the remaining servers with no
problems. The high-availability environment involves two Dispatcher
machines with connectivity to the same clients, and to the same cluster of
servers, as well as connectivity between the Dispatchers. Both the
Dispatchers must be using the same operating systems.

The two Dispatcher machines are usually referred to as primary machine and
backup machine:

• The primary machine works normally as a Dispatcher, and is in the active
state while it is balancing the load among the servers of its clusters.

• The backup machine, configured in a very similar way to the primary
machine, stays in standby mode unless the primary fails.

The two machines are synchronized, and only the primary machine routes
packets, while the backup machine is continually updated.

The two machines establish communication to monitor the status of each
other, referred to as a heartbeat, using a port that you can choose. If the
primary machine fails, the backup machine detects this failure, switches to
active state, and begins to take over the routing of packets. When the primary
machine is operational again, but in standby state, you can either decide that
it again automatically becomes the active machine, or leave it in standby
mode. In this case, you will have to act manually if you want it to become the
active machine again.
10 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754Topology.fm
Figure 4. IBM Network Dispatcher

2.2 Servlets Load Balancing

IBM WebSphere Advanced Edition installation comprises one or more Web
server plug-ins.

The plug-ins allow Application Server to extend Web server capabilities.
Combined with Application Server and its Web server plug-in, a Web server
can handle requests for servlets, enterprise beans, and other Java
components. The plug-in configuration specifies how the Web server using it
can recognize valid requests for resources managed by the Application
Server product. This configuration is dynamic, meaning you do not have to
stop the Web servers and start them again to cause the Web servers to
recognize configuration changes made in the WebSphere Administrative
Console.

As we will create servlet engines whose clones will reside on a machine other
than the machine containing the Web server, we need to create and enable
servlet redirectors. Servlet redirectors reside on the same machine as the
Web server, using Inter-ORB Protocol (IIOP) to route servlet requests to
clones on remote machines, behind the inner firewall.

N e tw o r k
D is p a tc h e r

H T T P
S e r v e r

H T T P
S e r v e r

I n t e rn e t

C lien t

H o s t H o st

H o st

T C P /I P

N e tw o r k
D isp a tc h e r

H o s t (b a c k u p )
Chapter 2. A Scalable and Reliable Topology 11



5754Topology.fm Draft Document for Review June 15, 2000 5:50 pm
We will see that the redirector allows you to separate your Web server from
your administrative servers, application servers, and databases, which makes
sense when setting up a DMZ configuration.

When the Web server receives HTTP requests, it uses the OSE transport to
route requests to servlet engines having only local clones. The OSE transport
utilizes push-based native load balancing.

When the Web server receives HTTP requests to servlet engines having both
local and remote, it uses an OSE transport to pass the requests to the Servlet
Redirector. Note that the Servlet Redirector handles the requests for both
clones, even though one of the clones is local to the Web server. The Servlet
Redirector uses Internet Inter-ORB Protocol (IIOP) to route requests to the
local and remote clones.

IIOP is more flexible than OSE, allowing remote distribution of clones, with a
15-30% slight performance degradation. Like OSE, IIOP performs load
balancing.

When the Web server receives HTTP requests to servlet engines having only
remote clones, it again uses the Servlet Redirector to route the requests off
the local machine.

You have 3 ways of setting up a servlet redirector:

• Thin (XML-based) servlet redirector;

• Thick servlet redirector with full administration server;

• Thick servlet redirector with administration agent.

The thin servlet redirector is a standalone process based on XML
configuration. It does not run as part of the administrative server, meaning it
does not require a database access. The drawback of this configuration is
that it does not support the IBM WebSphere Advanced Edition security
features (authentication/authorization). Besides, it cannot be managed
through the graphical administrative console.

The thick redirector runs as part of the IBM WebSphere Advanced Edition
administrative server. You can configure and manage it through the
administrative console. The drawbacks of this configuration is that it requires
the overhead of running a fully-fledged administrative server, including the
access to the database repository through the inner firewall.

The last configuration is the one we choose. Here the administrative server
runs in "agent" mode: it attaches to another administrative server process,
12 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754Topology.fm
running behind the firewall, and uses that admin server to connect to the
WAS repository. This way we get the best of both worlds: we minimize the
number of processes running on the web server machine (no DB2 nor DB2
client required), and still enable security.

The servlet redirector (Figure 5) is an instance of
com.ibm.servlet.engine.ejs.IIOPRedirector that uses an instance of
com.ibm.servlet.engine.ejs.RemoteSRPBean as a target for dispatching URIs.

Figure 5. Servlet Redirector

The servlet redirector directs the requests for URIs to the servlet engine
clones based on a given server selection policy. This policy defines how
clients choose among server clones (instances) within a server group.

The possible values are:

• Random: server instances are selected randomly from within a server
group.

Network
Dispatcher

Servlets ServletsServlets Servlets

HTTP
Server

Servlet
Redirector

HTTP
Server

Servlet
Redirector

Network
DispatcherInternet

Client

Host

Host

Host

Host

Host Host

Remote SRP

firewall

firewall

RMI/IIOP

TCP/IP

RMI/IIOP

Remote SRP
Chapter 2. A Scalable and Reliable Topology 13



5754Topology.fm Draft Document for Review June 15, 2000 5:50 pm
• Round robin: A server instance is initially selected at random from an
ordered list. Other server instances are selected from the ordered list in
turn, until the initially selected server is selected again. f a particular
server instance is stopped or otherwise unavailable, that instance is
skipped (no attempt is made to select it) until the next iteration through the
server list.

For each policy you can also specify wether you want to make local
(in-process) calls if possible. This is what is called preferlocal.

Remote OSE
Another possibility that became available with IBM WebSphere Advanced
Edition 3.02 Fixpack 1 (“3.021”) is to use Remote OSE. Remote OSE enables
the Web server to forward requests to a servlet engine on a remote machine.
Remote OSE is preferred in most cases over the servlet redirector because it
is faster, easier to configure, and runs through Network Address Translation
(NAT) firewall. However, it lacks secure transport.

2.2.1 Cloning
IBM WebSphere Advanced Edition supports both horizontal and vertical
scaling (Figure 6):

• Horizontal scaling consists in distributing work among many machines,
some or all of which can be less powerful. Failover is a main advantage of
horizontal scaling. If a machine becomes unavailable, its work can be
routed to other machines containing server clones. We also use IBM
SecureWay Network Dispatcher for "spraying" requests to identical
multiple machines, each running an application server clone, or a servlet
redirector (which one is chosen is not relevant for this part of the
discussion). This does not interfere, but rather complements the workload
management provided automatically by IBM WebSphere Advanced Edition
cloning.

• Vertical scaling consists in using this cloning support so as to get more
from each machine on which the product runs. A server and several of its
clones can share the same machine, enabling you to utilize more of the
machine's resources, such as CPU. This works well when the individual
machines in your topology are powerful but under-utilized.
14 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754Topology.fm
Figure 6. Clones Including Servlets and Enterprise Beans

So you clone your application for workload management, failover, and vertical
scaling:

• Changes to a model are propagated to all of the clones associated with
that model, so requests can be routed to any one of them, with the same
results. Work can thus be shared to improve throughput of client remote
method invocations. This is the "load-balancing" benefit.

• With several clones available to handle requests, and distributed to
various nodes, an entire machine can fail without producing devastating
consequences (unless, of course, the failed machine is a single point of
failure). Requests can be routed to other nodes if one node fails.

Cloning is not just for distributed environments. Another reason to clone
servers and other instances is vertical scaling.

2.3 Servlets/EJB Load Balancing

Requests, from servlets and/or EJBs, to EJBs, can be WLMed in the same
kind of way.

Servlets

EJB

WLM

clone

Servlets

EJB

WLM

clone

Servlets

EJB

W LM

clone

Servlets

EJB

W LM

clone

Host Host
Chapter 2. A Scalable and Reliable Topology 15



5754Topology.fm Draft Document for Review June 15, 2000 5:50 pm
Basically what you do is the same: configure the application server you want
to clone, deploy into it the enterprise beans that you plan to clone, create a
model of the server and then use the server model for creating one or more
new clones.

The only tricky part is to use the "wlmjar" command against the deployed JAR
file of the enterprise bean to produce a WLM-enabled JAR file (VisualAge for
Java does that by default).

By combining all the elements described above you can build a reliable and
scalable configuration as depicted in Figure 3 on page 8.

2.4 Security

For such a configuration, we still need to enforce security by introducing
firewalls and identification/authentification of users as well as resources
access control.

2.4.1 Demilitarized Zone
A DMZ network configuration has three separate network segments: the
public network, the DMZ, the enterprise network.

The public network is where client requests originate.

The DMZ is where the HTTP servers are installed. Each HTTP server
machine must contain a WebSphere standalone servlet redirector to give the
Web server access to the protected WebSphere application servers on
machines inside the enterprise network. The DMZ is protected from the public
network by a firewall, which limits the traffic allowed to enter and leave the
network segment.

The enterprise network is where the WebSphere administrative server,
administrative repository, and application server processes are installed. It is
also where the company's databases and sensitive systems typically reside.
This segment is protected from the DMZ by a second firewall, which further
limits the traffic allowed to enter it from the DMZ.

Databases may:

• hold user and session data, support applications,

• keep administrative data for the application servers.

They can also present a security risk by making your firewall more
vulnerable. So with database accesses through the inner firewall only, the
16 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754Topology.fm
DMZ configuration helps you minimize your risk. To get into the enterprise
network, an intruder would have to break through both firewalls, including the
outer firewall that has no weak spots in terms of database accesses.

2.4.2 Authentication and Autorization
Authentication is the process of finding that a user is really who he says he is,
this is done by implementing user-id and password lookup scheme.IBM
WebSphere Advanced Edition can be configured to use SecureWay Directory
which is a Lightweight Directory Access Protocol (LDAP) based directory
server that provides a common and simple method for centrally storing,
locating and managing directory information on an enterprise network across
multiple platforms.

Authorization, on the other hand, is the process of determining if that person
has rights to use a secured resource in some way, for example, the right to
invoke a method on an EJB. Authorization consists of two steps: security
lookup & rule enforcement.

Security Lookup – the receiver of a request uses the known identity of the
caller to determine what access rights the caller possesses. Most commonly,
the access rights are represented as a set of groups obtained from a file or
directory.

Rule Enforcement – the receiver uses the caller’s access rights and
compares them against some set of rules to determine if access should be
allowed or denied based on the action requested. Most commonly, the rule is
represented as an Access Control List (ACL). These rules are defined in IBM
WebSphere Advanced Edition.

On a future release, it will be possible to use an LDAP directory to store users
access rights and manage them via policy management tools.

We have seen the different components that provide a scalable, reliable
infrastructure to support the design of our e-business application in a secured
environment.

In the next step, we decompose an application in a three tiers model and
analyze specific design considerations.
Chapter 2. A Scalable and Reliable Topology 17



5754Topology.fm Draft Document for Review June 15, 2000 5:50 pm
18 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754Controller.fm
Chapter 3. Support for Pervasive Computing

In this section, we will see how the design done for a web browser client can
be adapted to different other types of client.

3.1 What is pervasive computing and why do we care?

The convergence of computing, telecommunications and consumer
electronics is causing a tremendous growth in the number and variety of
mobile computing devices. The market spans over a multitude of emerging
devices including laptops, PDAs (for example Palm Pilot, Workpad or Psion)
and mobile appliances (such as mobile phones, pagers and wearable
devices).

Figure 7. Pervasive computing scenario

Mobile enablement is a key component in an e-business application.

3.2 What is the problem about supporting multiple types of client?

Mobile computing with its remote and bandwidth constrained connections
makes application and data access more challenging.

W eb
Server

EIS
R esources

B row ser

B row ser

Stored P rocedures
Intern et

business
to

business

...

Java C lient

W AP
Chapter 3. Support for Pervasive Computing 19



5754Controller.fm Draft Document for Review June 15, 2000 5:50 pm
To provide mobile users and business partners access to the business data
and to the applications, the architecture must face several difference facts:

• Most mobile links are slow and unreliable

• Different device output capabilities (small screen size, gray-scale)

• User input capbilities are different (pen, voice, buttons, keyboard)

• Business to consumer vs. business to business

• Some devices are capable of using Java technology, some are not

As we can see the clients differ not only in the user interface but in the
functionality.

As we design our architecture we need to pay attention to the handling of the
different device types with all their peculiarities.

3.3 Description of the solution

To be able to handle multiple types of client, the content must be adapted to
the capabilities of the client device. There are two solutions to that problems:

• The application can provide filters for different output devices. A filter may
reduce the amount of data by discarding data that the device is incapable
of using (displaying), or is unwilling to wait for. For example, images can
be discarded when the client can only display text.

• The application can be aware of the capabilities of the used device. Then
it is possible to target the information specifically for that device.

The first solution to filter the data for the different output devices has effects
on the choice of technologies used to build the view of our architecture. In
case of Javaserver pages, the solution would be to have multiple JSP, one for
each output device per servlet. The servlet has to find out the output device
and has to select the right JSP for the current device.

This approach is easy to implement but it is limited to Javaserver pages.
Another - a better - way to satify the request to a pervasive friendly
architecture could be the separation of the output data (content) and the way
of displaying this data.

One elegant way of doing this is using the eXtensible Markup Language
(XML). XML is a simple, cross-plattform and extensible way of structuring
data. It was defined and standardized by the World Wide Web Consortium1.
XML is a text-based tag language like HTML. But in contrast to HTML, XML

1 see http://www.w3.org
20 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754Controller.fm
treats documents as data and not as formatted text. So, XML markup states
what data is, HTML markup states how the data should be displayed.

To render a XML documents the W3C defined the eXtensible Stylesheet
Language (XSL). With XSL it is possible to generate not only HTML but it is
also possible to generate PDF or TeX documents.

In business to business communication there will be computers on both ends.
That means that both ends have to interpret the content rather than
displaying it. XML seems to be perfect for those kind of applications because
both sides have direct access to the data.

Summarizing, one solution for filtering could be to first determine the client
type. Then, the servlet is executed as normal but it outputs, as seen in Figure
8 on page 22, an XML-stream with a stylesheet regarding to the type of client.

A variation of this scenario which is useful in many scenarios would process
the XML document and the XSL stylesheet on the server within the servlet.
There are quite a few advantages of this approach:

• Security: Only the necessary data get to the client, the rest is filtered on
the server

• Network performance: Only the necessary data get to the client, the rest is
filtered on the server

• Less requirements to a client: Because the conversion is done on the
server (which is scalable) the client does not have to interpret the
XML/XSL. That has impact on the client CPU, the client memory and the
capability of the client in interpreting XML.
Chapter 3. Support for Pervasive Computing 21



5754Controller.fm Draft Document for Review June 15, 2000 5:50 pm
Figure 8. Satisfying multiple devices with XML and XSL

The second solution mentioned above, to target the different types of client
devices, is more complicated to implement. But in complex applications it will
be necessary to procede this way. Support of multiple types of client does not
only mean to provide multiple stylesheets or Java Serverpages. Even if HTTP
is typically used in e-business applications, not all devices might
communicate via HTTP, there might be the need to use a pure socket
communication or the RMI protocol for example. And because of the different
output capabilities (small display) there might be the need for a device type to
split one output page into many pages. We have to remark that these pages
represent the same business logic than the one page we had before.

Because the task that has to be done is still the same, we need to name and
to define this task by introducing an activity business object. An activity
business object is a business domain motivated task which is normally run by
only one person and is usually finished within one session. During a standard
object oriented methodology, an activity business object can be found by the
use case analysis and corresponds to an use case.

For the distinction between reusable parts of the activity business object and
parts which have to be reimplemented for each type of client, we can split an
activity into model, view and controller.

W eb
Server

E IS
R esources

Stored P ro ced ures
In ternet

X M L

X M L+X S L

X M L+X S L
22 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754Controller.fm
The model is the reusable part of an activity and can be shared for all client
devices. It implements the logic of the activity without knowing anything about
the presentation of the activity. The model defines services which are used by
the controller. There is only one model per activity.

The responsibility of the controller is the definition of the work flow within the
activity. Because this work flow depends on the client device, it is necessary
to have multiple controllers, one for each device type. Since some devices
implement similar or identical functionality, it might be possible ro reuse some
of the code. As said before the controller handles the application behaviour.
This includes:

• selecting the view that is to display

• interpreting client events such as a “submit” button pressed event

Client events are strongly device dependent. A browser, for example, is able
to trigger a “button-pressed” event. But it is not possible to get a “focus lost“
event, which is available by a Java client.

The view is specific to each different type of device. Many techniques may be
used to implement the view for example plain HTML, JSP, XSL.The view
might even be a Java applet or application wich communicates with the
server via RMI.

The activity should not care about the technology used to transfer the data to
the client. That means that the controller has to be separated from the
communication to the client. According to our architecture defined above the
servlet communicates with the client. We need one servlet per
communication technology used. This leads us to Figure 9 where we can see
the complete architecture.
Chapter 3. Support for Pervasive Computing 23



5754Controller.fm Draft Document for Review June 15, 2000 5:50 pm
Figure 9. Architecture overview for handling multiple types of clients

Activity

JSP Browser
Controller

Model

HTTP-Servlet

WAP-Servlet

Internet

EIS
Resources

WAP
Controller

JSP
JSP

B2B-
Controller

XML
24 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754CmdFW.fm
Chapter 4. WebSphere Command Framework

4.1 Command Pattern

4.1.1 Introduction
Given the structure suggested in the beginning of this part for e-business
applications, the business logic of an interaction is isolated from the work flow
and the view by using the model/view/controller paradigm. This leads us to
the three components as shown in Figure 10:

• The view (User Interface Logic) contains the logic which is necessary to
construct the presentation.

• The servlet acts as the controller and contains the logic which is
necessary to process user events and to select an appropriate response.

• The business logic actually accomplishes the goal of the interaction. This
might be a query or an update to a database.

Figure 10. Web application model

It is critical to maintain a clean separation between the different types of
program logic. Especially the link between the servlet and the business logic
is sensitive. As the reason for that we have to face several more problems in
the communication between these layer:

EIS
Resources

Client View
(User

Interface
Logic)

Servlet
(Interaction
controller)

Business
logic
© Copyright IBM Corp. 2000 25



5754CmdFW.fm Draft Document for Review June 15, 2000 5:50 pm
Performance

The granularity of artifacts on the server (i.e. objects, tables, procedure calls,
etc) often causes a single client-initiated business logic request to involve
several round-trip messages between client and server consuming significant
amount of system resources. This might include several calls to perform the
business task and several more calls to retrieve the results of that task. This
can cause efficiency concerns and make programming difficult.

Stability

Changes in the business logic might affect the servlet if the interface of the
business logic (e.g., the EJB) is modified. As a consequence all servlets
using that business logic must be changed.

Technology choices

There are several possible technologies for how business logic can be
implemented. This includes EJB, JDBC or the Common Connector
Framework. In addition to different implementation programming models,
each of these technologies has a different way to invoke a request to execute
business logic. That means that the servlet has to be aware of all used
technologies and has to implement interfaces to them.

Additional, we might run into problems when calling EJB directly from the
servlets. This communication is being based on RMI/IIOP and has significant
deployment problems when passing through a firewall.

4.1.2 Commands
A good way of solving the above problems and a good way of separating the
program logic is the use of commands. Commands encapsulate business
logic tasks and provide a standard way to invoke the business logic request
and access to data using a single round-trip message.

A command is a stylized java class with the following characteristics:

• A command object corresponds to a specific business logic task, such as
a query or an update task.

• Commands have a simple, uniform usage pattern.

• It hides the specific connector interfaces and their logic from the servlet.

• Commands can cache information retrieved during the business task.
26 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754CmdFW.fm
Figure 11. Using commands

Commands are used as seen in Figure 11.The servlet instantiates a
command object. Then the servlet sets the input parameter of the command
and executes it. When the command has finished performing the business
logic, the result - if any - is stored in the command, so that the servlet or the
view can get the result values by interrogating the command object.

We recommend to implement the command as a JavaBean. That is a java
class with naming restrictions:

• There must be a method
void setXXX (XXX xxx);

defined for each input property xxx

• There must be a method
XXX getXXX ();

defined for each output property.

4.1.3 Display Commands
In our programming model the Command Bean can be interrogated by the
standard bean mechanism. That means that a JSP programmer has to have
knowledge about java programming since the output properties of a
Command may include complex structures such as arrays.

Client
View
(User

Interface
Logic)

Servlet
(Interaction
controller)

Server

Business
logic

C
om

m
an

ds
Chapter 4. WebSphere Command Framework 27



5754CmdFW.fm Draft Document for Review June 15, 2000 5:50 pm
To solve the problem we introduce display commands. The idea is to
eliminate any handwritten code in the JSP thus supporting a development
model in which non-programmers can develop, modify and maintain
presentations. Display commands are commands as defined above except
that they are intended to run locally. A display command calls other
commands to run the business logic and encapsulates all the dynamic
content of the page by converting the output properties of the executed
command into HTML.

Figure 12. Using Display Commands

4.1.4 Roles
e-business applications are created by a multidisciplinary team. The skills
include graphic artists, web page designers, client and server side script
writers and Java programmers.

Whether there is only one person or 100, the concept of the separation of
roles and responsibilities is key to the successful creation and maintenance
of the e-business application .

The command pattern helps seperating the tasks done by each role:

• The HTML Developer uses a tool like WebSphere Page Designer to
generate HTML pages and JSP templates.

• The Script Developer uses a Java programming environment like
VisualAge for Java to edit, test and debug servlets and JSPs.

• The Java Business Logic Developer uses a Java programming
environment like VisualAge for Java and builders like the integrated EJB

Client

View
(JSP)

Servlet

Server

Business
logic

D
is

pl
ay

C
om

m
an

d

C
om

m
an

d

28 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754CmdFW.fm
Builder to specify the details of the business logic, to access legacy
applications and data and to buid the commands.

Figure 13. Separation of Roles and Responsibilities

4.1.5 What’s the value?
Commands add a light weight layer to the e-business architecture. This gives
us the following advantages:

• Since commands are implemented as serializable objects they can be
shipped to and executed within any Java environment within any server
supporting Java access to its resources and providing a protocol to copy
the command between the command client JVM and its JVM. The protocol
does not have to be IIOP. This gives the opportunity of enhancing the
performance and the deployment (firewall) by executing the command on
the enterprise server.

• Commands allow an application to be partitioned into efficient units of
client-server interaction.

• Commands allow the caching of data.

• As commands are implemented as a JavaBean, it is easy to get access to
the output data. Therefore, it is possible to store an executed Command
Bean in a session environment of a servlet and use it by a JSP.

• Commands can even be used / integrated in most web design tools like
IBM WebSphere Studio because they are implemented as JavaBeans.

• The servlet code is independent of the style of the command’s
implementation and it is independent of where the command is physically
executed.

View
(JSP)

Servlet

Business
logic

D
is

pl
ay

C
om

m
an

d

C
om

m
an

d

HTML Developer Script Developer Java Business Logic
Developer

Create

Consume
Chapter 4. WebSphere Command Framework 29



5754CmdFW.fm Draft Document for Review June 15, 2000 5:50 pm
• Another advantage of choosing the command pattern approach is that it
facilitates a cleaner separation of roles in a development team.

• The use of commands leads to a stable boundary between business logic
and user-interface logic.

4.1.6 Granularity issues about the Command Bean
In this section we discuss how the command pattern can be used to reduce
the overhead of cross-tier communication and how Command Beans should
be tailored.

A well-defined interface to an enterprise business logic tends to be fairly
fine-grained, as this results in a simple description, easier maintenance and
more reuse. As we have pointed out above, this causes proliferation of high
cost cross-tier communication.

There is no perfect answer to the tradeoff between good interface design and
a reduced communication overhead. Our proposal is, that the requesting tier
(the servlet) of a communication has to design exactly the commands needed
to support its tasks. The idea is, that a servlet should only execute one
command per invocation which encapsulates all of the controller function
except for the HTTP request parsing. That means when implementing an
e-business application, the servlet only interprets the HTTP request and
executes commands. As a consequence of this approach we will get as many
commands as we have server interactions for a given use case.

4.1.7 Relationship of Command Beans and EJB
An obvious question is why not use IIOP to SessionBeans to accomplish the
same objective as commands. The answer is that commands have the
following advantages:

• Command beans handle multiple protocols to accomodate any target
server, not just IIOP to EJB servers. This includes, of course, IIOP but also
HTTP.

• When acting in a distributed environment, command beans require fewer
round-trip messages. For a SessionBean EJB whose container runs in a
separate server, serveral remote messages are required to do a single
logical request:

1. Look up the home

2. Narrow the home

3. Create the SessionBean instance
30 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754CmdFW.fm
4. Call the method

5. Destroy the SessionBean instance

Steps 1 and 2 can often be cached but there are still three round-trip
messages required per instance.

4.1.8 Caching
Using commands, the cross-tier communication is reduced to one round-trip
per task. Caching is a technology which can be used to reduce this to even
less than one.

Caching is not a new technique; it is a general principle that can be used to
reduce cross-tier communication, database queries and computation.

The principle of caching is simple: Don’t ask a question twice if you can do it
once and save the result to use the second time. This principle can be difficult
to implement since the amount of saved data may become unmanagable and
the results can be reused only if they are still accurate.

In e-business applications, there are two types of information that can be
cached:

• Formatted information such as whole or partial HTML pages can be
cached. This works well when many people need to view the same
material presented in the same way, such as on a sports or news site.
Caching partial pages adds the flexibility to customize pages for users
while still retaining many of the benefits of caching. Since View
Commands represent partial HTML pages it makes sense to cache those
commands.

• Data can be cached. This works well when the same data needs to be
viewed in different ways. This means that commands (e.g. which are
executed by the view commands) can be cached.

The two types can be used together. For example, a commerce site might
cache product descriptions in a formatted form while caching customer-profile
information as data.

4.2 The command pattern

In this chapter we describe the command pattern and the command
framework which is the base for all commands. It attempts to capture the
basic concepts of commands and provide an extendable infrastructure for
their implementation.
Chapter 4. WebSphere Command Framework 31



5754CmdFW.fm Draft Document for Review June 15, 2000 5:50 pm
In addition we capture the use of commands.

4.2.1 Pattern description

4.2.1.1 Command

Figure 14. command structure

The complete command hierarchy is shown in Figure 14, with the command

interface as the base for all commands. Each command has to implement at
least the Command interface. The set of methods defined in the Command

interface are - besides the creation and initialization of the command - the
only methods that a client of the command has to know about.

• For each specific command class, some input properties are required and
others are optional. A client can test whether all required input properties
have been set be calling
public boolean isReadyToCallPerform ();

• A client actully executes a command by calling
public void execute () throws CommandException;
32 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754CmdFW.fm
• It is sometimes convenient to reuse the same command instance. For
example, there may be several complex input parameters and only one of
them needs to change for the next execution. This is enabled by calling
public void reset ();

this resets the output properties to the values they had prior to the execute
method being called.

A Command Bean can enter three states. After creation the bean resides in
the new state if properties have to be set. After the last required property has
been set, the command steps to the initialized state. In this state, and only in
this state, the method isReadyToCallPerform() should return true and the
execute() method may be called. This method moves the command from the
initialized state to the executed state as illustrated in Figure 15. The
command may be moved into the initialized state again by calling the reset()

method.

Figure 15. State Diagram of a Command Bean

4.2.1.2 Command Target
To distribute a Command Bean some more complexity is necessary. The
command framework introduces a command target to deal with this
complexity.

new initialized executed
new

Beans.instantiate

last
required
setXXX

execute

reset

setXXX getXXX
Chapter 4. WebSphere Command Framework 33



5754CmdFW.fm Draft Document for Review June 15, 2000 5:50 pm
Figure 16. Remote execution of a command

A command target is responsible for the proper execution of a command in a
target server environment. In a distributed environment, this might involve the
followin steps (see Figure 16 on page 34):

• Copying the command over a server-specific protocol (e.g. RMI) to the
target server’s JVM.

• Executing the command in the target server’s JVM.

• Copying the executed command back to the client’s JVM.

For each target server environment, there can be one or more classes that
implement the CommandTarget interface.

The CommandTarget interface is a wrapper interface for a target server JVM
where a command can be executed. Because, as seen in Figure 17, it
extends the java.rmi.Remote interface it can potentially be an Enterprise Java
Bean.

Command
Target

Command Copy of
Command

execute()

copy command

execute()

Server
34 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754CmdFW.fm
Figure 17. CommandTarget model

The only method defined in this interface is

public TargetableCommand executeCommand (TargetableCommand)

which is called by the execute() method of a targetable command.

4.2.1.3 TargetableCommand
The command framework defines a targetable command as a command
which can be executed in a command target environment. A targetable
command includes an interface and an implementation of the logic to
distribute a command.

The TargetableCommand interface is an extension of the Command that allows a
command to be redirected to a particular CommandTarget for execution.This is
done by the abstract class TargetableCommandImpl which implements the
execute() method of the command.

The implemention is called by the command client and handles the
distributed issues. Because of this, a different method is needed for the
implementation of the business logic which is defined in the TargetableCommand

and which is called by the implementation of the command target:

public void performeExecute();

There are two ways for a command client to specify which execution
environment (command target) is used for a command prior to calling the
execute() method:
Chapter 4. WebSphere Command Framework 35



5754CmdFW.fm Draft Document for Review June 15, 2000 5:50 pm
• The CommandTarget can be set by the command client directly via the
following method:
public void setCommandTarget (CommandTarget commandTarget);

• The CommandTarget bean name can be set by the command client via the
following method:
public void setCommandTargetName (String targetName);

An additional aspect handled by the TargetableCommand is a performance
improvement. The method

public boolean hasOutputProperties ()

is defined in the TargetableCommand interface and is implemented in the
TargetableDefaultImpl. It returns the value of the hasOutputProperties instance
variable. That variable should be set by the command implementation. A
false shows that the command does not have output properties. That can
eliminate unnecessary copying and message overhead.

The TargetableCommand defines a method

public void setOutputProperties (TargetableCommand fromCommand);

which is used to copy all output properties from a given command to another
command (of the same type). This operation is necessary because the
executed command will be shipped back to the client side where the output
properties have to be copied back to the original command. The
TargetableCommandImpl provides a default implementation where introspection
is used to copy all instance variables, provided that all instance variables are
non-private and non-package.

4.2.1.4 Compensable Command
In some cases it might be useful to have a undo function for a command.
Although the undo function might be provided as a base function of a
command pattern, there are many cases in which a command is not actually
undoable. Thus it is appropriate to have two commands. For example, a
MakeReservation command might have a CancelReservation command as a
reverse command.

The command framework offers the ability to associate two commands in a
way that one compensates (e.g., does the best possible job of reversing its
action) the other. The compensable command represents the “undo”
command. Therefore, a CompensableCommand interface which extends the
Command interface is defined b the framework.

The CompensableCommand interface introduces one method:
36 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754CmdFW.fm
public Command getCompensatingCommand ();

which returns the initialized compensable command ready to be executed.
That means that the input properties of the compensable commands are
already set. The state of the command itself does not change.

Figure 18. Command and Compensable command state diagram

4.2.1.5 Target Policy
To determine which CommandTarget is used for which TargetableCommand,
a policy has to be established. Therefore the command framework provides
the TargetPolicy interface to allow different policies to be plugged into the
framework. The interface shown in Figure 19 has one method

public CommandTarget getCommandTarget (TargetableCommand command);

The framework provides a default implementation in the TargetPolicyDefault

class adding the following methods to register and unregister a mapping
between a targetable command and a command target

public void registerCommand (String commandBeanName, String targetBeanName);
public void unregisterCommand (String commnadBeanName);

The default policy contains the following:

1. If the TargetableCommand contains a CommandTarget (obtainable via the
TargetableCommand.getCommandTarget() method), use it.

2. Otherwise, if the TargetableCommand contains a CommandTarget bean
name (obtainable via the TargetableCommand.getCommandTargetName()

method), use it.

new initialized executed
new

Beans.instantiate

last
required
setXXX

execute

reset

setXXX getXXX

new initialized executed
new

Beans.instantiate

last
required
setXXX

execute

reset

setXXX getXXX

Command state

Compensable command state

returns getCompensatingCommand
Chapter 4. WebSphere Command Framework 37



5754CmdFW.fm Draft Document for Review June 15, 2000 5:50 pm
3. Otherwise, if the TargetPolicyDefault contains a registered mapping
between a Command Bean and a CommandTarget name (setable via the
TargetPolicyDefault.registerCommand() method), use it.

4. Otherwise, if a default target bean name has been set (setable via the
TargetPolicyDefault.setDefaultTargetName() method), use it.

5. Otherwise, return null.

Figure 19. Target Policy

4.2.1.6 Interaction between the objects
To show, how the command framework works, Figure 20 shows the interation
between the objects involved in executing a TargetableCommand. The client
just has to create a Command Bean to set the required input properties and
to call its execute() method. This method, implemented by the
TargetableCommandImpl class, first checks if it is in the initialized state.

Then, the command asks the target policy for a command target. If the default
target policy is used, it uses the strategy described above. The policy creates
a new command target and the command calls the command target for
execution by using the executeCommand() method. Since we are executing a
targetable command, the command target copies the command to the server
where its performExecute() method is called. If the command has output
properties which is figured out by calling its hasOutputProperties() method, it
is replicated back to the client side where the original command copies its
output properties from the replicated command with the
setOutputProperties() method. Finally, the command client can access the
output properties of the command.
38 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754CmdFW.fm
Figure 20. Sequence diagram of a command

4.2.1.7 Command exceptions
The command framework defines several exceptions.
Chapter 4. WebSphere Command Framework 39



5754CmdFW.fm Draft Document for Review June 15, 2000 5:50 pm
Figure 21. Command exceptions

All exceptions defined by the framework derive from CommandException..

• An UnsetInputPropertiesException is thrown, when a client calls the
execute() method while not all required input properties have been set.

• The TargetableCommandImpl throws an UnregisteredCommandException, if
the TargetPolicy null, which means that no command target could be
found.

• When a CompensableCommand has no compensating command to return, it
has to throw an UnavailbleCompensableCommandException.

• A command may implement authorization. The command can throw an
UnauthorizedAccessException when the client attemps to execute a
command without access authorization.
40 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754CmdFW.fm
4.2.2 Command programming model
Before implementing a command the command programmer has to decide
whether the command will be executed only locally or if it might be executed
on a remote server. Command beans that execute locally (i.e. in the same
JVM as the calling servlet) simply implement the Command interface. If a
command is to execute remotely on another server it implements
TargetableCommand by extending the TargetableCommandImpl class.

If you want to provide an undo command which is associated to the
command, you have to implement the CompensibleCommand interface within the
first command.

To show an example we are implementing a targetable command used in the
Patterns Development Kit (check the Web site
http://www-4.ibm.com/software/developer/web/patterns/). It is called
SaveReadingsCommand and stores a hashtable in a DB2 database.

As mentioned above, it extends the abstract base class
TargetableCommandImpl:

public class SaveReadingsCommand extends TargetableCommandImpl implements
Serializable
{
}

A command may require some input properties. Because the command class
should be a JavaBean, it is recommended that the command follows the
standard JavaBean naming guidelines. That means that the input parameter
are JavaBean input properties and should have a signature

public void setXX (XXX xxx)

The output parameter should be JavaBean output properties with a signature

public YYY getYYY ()

In our example, we want the command client to set the user id and the
password for accessing a database. In addition, we want the client to input a
hashtable with the weather readings that are going to be stored in the
database. We get the following attribute definition

private Hashtable readings = null; // Hashtable to hold readings
private String userId = null; // Instance variable for Database Userid
private String password = null; // Instance variable for Database password

and the set-methods for them:
Chapter 4. WebSphere Command Framework 41

http://www-4.ibm.com/software/developer/web/patterns/
http://www-4.ibm.com/software/developer/web/patterns/


5754CmdFW.fm Draft Document for Review June 15, 2000 5:50 pm
public void setPassword(String password) {
this.password = password;

}
public void setReadings(Hashtable readings) {

this.readings = readings;
}
public void setUserId(String userId) {

this.userId = userId;
}

To check, whether all required properties have been set, we have to
implement the method public boolean isReadyToCallPerform (). In our
example we get:

public boolean isReadyToCallExecute() {
return true;

}

Finally, since we are developing a distributed command, we have to
implement the performExecute() method with the business logic.

Sometimes it is not desired that the client of a command has full access to
the Command Bean class which includes the implementation of the bean
logic. Therefore it is required to have a client part of the command and a
server part. This can be done by subclassing as seen in Figure 22 on page
43. The command bean is used as before. Only the server knows about the
server class and deserializes the server command bean instead of the client
command bean.
42 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754CmdFW.fm
Figure 22. Splitting a Command in Client and Server

4.2.3 Command Target and Server implementation
An easy way to provide a target for executing commands in the same java
environment is the use of a local implementation. This can be done by a local
command manager which is just a java class implementing the CommandTarget

interface. The executeCommand()method just calls the performExecute()method
of the Command Bean.

A preferred strategy using Enterprise Java Bean technology is executing the
Command Bean within an EJB command server.

WebSphere provides an implementation of an EJB command server as an
example using a stateless Entitybean as a command server. We define a
stateless Entitybean as an Entity Bean conforming to the EJB specification
but without having any persistent attributes. Even the primary key is not
persistent. Therefore, the remote interface is defined as the following:

public interface CommandServerEntity extends CommandTarget,
javax.ejb.EJBObject {

public TargetableCommand executeCommand(TargetableCommand command)
throws RemoteException, CommandException;

}

The primary key class is provided by the code:
Chapter 4. WebSphere Command Framework 43



5754CmdFW.fm Draft Document for Review June 15, 2000 5:50 pm
public class CommandServerEntityPrimaryKey implements java.io.Serializable
{

public int dummy;
final static long serialVersionUID = 3206093459760846163L;

public boolean equals(java.lang.Object o) {
if (! (o instanceof CommandServerEntityPrimaryKey)) {

return false;
}
else

return true;
}

public int hashCode() {
return "CommandServerEntityPrimaryKey".hashCode();

}
}

The CommandServerEntity can be coded as following:

public class CommandServerEntityBean implements EntityBean {

final static long serialVersionUID = 3206093459760846163L;
private javax.ejb.EntityContext entityContext = null;
public int dummy = 0;
// All EJB specific methods must be defined
...

public TargetableCommand executeCommand(TargetableCommand command) throws
CommandException, RemoteException {

try {
command.performExecute();

} catch (CommandException e) {
/*
* The WebSphere Advanced (3.02) Container
* actually follows the EJB 1.1 rules for
* exception handling. If your business logic
* throws a CommandException and wants to cause
* the transaction to rollback, it must call
* setRollbackOnly() on the bean's EJB context
* before throwing the exception.
*
* Make sure that the Command Bean is using a
* DataSource.
*/
entityContext.setRollbackOnly();
e.printStackTrace();
44 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754CmdFW.fm
throw e;
} catch (Exception e) {

e.printStackTrace(); // for trace
if (e instanceof RemoteException) {

RemoteException remoteException = (RemoteException)e;

if (remoteException.detail != null) {
throw new CommandException(remoteException.detail);
}

}
throw new CommandException(e);

}
if ( command.hasOutputProperties()) {
return command;
}
return null;

}

}

An Entity Bean is used instead of a Session Bean, so that many different
transactions can access the same instance. This instance has the only
distributed object stub required in the web application. This instance can be
fetched once at server startup and subsequently cached inside the
EJBCommandTarget. This allows to execute a command with only one single
round-trip message.

4.2.4 Command client model
Using a command is quite easy as seen in Figure 23. Regardless of whether
the command bean is executed locally or remotely the client servlet executes
the command bean in the same way.

First the client programmer has to instantiate the command bean he wants to
use. There are several ways to instantiate a command:

• The fastest way is the use of the new-method
MyCommand myCommand = new MyCommand ();

• The standard way of instantiating a JavaBean use
MyCommand myCommand = Beans.instantiate(null,beanName);

where beanName is either a class or an instance name.
Chapter 4. WebSphere Command Framework 45



5754CmdFW.fm Draft Document for Review June 15, 2000 5:50 pm
Figure 23. Using a Command Bean

In order to execute the command the client has to fill the input properties by
calling the set-methods:

myCommand.setInputPropertyA ();

To actually invoke the business logic implemented in the command bean the
client has to call the command’s execute()-Method:

myCommand.execute()

The command bean interacts with the back end system and stores the result
as output properties. The client can access these properties with
get-Methods:

a = myCommand.getOutputPropertyA ();

Since commands are Java beans, it is easy to build a simple cache for
read-only commands which content does not change over a session time. We
can store a hashtable which contains the executed command beans in the
session context.

HttpSession session = req.getSession(false);
if (session != null) {

Hashtable commandCache = (Hashtable) session.getValue("commandCache");
GetPlanetListCommand menuCmd = (GetPlanetListCommand)commandCache.get
("topologytwo.GetPlanetListCommand");
if (menuCmd == null) {

// create and execute the command
46 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754CmdFW.fm
...
commandCache.set ("topologytwo.GetPlanetListCommand", menuCmd);

}
// use command results
...

}

Chapter 4. WebSphere Command Framework 47



5754CmdFW.fm Draft Document for Review June 15, 2000 5:50 pm
48 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754ch01needEJB.fm
Chapter 5. Need for the EJB technology

A lot of Web sites are up and running using Java without any EJB technology.
Developers have been using straight RMI objects, and managing transactions
themselves using commit, rollback functionality built-in to JDBC without the
help of application servers.

These middle tiers consist of a Java runtime and in-house developed java
classes. Some of those developers are wondering what exactly does EJB add
to what they have been successfully using so far.

They got the message that EJB application servers provide container
managed transactions but typing commit() and rollback() is not that time
consuming.

As with most other technologies, enterprise beans do not provide the unique
solution to all your problems. But if you read the literature before the
availability of enterprise beans application servers, you see that developers
had to develop proprietary or buy frameworks to manage concurrency,
persistence and transaction. All these problems are solved for the business
logic developer by using enterprise beans.

Once again not every application environment may benefit from using
enterprise beans. To help you decide whether this technology is appropriate
or not in your case, we provide hereafter some reasons for considering using
it.

5.1 Multiple client types accessing shared data

Often, a single application will have multiple client types that need to access
the same set of information. For instance an application might have a
web-based HTML front end for external customers, and a more complete
Java application front-end for internal users. Traditionally, this problem has
been solved by writing two versions of the same application that share the
same data sources (database tables). However, this is not efficient either in
programming time or in utilization of the database if multiple database locks
could be held at one time.

The EJB solution to this problem is to put common data and business logic in
a single set of EJB’s that are accessed by different client types (e.g.
Servlet/HTML and application). EJBs control access to the back-end data and
manage the current transactions and database locking internally. This
reduces the total programming effort by removing duplicated code in the
© Copyright IBM Corp. 2000 49



5754ch01needEJB.fm Draft Document for Review June 15, 2000 5:50 pm
application and by reducing the amount of effort spent in writing database
control logic.

5.2 Concurrent read and update access to shared data

Traditional, “fat client” solutions require the application to manage access to
shared data at the database level. This often results in highly complex
schemes to deal with database locking and concurrency, or alternatively, loss
of data integrity when these issues are not considered.

Enterprise beans automatically handle these complex threading and
simultaneous shared-data issues. As mentioned previously, enterprise beans
control access to back-end data and manage the current transactions and
database locking internally.

5.3 Accessing multiple datasources with transactional capabilities

Many applications require the ability to access multiple datasources. For
instance, a program may use data in both a middle-tier Oracle Database and
a Mainframe CICS or IMS system accessible through MQ Series. The key is
that some applications require that this access be fully transactional – that
data integrity be maintained across the datasources. For example, an
application may demand that placing a user order will consist of storing the
detailed order information in an Oracle Database and simultaneously placing
a shipment order with a CICS system through MQ Series. If either the
database update or the MQ enqueuing fails, then the entire transaction
should roll back.

In the past, the only choices with which to build systems like these were
Transaction Monitors like Encina, CICS or Tuxedo, which used non-standard
interfaces and required development in languages like COBOL, C or C++.
Enterprise beans support multiple concurrent transactions with full commit
and rollback capabilities across multiple DB2 data sources in a full 2-phase
commit-capable environment.

5.4 Method-level object security

Certain types of applications have security restrictions that have previously
made them difficult to implement in Java. For instance, certain insurance
applications must restrict access to patient data in order to meet regulatory
guidelines. Until the advent of enterprise beans there was no way to restrict
access to an object or method by a particular user. Previously, restricting
50 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754ch01needEJB.fm
access at the database level, and then “catching” errors thrown at the JDBC
level, or by restricting access at the application level by custom security code
would have been the only implementation options.

However, enterprise beans now allow method-level security on any enterprise
bean or method. Users and user groups can be created which can be granted
or denied execution rights to any EJB or method. In WebSphere, these same
user groups can be granted or denied access to web resources (Servlets,
JSP’s and HTML pages), and the user id’s can be seamlessly passed from
the Web resources to the EJB’s by the underlying security framework.

5.5 Portable component-based architecture

For many of our more forward-looking customers, the key issue is that they
need to achieve platform, vendor, and application-server implementation
independence. The EJB architecture, which is an industry standard
component architecture, can help achieve these goals. Enterprise beans
developed for WebSphere can usually be deployed on our competitor’s
application servers, and vice versa. This promise has been demonstrated at
the June 1999 JavaOne conference where the same car dealer application
was deployed on multiple enterprise bean application servers vendors. While
in the short-term it is often easier and faster to take advantage of features
that may precede standardization, standardization provides the best
long-term advantage.

Also, customers must consider the increasing availability of tools and
optimized implementations of the EJB standard that you would not get with
"home grown" managed object frameworks. Since most customers are not in
the middleware business, their effort can be more effectively targeted at
activities that are more directly related to their business.

5.6 Multiple servers to handle throughput and availability

Over the past several years customers have found that fat-client systems
simply do not scale to the thousands, or millions of users that web-based
systems may have. At the same time, software distribution problems have led
to a desire to “trim down” fat clients. The 24-hour, seven-day-a-week nature
of the web has also made uptime a crucial issue for businesses. However, not
everyone needs a system designed for 24 X 7 operation, and able to handle
millions of concurrent users. We should be able to design a system so that
scalability can be achieved without sacrificing ease of development, or
standardization.
Chapter 5. Need for the EJB technology 51



5754ch01needEJB.fm Draft Document for Review June 15, 2000 5:50 pm
So, what customers need is a way to write business logic that can scale to
meet these kinds of requirements. WebSphere’s EJB support can provide this
kind of highly scalable, highly available system. It does so by utilizing the
following features:

• Object caching + pooling – IBM WebSphere Advanced Edition
automatically pools enterprise bean’s at the server level reducing the
amount of time spent in object creation and garbage collection. This
results in more processing cycles being available to do real work.

• Workload optimization at server – IBM WebSphere Advanced Edition
features EJB server cluster management. In IBM WebSphere Advanced
Edition you can create server groups that span nodes. In addition, you can
create “models” (abstract representations of a server) which are then
“cloned” into multiple JVM’s (see Figure 3 on page 8). Customers can
configure clones to run on any of the server machines in the cluster. In
addition, multiple clones of a single server can run on a single machine,
taking advantage of multiprocessor architectures. Likewise, they can
administer entire set of “clones” as a single group. This improves
availability and prevents a single point of failure in the application server.

• Cloning supports automatic failover. With several clones available to
handle requests, it is more likely that failures will not damage throughput
and reliability. With clones distributed to various nodes, an entire machine
can fail without producing devastating consequences. All of these features
happen without specifically being programmed into the system. No
changes to the server-side code are necessary to take advantage of this
kind of scalability.

Note that IBM WebSphere Advanced Edition supports distribution, cloning
and automatic failover of other server-side Java technologies like Java
Servlets and JSP’s. However, these more presentation-oriented technologies
serve as a complement to EJB’s rather than as a competitor to EJB’s. When
uptime and scalability are key, EJB’s should be a part of the overall solution.

5.7 Adopting enterprise bean technology

If you are now convinced that enterprise beans can help you in developing
your applications, there is additional information that you may consider. Even
though relationships are important in object-oriented programming, they are
almost absent from the Enterprise JavaBeans specification.

Fortunately, IBM provides support for enterprise beans relationships with its
VisualAge for Java development tool in combination with the IBM WebSphere
Advanced Edition application server.
52 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754ch01needEJB.fm
Before using this advanced feature, you need to understand the capabilities
offered as well as the limitations. This is explained in Chapter 7,
“Associations” on page 65.

Another important aspect of using enterprise beans is related to the way you
handle collections of objects. Collections are created by way of finders but
you need to figure out what’s happening when invoking such finders. You may
be runnning in two different modes: greedy or lazy. Collections and their
associated modes are explained in Chapter 8, “Collections” on page 107.

With VisualAge for Java you can also improve the performance when using
enterprise beans and simplify the client side code by using Access Beans.
Access beans are generated by VisualAge for Java out of enterprise beans.
As shown in Figure 2 on page 4, we recommend Access Beans as
intermediaries between facade and entity beans. All this is explained in the
next Chapter 6, “Access Beans” on page 55.
Chapter 5. Need for the EJB technology 53



5754ch01needEJB.fm Draft Document for Review June 15, 2000 5:50 pm
54 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754AccessBean.fm
Chapter 6. Access Beans

When working with distributed objects across the network, calling individually
the accessors of enterprise bean’s field is inefficient. For that purpose, IBM
has introduced access beans.

Access beans are Java components that adhere to the Sun Microsystems
JavaBeans Specification and are meant to simplify development of EJB
clients. An access bean adapts an enterprise bean to the JavaBeans
programming model by hiding the home and remote interfaces from the
access bean user (that is, an EJB client developer). They provide fast access
to enterprise beans by letting you maintain a local cache of enterprise bean
attributes. Access beans make it possible to use an enterprise bean in much
the same way that you would use a Java bean.

To assist you in creating or editing access beans, VisualAge for Java provides
a SmartGuide. The SmartGuide automatically saves your property settings in
the repository, so that when you later generate access beans, you do not
need to specify the settings again. Access beans simplify developement of
Java client for enterprise beans. As shown in Figure 24 , all you need to do is
to invoke the constructor, set the initial arguments required for the create/find
methods associated with the operation you want to perform and invoke the
remote/business methods.

Figure 24. Access Beans

A c c e s s B e a n s

In v o k e R e m o te
M e th o d s

S e t In i t ia l
A rg u m e n ts

In v o k e
C o n s tr u c to r o f
A c c e s s B e a n
© Copyright IBM Corp. 2000 55



5754AccessBean.fm Draft Document for Review June 15, 2000 5:50 pm
Now we describe the general characteristics of access beans as follows and
also shown in Figure 25:

Figure 25. Access Bean Characteristics

• Home interface methods that return a single instance of EJBObject are
mapped to Java bean constructors, while remote interface methods are
mapped to Java bean methods. Each finder method in the home interface
that returns a collection of enterprise bean instances is mapped to a finder
method in the access bean. You must first instantiate the access bean and
then invoke the appropriate finder method that will return a collection of
access bean instances.

• You can select the enterprise bean for which you want to create an access
bean, then you can use a SmartGuide to customize and create the access
bean. For example, the SmartGuide allows you to choose the home
interface method that you want to use to map to the no-arg access bean

create(ArgType1, ArgType2,...))
findByPrimaryKey(FooKey)

Access Beans Characteristics

FooAccessBean()
FooAccessBean(FooKey)
FooAccessBean(EJBObject)

setInit_argName1(ArgType1)
setInit_argName2(ArgType2)
...

barMethod1()
barMethod2(param1)
barMethod3() throws AException

FooAccessBean

barMethod1()
barMethod2(param1)
barMethod3() throws AException

FooHome (Home Interface)

Foo (Remote Interface)

constructors

public methods
56 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754AccessBean.fm
constructor. The arguments, however, must be set by special setter
methods and stored as instance variables in the access bean.

• To instantiate an enterprise bean, the access bean invokes a create() or
finder method defined in the enterprise bean home interface. If a no-arg
constructor is used, the access bean only instantiates the actual
enterprise bean when the first business method is called.

• Access beans employ copy helper objects that are basically caches of
user-selected entity bean attributes that are stored inside the access
bean. The getter and setter methods for these attributes deal directly with
the local cache rather than calling straight through to the remote getter
and setter call. Methods are provided to flush the cache to the actual
enterprise bean database and to refresh the cache from the actual
enterprise bean. This can improve performance significantly for entity
enterprise beans that have a large number of attributes, where issuing one
remote call to get and set a large number of attributes is faster than
issuing a single remote call for each.

There are three types of access beans, which are listed in ascending order of
complexity:

• Java bean wrapper (for a session or entity bean)

• Copy helper (for an entity bean)

• Rowset (for multiple entity bean instances)

6.1 Wrappers

Of the three types of access beans, a Java bean wrapper is the simplest to
create. It is designed to allow either a session or entity enterprise bean to be
used like a standard Java bean and it hides the enterprise bean home and
remote interfaces from you. Each Java bean wrapper that you create extends
the com.ibm.ivj.ejb.access.AccessBean class.

A Java bean wrapper access bean has the following characteristics:

• It contains a no-arg constructor.

• When the SmartGuide prompts you to map one of the create() or finder
methods defined in the home interface to the no-arg constructor of the
access bean, the access bean will subsequently contain one init_xx
property for each parameter of the create() or finder method that was
mapped to the no-arg constructor. To simplify a JSP program that normally
handles the String type, you can choose to have your access beans
Chapter 6. Access Beans 57



5754AccessBean.fm Draft Document for Review June 15, 2000 5:50 pm
expose the init_xx properties as String types. However, you can also
select your own converters for the init_xx properties.

• When a key class is used in the create() and finder methods for a CMP
entity bean, the key fields are used as the init_xx properties instead of the
key class. A key field is normally declared as a simple type. This makes it
easier for visual construction tools, such as the Visual Composition Editor,
to use an access bean.

• When the no-arg constructor is used, the init_xx properties must be set
first before any other calls to the access bean.

• The access bean may contain several multiple-arg constructors, each
corresponding to one of the create() or finder methods defined in the
enterprise bean home interface.

• The access bean will perform lazy initialization when the no-arg
constructor is used. When the access bean is instantiated, it will not
instantiate the enterprise bean. On a remote method call, the access bean
will first instantiate the remote enterprise bean if it has not yet been
instantiated.

• A default JNDI name will be generated into each access bean class. The
code generator will read the deployment descriptor and pass the JNDI
name to the access bean. You can change the JNDI name using the
setInit_JNDIName() method. It is not expected that you will need to
change the JNDI name. However, in the event that an enterprise bean is
deployed into a different home, the administrator may add a prefix to the
JNDI name to indicate the different home.

• To look up a home, an access bean needs to obtain a name service
context, which is sometimes known as the rootContext. A rootContext can
be constructed if you know the name service URL and the name service
type.

• Access beans provide two APIs that allow you to define a customized
rootContext:

setInit_NameServiceTypeName()
setInit_NameServiceURLName()

• However, if a JSP program is running in the WebSphere run-time
environment, you do not need to use these two APIs because the
rootContext is set automatically.

• An enterprise bean remote interface method can return an enterprise bean
object. When this kind of method is generated in the access bean class,
the return type is changed to the corresponding access bean type. This
58 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754AccessBean.fm
allows your user program to deal with only the access bean type and
inherit the benefits provided by the access bean.

• When multiple instances of an access bean use the same home (for
example, that use the same JNDI name and rootContext), the access
bean class only looks up the corresponding enterprise bean home once.
Each access bean class retains some class-level cache to improve the
performance when instantiating an enterprise bean.

Now we take an example of creating a java bean wrapper type access bean
for a BankAccount Bean entity bean which is having a create method in its
home interface that has two arguments:

accountID
accountType

By using Visual Age Java select your BankAccount bean and add an access
bean of type Java Bean Wrapper. The BankAccountAccessBean get
created. The no-arg constructor of the Access bean is mapped to the create
method (specified in the SmartGuide). Two setter methods are also
generated for the two arguments - setInit_accountID, setInit_AccountType.
The remote methods including setBalance() are created in the Javabean. The
bean is not initialized/instantiated until the first remote method is invoked.
This lazy initialization is shown in Figure 26
Chapter 6. Access Beans 59



5754AccessBean.fm Draft Document for Review June 15, 2000 5:50 pm
Figure 26. Javabean Wrapper Usage

The following example shows a user program that is used to create a
BankAccountAccessBean.

BankAccountAccessBean acc = New BankAccountAccessBean ()
acc.setInit_accountID ("Joaq001");
acc.setInit_accountType ("SAVINGS");
acc.setBalance (new BigDecimal(45.0));

6.2 Copy helpers

A copy helper access bean has all of the characteristics of a Java bean
wrapper, but it also incorporates a single copy helper object that contains a
local copy of attributes from a remote entity bean. A user program can
retrieve the entity bean attributes from the local copy helper object that

Javabean Wrapper Usage

Instantiate
Bean

Set Init_XX
arguments

Invoke Remote
Methods

AccountAccessBean acc = New AccountAccessBean ()

acc.setInit_accountID ("Joaq001");
acc.setInit_accountType ("SAVINGS");

acc.setBalance (new BigDecimal(45.0));
Lazy

Initialization
60 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754AccessBean.fm
resides in the access bean, which eliminates the need to access the
attributes from the remote entity bean.

When you create a copy helper access bean, the remote interface of the
enterprise bean will be changed to extend the CopyHelper interface as well
as the EJBObject interface. You can select all of these attributes or only a
subset in creating the copy helper object. The selected attributes are saved in
the enterprise bean meta model. These selections are redisplayed if you
decide you want to change the selection.

The copy helper object is stored inside the access bean. A get() and set()
method is delegated to the local copy helper object instead of the remote
enterprise bean object. To commit the changes in the copy helper to the
remote enterprise bean or to refresh the local copy helper from the remote
enterprise bean, your user program must call the commitCopyHelper()
method and the refreshCopyHelper() method, respectively.

When you create a copy helper access bean, a copy helper interface is added
to the corresponding EJBObject interface. There are two methods defined in
the copy helper interface:

_copyToEJB()
_copyFromEJB()

You do not need to implement these methods. They are automatically
generated into the bean class when you generate the access bean.

Now we take an example of creating a copyhelper access bean for a Bank
account entity bean. By using Visual Age Java select your BankAccount bean
and add an access bean of type Copy helper for an Entity Bean. The
BankAccountAccessBean get created.

The following example shows a user program that is used to create a
BankAccountAccessBean. In this example the code does the following:

• Create a new instance of the BankAccountAccessBean

• Set the initial argument for the create method - init_argAccountId

• Set the balance and accountType information

• Commit the copy helper

String accountId=”Gopal001”;
String balance=”100.00”;
String accountType=”CHECKING”;
try {
Chapter 6. Access Beans 61



5754AccessBean.fm Draft Document for Review June 15, 2000 5:50 pm
itso.ejb.lab04.BankAccountAccessBean ab = new
itso.ejb.lab04.BankAccountAccessBean();
ab.setInit_argAccountId(accountId);
ab.setBalance(balance);
ab.setAccountType(accountType);
ab.commitCopyHelper();
System.out.println("Created Bank Account [ " + accountId + "," +
accountType + "," +balance + "]");

} catch (Exception exc) {
System.out.println("Could not create the bank account ");
}

6.3 Rowsets

A rowset access bean has all of characteristics of both the Java bean
wrapper and copy helper access beans. However, instead of a single copy
helper object, it contains multiple copy helper objects. Each copy helper
object corresponds to a single enterprise bean instance.

A rowset access bean contains a collection of copy helper objects. In turn, a
copy helper object contains the primary key for each entity bean instance, but
it does not contain the proxy object (the EJBObject in the EJB server) itself
for the entity bean. When a session bean returns a rowset access bean as a
result set, only the attributes of the entity beans are copied to the client
space. The proxy objects are not copied. This is because copying a large
number of enterprise bean proxy objects from the server space to the client
space can cause performance problems. A JSP program can read from a
rowset access bean immediately without invoking a remote call. On an
update call, such as might be made using the commitCopyHelper() method,
the access bean constructs the enterprise bean proxy object using the key
object saved in the copy helper.

Now we take an example of creating a rowset access bean for a Bank
account entity bean. By using Visual Age Java select your BankAccount bean
and add an access bean of type “Rowset for Multiple Entity Bean
instances” . The BankAccountAccessBean get created.

In this example the code does following things:

• Create a new instance of the BankAccountAccessBean

• Invoke the findAll method passing the maximum size of the result set

• Create a new instance of the BankAccountAccessBeanTable
62 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754AccessBean.fm
• Populate the table with the access beans in the enumeration returned by
the findAll method

• Iterate through the elements in the BankAccountAccessBeanTable. For
each element print the Account information in the console.

public static void main(java.lang.String[] args) {
try {

BankAccountAccessBean ab = new BankAccountAccessBean();
java.util.Enumeration en = ab.findAll(20);
BankAccountAccessBeanTable tab = new BankAccountAccessBeanTable();
while (en.hasMoreElements()) {

tab.addRow((BankAccountAccessBean) en.nextElement());
}
for (int i=0; i < tab.numberOfRows(); i++) {

BankAccountAccessBean ab2 = tab.getBankAccountAccessBean(i);
System.out.println(((BankAccountKey) ab2.__getKey()).accountID +
"," + ab2.getAccounTtype() + "," + ab2.getBalance());

}
}catch (Exception exc) {
System.out.println("Could not retrieve BankAccounts");
}

6.4 Access beans and associations

If you create an access bean for an enterprise bean involved in an
association. If the association has been made navigable, the navigation
method returns an access bean which does not exist, and corresponding to
the enterprise bean at the other side of the association.

The problem is solved by either generating the access bean corresponding to
the enterprise bean at the other side of the association or if you really don’t
want to generate it, you need to generate the access bean first and only after
the association between the enterprise beans.

6.5 Access beans and WLM

In some cases, you may need to ship access beans across the wires. This
could be the case for example of a Java applet exchanging access beans
with a servlet through the HTTP protocol.

The serialization of the access bean will fail because in the inheritance
hierarchy of the access bean which extends AbstractEntityAccessBean and
itself extends AbstractAccessBean has a private variable called myHome.
This variable is a reference to the enterprise bean home which is not
serializable. Until VisualAge for Java version 3.5, you need to solve this
Chapter 6. Access Beans 63



5754AccessBean.fm Draft Document for Review June 15, 2000 5:50 pm
problem by making this variable transient such that the serialization process
does not attempt to save it.

6.6 Use of Access Beans

Now that we have seen what access beans are and we brought to your
attention the association and WLM problems, the question is when should we
use access beans?

Access beans have been design to improve performances when enterprise
beans and their clients are separated by a network. They also provide to the
client a caching mechanism for accessing homes.

In our Design Guidelines Components Environment Figure 2 on page 4, we
position access beans between the facade and entity beans. If entity beans
are running in different clones, then using access beans may still improve the
performances.

Access beans could have also been used between servlets and facades.
Instead, we preferred to use the command framework which presents the
advantage of being independent of the technolgy used for the business
implementation. In addition, commands represent use cases that can be
defined early in the development process and be used by the user interface
designers. They can be easily modified and adapted to unstable
requirements.
64 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754RelationShips.fm
Chapter 7. Associations

VisualAge for Java 3.02 provides enhanced association support which should
be deployable on any EJB 1.0 compliant EJB servers (IBM WebSphere
Application Servers and others).

While some association types work with no added user code, others need
EJB developer written code. Chapter 7.1, “Overview” on page 65 identifies
the tools support level for the different relation types.

In Chapter 7.2, “Description of the association solution” on page 68 we give a
detailed description of the generated code and illustrate how the inverse
association maintenance (a major association enhancement of VisualAge
3.02) works.

In Chapter 7.3, “Association developer and user responsibilities” on page 77
we describe the required manually written code and some association usage
issues (generated methods that do not behave as expected and should not
be invoked).

In Chapter 7.4, “Hints and tips” on page 99 we give some additional
recommendations.

Chapter 7.5, “Association deployment” on page 101 includes deployment
considerations.

In Chapter 7.6, “Performance” on page 103 we highlight the performance
aspects of the association solution and give some recommendations how to
improve the linkage performance.

The aim of this chapter is to provide a supplemental to the official VisualAge
documentation (VisualAger for Java 3.02 Documentation Update, EJB
Development Environment). It is not intended to provide a step-by-step
introduction of the linkage usage.

7.1 Overview

The association solution supports associations between

• Container-Managed Entities (CMPs)

• within the same EJB Group

Bean-Managed Entities (BMPs) and associations across EJB Group
boundaries are not supported.
© Copyright IBM Corp. 2000 65



5754RelationShips.fm Draft Document for Review June 15, 2000 5:50 pm
Association types which work with no added user code
Figure 27 shows the association types which work with no added user code:

• One-to-many associations

• One-to-one associations

with the following characteristics :

• optional roles (0..1, 0..*) on both association ends

• associated CMPs have independent life times, that is : delete a CMP on
one end of the association does not require a cascaded delete of the bean
on the other side.

Figure 27. Association types which work with no added user code
66 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754RelationShips.fm
Association types which require added user code or user attention
Figure 28 illustrates the association types which require added user code or
user caution when calling some generated methods:

• Many-to-many association
with a hidden table is not actively supported. In Chapter 7.3.4,
“Many-to-many relationships” on page 93 we describe a solution with an
intermediary CMP.

• Composition (Whole/part)
Composition is a special aggregation type with whole/part semantics. A
delete of a whole requires the deletion of the parts. The linkage solution
does not support cascaded delete. In Chapter 7.3.2, “Delete cascading”
on page 82 we describe two workarounds to achieve part deletes.

• Association with a required / mandatory role
When a CMP is created with a required role the association maintenance
has to be part of the creation. The association solution does not generate
ejbCreate / ejbPostCreate methods. Chapter 7.3.1, “Implementation of
ejbCreate / ejbPostCreate methods” on page 77 describes how to
manually write the source.

Some of the generated methods in an association with a required role
occur unexpected behavior. In Chapter 7.3.3, “Usage of associations with
required roles” on page 87 we address these critical methods.

The EJB 1.0 based container of WebSphere Advanced 3.02 does not
automatically initialize the container-managed fields in ejbCreate. This is a
EJB 1.0 spec limitation. In EJB 1.1 the container is responsible for the
proper field initialization.

For EJB 1.0 compliant containers the EJB developer has to explicitly
initialize CMP fields in ejbCreate. Because the generated foreign key fields
(see Chapter 7.2, “Description of the association solution” on page 68) are
treated as casual CMP fields, the EJB provider has to initialize the foreign
key fields in ejbCreate.

In our Personalbanker - Customer one-to-many sample with an optional
Personalbanker role for Customer (see Figure 30 on page 70) we have to
set the personalbanker_bankerId foreign key field to null in the ejbCreate
method of CustomerBean.

init of foreign key fields
Chapter 7. Associations 67



5754RelationShips.fm Draft Document for Review June 15, 2000 5:50 pm
Figure 28. Association types which require added user code or user attention

7.2 Description of the association solution

The association solution depends on primary / foreign key relationship. In a
one-to-one association the foreign key field(s) can be held on either end, in a
one-to-many relationships the EJB implementation on the single-valued end
of the association holds the foreign key field(s). Members are accessed via
the entity’s homes.

The association solution includes runtime support and code generation at
CMP creation time and at association creation / update time. The generated
code is part of the development (not deployment) process.

Runtime support
The runtime support includes two packages :
68 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754RelationShips.fm
• com.ibm.ivj.ejb.associations.links package with abstract link classes and a
member enumeration (EjbMemberEnumeration) for the multi-valued
association end

• com.ibm.ivj.ejb.associations.interfaces with linkage relevant interfaces

Code generation at CMP creation time
The following association specific methods are generated at CMP creation
time and updated with each new or migrated association:

• _initLinks ( ), a method to initialize association links (see below) for the
bean. This method is called in the ejbActivate(), ejbCreate() and ejbLoad()
methods. The method invocations are generated at CMP creation time.

• _removeLinks ( ), a method to maintain the bean’s associations during
delete. This method is called in the ejbRemove() method. The method
invocation is generated at CMP creation time.

• _getLinks ( ), a method to retrieve association links for the bean.

Code generation at association creation / update time
We illustrate the code generation based on the Personalbanker - Customer
one-to-many sample (see Figure 29).

Figure 29. Personalbanker - Customer association (one-to-many)

In Figure 30 we show the Association Editor for the association.
Chapter 7. Associations 69



5754RelationShips.fm Draft Document for Review June 15, 2000 5:50 pm
Figure 30. Association Editor for Personalbanker - Customer relationship

The following source is generated when the EJB developer clicks the OK
button in the Association Editor:

• a concrete link class for each association end. The generated link classes
are derived from one of the base classes of the runtime support,
dependent on the association type.

In our example a CustomerToPersonalbankerLink class is generated for the
single-valued end of the association (Customer) and a
PersonalbankerToCustomersLink class for the multi-valued end of the
relationship (Personalbanker).

Link classes insulate the CMPs from the association complexity. The
Entity Beans delegate the relationship maintenance and members
retrieval to the link classes.

During runtime the CMPs on each association end holds an object of the
appropriate link class as a private member.
70 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754RelationShips.fm
• association specific getters and setters in the bean implementations and
remote interfaces. Two types of methods are generated:

a. user specific methods
the methods an EJB developer is working with

b. linkage internal methods
for inverse association maintenance. An EJB developer should not
invoke these methods

The generated methods depend on the association type.

For a CMP of a multi-valued association end the following methods are
generated:

a. user specific methods

•java.util.Enumeration get<Role>()

•void add<Role>(<inverse remote interface>)

•void remove<Role>(<inverse remote interface>)

In our sample the generated methods in bean implementation
(PersonalbankerBean) and its remote interface (Personalbanker) are:

•java.util.Enumeration getCustomers()

•void addCustomers(Customer)

•void removeCustomers(Customer)

b. linkage internal methods

•void secondaryAdd<Role>(<inverse remote interface>)

•void secondardRemove<Role>(<inverse remote interface>)

In our sample the generated methods in the bean implementation
(PersonalbankerBean) and its remote interface (Personalbanker) are:

•void secondaryAddCustomers(Customer)

•void secondaryRemoveCustomers(Customer)

For a CMP of a single-valued association end holding the foreign key, the
following methods are generated:

a. user specific methods

•<inverse remote interface> get<Role>()

•void set<Role>(<inverse remote interface>)

In our sample the generated methods in bean implementation
(CustomerBean) and its remote interface (Customer) are:

•Personalbanker getPersonalbanker()

•void setPersonalbanker(Personalbanker)
Chapter 7. Associations 71



5754RelationShips.fm Draft Document for Review June 15, 2000 5:50 pm
b. linkage internal methods

•void secondarySet<Role>(<inverse remote interface>)

•void privateSet<inverse>Key(<inverse>Key)

In our sample the generated methods in bean implementation
(CustomerBean) and its remote interface (Customer) are:

•void secondarySetPersonalbanker(Personalbanker)

•void privateSetPersonalbankerKey(PersonalbankerKey)

• the foreign key field(s) as CMP field(s) in the bean implementation which
holds the foreign key

- public <type> <role>_foreignKeyFieldName;

In our sample the following field is generated in the CustomerBean class:

- public java.lang.String personalbanker_bankerId;

The foreign key field is not visible in the Properties panel of Customer.
Instead of the foreign key field an association icon for the personalbanker
role is shown. However the foreign key field will be added in the
deployment descriptor.

• an additional finder method in the remote interface of the bean’s home
holding the foreign key.

In our sample the following method is propagated to the CustomerHome
remote interface:

-Enumeration findCustomersByPersonalbanker(PersonalbankerKey inKey)

The generated link class PersonalbankerToCustomersLink calls
CustomerHome.findCustomerByPersonalbanker(PersonalbankerKey) to get the
personalbanker’s customer enumeration.

We do not need to declare an additional method in the home remote
interface of the inverse bean: the generated link class invokes the default
method findByPrimaryKey to resolve a foreign key.

In our sample the CustomerToPersonalbankerLink calls
PersonalbankerHome.findByPrimaryKey(PersonalbankerKey) to get the
personalbanker reference of a customer. The link objects gets the foreign
key field (personalbanker_bankerId) from its bean owner (CustomerBean).

In Figure 31 we summarize the association solution for the one-to-many
relationship Personalbanker - Customer. The figure includes the
components (link classes, bean implementations) involved, the home
interfaces with the relevant association methods, the user specific
accessor methods in the bean implementations and the foreign key field at
the single-valued end of the relation.
72 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754RelationShips.fm
Figure 31. One-to-many relationship Personalbanker - Customer

Inverse association maintenance implementation
VisualAge for Java Enterprise Edition, Version 3.02 supports object-level
referential-integrity for associations within transactions. Each association has
two ends. Changing one association end automatically maintains the inverse
association side.
Chapter 7. Associations 73



5754RelationShips.fm Draft Document for Review June 15, 2000 5:50 pm
A major design decision of the new association solution was enabling inverse
association maintenance without recursive method invocation, that means :
to prevent invoking a method of a beans that is already in the program stack;
for example : beanA calls beanB, beanB calls (recursively) beanA. Such a
solution would require bean reentrancy (selecting the Reentrant check box in
the CMP Properties panel). Otherwise a BeanNotReentrantException would
be thrown.

Obviously inverse association maintenance with reentrancy causes more
method invocations, but has a simpler remote interface.

Implementing the inverse association maintenance without CMP reentrancy
gives less method calls but has another drawback : additional (linkage
internal) methods in the bean implementation and its remote interface.

We describe the inverse association maintenance implementation based on
the following use case:

• a customer (custA) changes his Personalbanker (from bankerA to
bankerB)

• One-to-many relationship between Personalbanker and Customer

The use case can be proceeded in two ways:

• custA.setPersonalbanker(bankerB) or

• bankerB.addCustomers(custA)
74 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754RelationShips.fm
In Figure 32 we illustrate the message flow between the CMP implementation
when invoking the setter of the bean on the single-valued association end.

Figure 32. Interaction Diagram for Customer.setPersonalbanker (simplified, only bean implementation specific)

The interaction diagram is simplified: no distributed objects, no bean internal.
A CustomerBean object (custA) holds a link object of class
CustomerToPersonalbankerLink, which is the link for the single-valued end of
the association. The setter of CustomerBean delegates the relationship
maintenance to the link class. CustomerToPersonalbankerLink then

• calls bankerA.secondaryRemoveCustomers to remove the old relation on the
inverse end

• calls bankerB.secondaryAddCustomers to update the new relation on the
inverse end

• updates its own single-valued member (bankerB)

• calls custA.privateSetPersonalbankerKey to update the foreign key field(s)
in the bean.

Figure 33 we show the message flow between the CMP implementations
when invoking the add method of the bean on the multi-valued association
end.
Chapter 7. Associations 75



5754RelationShips.fm Draft Document for Review June 15, 2000 5:50 pm
Figure 33. Interaction Diagram for Personalbanker.addCustomers (simplified, only bean implementation specific)

The interaction diagram is simplified: no distributed objects, no bean internal.
A PersonalbankerBean object (bankerB) holds a link object of class
PersonalbankerToCustomersLink, which is the link for the multi-valued end of
the association. The add method of PersonalbankerBean delegates the
relationship maintenance to the link class. PersonalbankerToCustomersLink
then

• calls custA.setPersonalbanker with a null parameter to remove the old
relation on the inverse end. The custA object delegates the association
maintenance to its link object (class CustomerToPersonalLink) which is
the link for the single-valued end of the association.
CustomerToPersonalLink calls bankerA.secondaryRemoveCustomer to remove
the custA object reference from the member list. CustomerToPersonalLink
then sets its own member to null; that means: custA has (temporary) no
banker relation.

• calls custA.secondarySetPersonalbanker to update the member on the
inverse association end; that means: the link object of custA now holds a
reference to bankerB

• adds the custA object to its own member list
76 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754RelationShips.fm
• calls custA.privateSetPersonalbankerKey to update the foreign key field(s)
in the bean.

7.3 Association developer and user responsibilities

This section describes the source code which has to be written by the EJB
developer and some association usage issues.

7.3.1 Implementation of ejbCreate / ejbPostCreate methods
The link solution of VAJ 3.02 does not generate association-specific source
for ejbCreate and ejbPostCreate methods. The EJB developer has to write
the code manually.

When creating a CMP with a required (mandatory) role association
maintenance has to be done during bean creation. Obviously the role
reference is passed as an argument in the creation methods (ejbCreate /
ejbPostCreate).

For maintaining the other end of an association, the link class passes the
ejbObject reference of the source bean when invoking the inverse setter
(secondaryAdd/Remove for many-valued ends and secondarySet for
single-valued ends).

The earliest point in time an EJB has access to its ejbObject reference is the
postCreate method. Therefore association maintenance has to be part of
ejbPostCreate.

If the CMP holds the foreign key of a required role, the foreign key field(s)
have to be set before the ejbCreate method exits. Otherwise, database
exceptions can result as NULLS are written to nonNULLable columns.

In a one-to-many relationship the foreign key is always held by the
single-valued end. In a one-to-one relationship the EJB developer can
defined in the Association Editor which end of the association should hold the
foreign key.

Figure 34 shows the ejbCreate / ejbPostCreate pattern for a required foreign
key holder CMP.
Chapter 7. Associations 77



5754RelationShips.fm Draft Document for Review June 15, 2000 5:50 pm
Figure 34. ejbCreate / ejbPostCreate pattern for foreign key holder CMPs

The call to set the foreign key to null in ejbPostCreate is a necessary
prerequisite to the correct functioning of the setRole call.

Figure 35 shows the ejbCreate / ejbPostCreate pattern for a non foreign key
holder CMP.

Figure 35. ejbCreate / ejbPostCreate pattern for no foreign key holder CMPs

Next we describe a concrete usage of the ejbCreate / ejbPostCreate pattern
for a one-to-many relationship : an Account object holds the required foreign
key (CustomerKey) of the other association end (Customer) (see Figure 36).

public void ejbCreate(EJBObject role, ...) {
...
privateSetRoleKey((RoleKey) role.getPrimaryKey());

}
public void ejbPostCreate(EJBObject role, ...) {

...
privatSetRoleKey(null);
setRole(role);

}

public void ejbCreate(EJBObject role, ...) {
...

}
public void ejbPostCreate(EJBObject role, ...) {

...
setRole(role);

}

78 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754RelationShips.fm
Figure 36. Association Editor for Customer - Account relationship

Figure 37 and Figure 38 show the code snippet for
AccountBean.ejbCreate(..) and AccountBean.ejbPostCreate(..).

Figure 37. code snippet for AccountBean.ejbCreate

public void ejbCreate(String argAccountId, Customer argCustomer)
throws javax.ejb.CreateException, java.rmi.RemoteException {

_initLinks();
privateSetCustomerKey((CustomerKey)
argCustomer.getPrimaryKey());
// All CMP fields should be initialized here.
accountId = argAccountId;
balance = new java.math.BigDecimal(0);

}

Chapter 7. Associations 79



5754RelationShips.fm Draft Document for Review June 15, 2000 5:50 pm
Figure 38. code snippet for AccountBean.ejbPostCreate

Finally we have to add the customized create method to the AccountHome
interface.

Now we describe a concrete usage of the second ejbCreate / ejbPostCreate
pattern (non foreign key holder CMP) : An Employee object has a required
(mandatory) Workstation role, that is : each employee use a workstation. The
foreign key (EmployeeKey) is held by the other association end (Workstation)
(see Figure 39).

public void ejbPostCreate(String argAccountId, Customer argCustomer)
throws java.rmi.RemoteException {

privateSetCustomerKey(null);
setCustomer(argCustomer);

}

80 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754RelationShips.fm
Figure 39. Association Editor for Workstation - Employee relationship

Figure 40 and Figure 41 show the code snippet for
EmployeeBean.ejbCreate(..) and EmployeeBean.ejbPostCreate(..).

Figure 40. code snippet for EmployeeBean.ejbCreate

public void ejbCreate(String argEmployeeId, String argName,
Workstation argWorkstation) throws javax.ejb.CreateException,
java.rmi.RemoteException {

_initLinks();
// All CMP fields should be initialized here.
employeeId = argEmployeeId;
name = argName;

}

Chapter 7. Associations 81



5754RelationShips.fm Draft Document for Review June 15, 2000 5:50 pm
The ejbcreate method has the Workstation argument in its signature, but no
additional method invocation is required. The _initLinks() call has been
included from VAJ tooling support during CMP creation time.

Figure 41. code snippet for EmployeeBean.ejbPostCreate

Finally we have to add the customized create method to the EmployeeHome
interface.

7.3.2 Delete cascading
Composition is a form of aggregation, with strong ownership and coincident
lifetime as part of the whole. Parts may be created after the composite itself,
but once created they live and die with it. Such parts can also be explicitly
removed before the death of the composite.

Any deletion of the whole is considered to cascade to the parts. This
cascading delete if often considered to be a defining part of composition, but
it is implied by any role with a 1..1 multiplicity; if we want to delete a
Customer, for instance, you must cascade that delete to Accounts

The Association support of VisualAge for Java, 3.02 does neither actively
supports composition nor delete cascading.

We describe the current delete behavior based on a Customer - Account
sample (see Figure 42).

Figure 42. Class Diagram Customer - Account relationship

public void ejbPostCreate(String argEmployeeId, String argName,
Workstation argWorkstation) throws java.rmi.RemoteException {

setEquipment(argWorkstation);
}

82 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754RelationShips.fm
Figure 36 on page 79 shows the Association Editor for the one-to-many
association. The customer role in Account is required (mandatory): each
account has a customer. An Account holds the foreign key
(customer_customerId).

Figure 43 illustrates the current delete implementation of a Customer.

Figure 43. Interaction Diagram : Delete of a non composite (officially supported)

The Association framework tries to nullify the customer role reference and the
foreign key field (customer_customerId) in AccountBean. Delete of a
customer throws an exception ‘SQL0532N A parent row cannot be deleted
because the relationship restricts the deletion’.

We could enforce a cascade delete with a database constraint in table
Account, but this would prevent association maintenance: Account could
have other associations which have to be propagated to the other association
ends before an account dies.

We have to ensure that all customer’s accounts have been removed before
we remove the customer.
Chapter 7. Associations 83



5754RelationShips.fm Draft Document for Review June 15, 2000 5:50 pm
Official solution for deleted cascading
We have to explicitly remove all the customer’s accounts before we delete the
customer. Obviously we would delete the accounts of a customer in
Customer.ejbRemove(), before calling _removeLinks(). But the delete of an
account from within CustomerBean throws a BeanNotReentrantException
unless we would allow recursive method invocation by selecting the
Reentrant check box in the Customer Properties panel. We do not want to set
Customer as reentrant and will instead delete the customer’s accounts
outside CustomerBean in a Session Facade (BusinessProcessBean) (see
Figure 44 and Figure 45)

Figure 44. BusinessProcessBean.removeCustomer(String)

Figure 45. BusinessProcessBean.removeAllAccountsOfCustomer(Customer)

Unofficial solution for deleted cascading
VisualAge 3.02 does not allow to define an association of type Composition in
the Association Editor. However the abstract class Link which is the base
class of all generated concrete links enables delete cascading via
beComposite(). The behavior of a concrete Link class depends on the
composite flag setting of the base class. Figure 43 illustrates the delete

public void removeCustomer(String customerId) throws
java.rmi.RemoteException, javax.ejb.FinderException,
javax.ejb.RemoveException {

Customer customerToRemove = getCustomer(customerId);
removeAllAccountsOfCustomer(customerToRemove);
customerToRemove.remove();

}

private void removeAllAccountsOfCustomer(Customer customer) throws
RemoteException, javax.ejb.FinderException, javax.ejb.RemoveException {

java.util.Enumeration accountEnum = customer.getAccounts();
while(accountEnum.hasMoreElements()) {

java.rmi.Remote remoteObject = (java.rmi.Remote)
accountEnum.nextElement();

Account account = (Account)
javax.rmi.PortableRemoteObject.narrow(remoteObject,
Account.class);

account.remove();
}

}

84 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754RelationShips.fm
behavior of a non composite association. Figure 46 shows the message flow
when deleting a composite.

Figure 46. Interaction Diagram : Delete of a composite (not officially supported)

The delete of a composite (Customer) is cascaded to the parts (Account). To
enable delete cascade we set the composite flag for CustomerToAddressLink
in two CustomerBean methods: ejbCreate and ejbLoad (see Figure 47 and
Figure 48).

Figure 47. Composite setter for CustomerToAddressLink in CustomerBean.ejbcreate

public void ejbCreate(java.lang.String argCustomerId, String argName)
throws javax.ejb.CreateException, java.rmi.RemoteException {

_initLinks();
((CustomerToAddressLink) getAddressLink()).beComposite();
// All CMP fields should be initialized here.
customerId = argCustomerId;
name = argName;

}

Chapter 7. Associations 85



5754RelationShips.fm Draft Document for Review June 15, 2000 5:50 pm
Figure 48. Composite setter for CustomerToAddressLink in CustomerBean.ejbLoad

The current implementation of composite remove requires reentrancy of the
link owner’s bean because of recursive method invocations. In our sample
the Reentrant check box in the Customer’s Properties panel has to be
selected (see Figure 49).

Figure 49. Customer Properties Panel with checked Reentrant

public void ejbLoad() throws java.rmi.RemoteException {
_initLinks();
((CustomerToAddressLink) getAddressLink()).beComposite();

}

86 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754RelationShips.fm
7.3.3 Usage of associations with required roles
Some of the generated methods in an association with a required role occurs
unexpected behavior. They should never be invoked. This chapter addresses
the critical methods.

One-to-many with a required role
We are discussing the issues for a one-to-many association with a required
role based on the Customer - Account relation (see Figure 36 on page 79).
Customer role is required in Account. That means: an Account must have a
customer. The Account implementation (AccountBean) holds the foreign key
field (customer_customerId) which cannot be null.

Role is part of the primary key:

As long as the role is part of the primary key, it is illegal to call any operations
on the remote interface of the two associated beans that will try to update the
foreign key field(s). Updating of the foreign key field(s) would mean: changing
the OID of the bean because the foreign key is part of the primary key. In our
example the critical methods not to be invoked are:
Account.setCustomer(Account), Customer.addAccounts(Account) and
Customer.removeAccounts(Account). The only way to create an account of a
customer is via AccountHome.create(Customer, ...) and the only way to
remove one is via Account.remove() or AccountHome.remove(Account). An
account cannot be transferred to another customer. Remove of a customer
includes removing of the customer’s accounts (delete cascading). The tools
do not support delete cascading. For workarounds see Chapter 7.3.2, “Delete
cascading” on page 82.

In Table 1 we summarize the usage of one-to-many relationship (Customer -
Account) with a required role which is part of the primary key. We take into
account only the user specific association maintenance methods. The linkage
internal methods in the remote interfaces of the two associated beans are not
relevant in our discussion. For a detailed discussion see Chapter 7.2,
“Description of the association solution” on page 68.

Table 1. Customer - Account relation (customer role is part of the primary key of Account)

method invocations
[use cases]

create
accnt

delete
accnt

transf
accnt

anAccountHome.create(customerA, accountId)
[create accountA for customerA]

OK a

accountA.remove()
[delete accountA]

OK
Chapter 7. Associations 87



5754RelationShips.fm Draft Document for Review June 15, 2000 5:50 pm
A one-to-many relationship with a required role which is part of the primary
key is an aggregation / composition (whole/part). A part (Account) cannot
changed its whole (Customer) and ties with the whole.

Role is not part of the primary key:

When the role is not part of the primary key the association solution has less
method invocation restrictions: changing the foreign key does not changing
the OID of the bean. In our example the critical methods not to be invoked
are: Account.setCustomer(null) and Customer.removeAccounts(Account).

In contrast to the previous scenario (role is part of the primary key) an
account could be transferred to another customer from a primary / foreign key
point of view. However, if the Customer - Account relation is an aggregation /
composition Account.setCustomer(Customer) or Customer.addAccounts(Account)
should never be invoked.

In Table 2 we summarize the usage of one-to-many relationship (Customer -
Account) with a required role which is not part of the primary key. We take
into account only the user specific association maintenance methods. The

anAccountHome.remove(accountA)
[delete accountA via AccountHome]

OK

customerB.removeAccounts(accountA)
[remove accountA from member list of customerB]

NO b

customerB.addAccounts(accountA)
[transfer accountA to customerB from multi-valued
association end]

NO c

accountA.setCustomer(customerB)
[transfer accountA to customerB from single-valued
association end]

NO c

customerA.remove() d

a. user written code (see Chapter 7.3.1, “Implementation of ejbCreate / ejb-
PostCreate methods” on page 77)
b. tries to set primary key (or part of it) to null
c. it is illegal to call any operation on the remote interface of the two associated
beans that will try to update the foreign key fields (which are part of the pri-
mary key).
d. delete cascading (removing customerA’s accounts) is not supported from
the tools. For workarounds see Chapter 7.3.2, “Delete cascading” on page 82

method invocations
[use cases]

create
accnt

delete
accnt

transf
accnt
88 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754RelationShips.fm
linkage internal methods in the remote interfaces of the two associated beans
are not relevant in our discussion. For a detailed discussion see Chapter 7.2,
“Description of the association solution” on page 68.

Table 2. Customer - Account relation (customer role is not part of the primary key of Account)

One-to-one with a required role
We are discussing the issues for a one-to-one association with a required role
based on the Customer - Address relation (see Figure 50). Customer role is
required in Address. That means: an address must have a customer. The
Address implementation (AddressBean) holds the foreign key field
(customer_customerId) which cannot be null.

method invocations
[use cases]

create
accnt

delete
accnt

transf
accnt

anAccountHome.create(customerA, accountId)
[create accountA for customerA]

OK a

a. user written code (see Chapter 7.3.1, “Implementation of ejbCreate / ejb-
PostCreate methods” on page 77).

accountA.remove()
[delete accountA]

OK

anAccountHome.remove(accountA)
[delete accountA via AccountHome]

OK

customerB.removeAccounts(accountA)
[remove accountA from member list of customerB]

NO b

b. tries to set the foreign key field (customerId) to null. Because the customer
role in Account is mandatory (required) an SQL0407N exception is thrown
(“Assignment of a NULL value to a NOT NULL column is not allowed”).

customerB.addAccounts(accountA)
[transfer accountA to customerB from multi-valued
association end]

OK c

c. if the Customer - Acount relationship is a composition (whole/part) this
method should not to be invoked (a part cannot change its whole).

accountA.setCustomer(customerB)
[transfer accountA to customerB from single-valued
association end]

OK c d

d. if the customerB reference is null an SQL0407N exception is thrown (ratio-
nal see footnote b).

customerA.remove() e

e. delete cascading (removing customerA’s accounts) is not supported from
the tools. For workarounds see Chapter 7.3.2, “Delete cascading” on page 82
Chapter 7. Associations 89



5754RelationShips.fm Draft Document for Review June 15, 2000 5:50 pm
Figure 50. Association Editor for Customer - Address relation

Role is part of the primary key:

In our sample we decide to make the foreign key of Customer to the primary
key of Address. The means: the foreign key field customer_customerId in
AddressBean is the primary key of Address.

As long as the role is part of the primary key, it is illegal to call any operations
on the remote interface of the two associated beans that will try to update the
foreign key field(s). Updating of the foreign key field(s) would mean: changing
the OID of the bean because the foreign key is part of the primary key.

In our sample the critical methods not to be invoked are:
Customer.setAddress(Address) and Address.setCustomer(Customer). The only
way to create an address of a customer is via AddressHome.create(Customer,

...) and the only way to remove one is via Address.remove() or
AddressHome.remove(Address). An address cannot be transferred to another
customer. Remove of a customer includes removing his address (delete
cascading). The tools do not support delete cascading. For workarounds see
Chapter 7.3.2, “Delete cascading” on page 82.
90 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754RelationShips.fm
In Table 3 we summarize the usage of one-to-one relationship (Customer -
Address) with a required role which is (part of) the primary key. We take into
account only the user specific association maintenance methods. The linkage
internal methods in the remote interfaces of the two associated beans are not
relevant in our discussion. For a detailed discussion see Chapter 7.2,
“Description of the association solution” on page 68.

Table 3. Customer - Address relation (customer role is the primary key of Address)

Role is not part of the primary key:

When the role is not part of the primary key the association solution has less
method invocation restrictions: changing the foreign key does not changing
the OID of the bean. In our example the critical method not to invoke is:
Address.setCustomer(null).

In contrast to the previous scenario (role is part of the primary key) an
address could be transferred to another customer from a primary / foreign key

method invocations
[use cases]

create
addr

delete
addr

transf
addr

anAddressHome.create(customerA)
[create addressA for customerA]

OK a

a. user written code (see Chapter 7.3.1, “Implementation of ejbCreate / ejb-
PostCreate methods” on page 77)

addressA.remove()
[delete addressA]

OK b

b. from a primary / foreign key perspective this is not an issue. However we
have defined the address role in Customer as required. Deleting the address of
a customer would violate the multiplicity rule.

anAddressHome.remove(addressA)
[delete addressA via AddressHome]

OK b

customerB.setAddress(addressA)
[transfer addressA to customerB]

NO c

c. it is illegal to call any operation on the remote interface of the two associated
beans that will try to update the foreign key field which is (part of) the primary
key.

addressA.setCustomer(customerB)
[transfer addressA to customerB]

NO c

customerA.remove() d

d. delete cascading (removing customerA’s address) is not supported from the
tools. For workarounds see Chapter 7.3.2, “Delete cascading” on page 82.
Chapter 7. Associations 91



5754RelationShips.fm Draft Document for Review June 15, 2000 5:50 pm
point of view. However, if the Customer - Address relation is an aggregation /
composition Address.setCustomer(Customer) or Customer.setAddress(Address)
should never be invoked.

In Table 4 we summarize the usage of one-to-one relationship (Customer -
Address) with a required role which is not part of the primary key. We take
into account only the user specific association maintenance methods. The
linkage internal methods in the remote interfaces of the two associated beans
are not relevant in our discussion. For a detailed discussion see Chapter 7.2,
“Description of the association solution” on page 68.

Table 4. Customer - Address relation (customer role is not in the primary key of Address)

method invocations
[use cases]

create
addr

delete
addr

transf
addr

anAddressHome.create(customerA, ...)
[create addressA for customerA]

OK a

a. user written code (see Chapter 7.3.1, “Implementation of ejbCreate / ejb-
PostCreate methods” on page 77)

addressA.remove()
[delete addressA]

OK b

b. from a technical primary / foreign key perspective this is not an issue. How-
ever we have defined the address role in Customer as required. Deleting the
address of a customer would violate the multiplicity rule.

anAddressHome.remove(addressA)
[delete addressA via AddressHome]

OK b

customerB.setAddress(addressA)
[transfer addressA to customerB]

OK c

c. if the Customer - Address relationship is a composition (whole/part) this
method should not to be invoked (a part cannot change its whole).

addressA.setCustomer(customerB)
[transfer addressA to customerB]

OK c d

d. if the customerB reference is null an SQL0407N exception is thrown (“As-
signment of a NULL value to a NOT NULL column is not allow”). Customer
role in Address is required.

customerA.remove() e

e. delete cascading (removing customerA’s address) is not supported from the
tools. For workarounds see Chapter 7.3.2, “Delete cascading” on page 82.
92 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754RelationShips.fm
7.3.4 Many-to-many relationships
Many-to-many relationships are not fully supported. Many-to-many
associations have to be handled as two 1:M associations to an intermediary
object. This intermediate object must then be mapped to an intermediary
table.

In this chapter we describe the development of a Many-to-many relationship
Employee - Skill (see Figure 51)

Figure 51. Employee - Skill association with an iterrnediary (Competency)

The intermediary EJB is Competency. The primary key for Competency is
composed of the primary keys of Employee and Skill.

We explore the development of the Competency EJB and the two
relationships step by step:

• we create the Competency as a CMP with the SmartGuide. We don’t
define the primary key at this time. A warning panel appears (Enterprise
bean has no key fields). We ignore the warning.

• we define the first one-to-many relationship between Employee and
Competency (see Figure 52).
Chapter 7. Associations 93



5754RelationShips.fm Draft Document for Review June 15, 2000 5:50 pm
The characteristics of the employee role (not many-valued, both required
and navigable, holds the foreign key) are a prerequisite for adding the
employee role to the Competency key in a later development step.

Figure 52. Association Editor for EmployeeToCompetency

• we define the second one-to-many relationship between Skill and
Competency (see Figure 53).

The characteristics of the skill role (not many-valued, both required and
navigable, holds the foreign key) are a prerequisite for adding the skill role
to the Competency key in a later development step.
94 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754RelationShips.fm
Figure 53. Association Editor for EmployeeToCompetency

• In the next step we define the primary key for Competency : in the
Properties panel of Competency :

- select (<right click>) the employee role icon, choose Add Role To Key
in the pop-up. This adds the key field of Employee (employeeId) to both
the CompetencyKey and CompetencyBean (employee_employeeId)

- select (<right click>) the skill role icon, choose Add Role To Key in the
pop-up. This adds the key field of Skill (skillId) to both the
CompetencyKey and CompetencyBean (skill_skillId)

The primary key of Competency is now composed of the two foreign keys
(Employee, Skill). Figure 54 illustrates the Properties panel after adding
the role keys.
Chapter 7. Associations 95



5754RelationShips.fm Draft Document for Review June 15, 2000 5:50 pm
Figure 54. Properties Panel of Competency after adding the role keys

• To create an Employee - Skill relationship (that means: to create a new
Competency object) we have to change the ejbCreate and ejbPostCreate
methods of the Competency class. The ejbCreate and ejbPostCreate
methods that VisualAge generated when we created the Competency
have no arguments. We delete both methods and create another method
pair (see Figure 55 and Figure 56). The new ejbCreate and ejbPostCreate
methods both have the Employee and Skill remote interface as
parameters.

Figure 55. Method implementation for CompetencyBean.ejbCreate

Figure 56. Method implementation for CompetencyBean.ejbPostCreate

public void ejbCreate(Employee argEmployee, Skill argSkill) throws
javax.ejb.CreateException, java.rmi.RemoteException {

_initLinks();
privateSetEmployeeKey((EmployeeKey) argEmployee.getPrimaryKey());
privateSetSkillKey((SkillKey) argSkill.getPrimaryKey());
// All CMP fields should be initialized here.

}

public void ejbPostCreate(Employee argEmployee, Skill argSkill, int
argLevel) throws java.rmi.RemoteException {

privateSetEmployeeKey(null);
privateSetSkillKey(null);
setEmployee(argEmployee);
setSkill(argSkill);

}

96 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754RelationShips.fm
A detailed description of the association-specific code statements in
ejbCreate and ejbPost can be found in chapter 7.3.1, “Implementation of
ejbCreate / ejbPostCreate methods” on page 77.

We add the ejbCreate method to the EJB Home interface
(CompetencyHome).

• When deleting an Employee or Skill object we have to ensure that all
intermediary members (objects of type Competency in our example) are
deleted as well.

The two created one-to-many associations to the intermediary
Competency (EmployeeToCompetency, SkillToCompetency) are special
association types: aggregation / composition. With composition, the part
object (for example: Competency) may belong to only one whole (for
example: Employee); further, the parts are usually expected to live and die
with the whole. Any deletion of the whole is considered to cascade to the
parts. VisualAge for Java 3.02 does not support aggregation /
composition.

There are two solutions how we can enforce delete cascading (see
chapter 7.3.2, “Delete cascading” on page 82).

• We have already mentioned that the Competency class has a compound
primary key based on the Employee and Skill key (employee and skill
roles both are required in Competency). Some of the generated
association setters in the CMPs tries to change the identity of the
Competency object which would lead to an unexpected behavior. The
critical methods not to be invoked are:

- Employee.addCompetencies(Competency)

- Employee.removeCompetencies(Competency)

- Skill.addCompetencies(Competency)

- Skill.removeCompetencies(Competency)

- Competency.setEmployee(Employee)

- Competency.setSkill(Skill)

For a detailed description see Chapter 7.3.3, “Usage of associations with
required roles” on page 87 and Table 1 on page 87.

Next we are implementing some use cases for the Employee - Skill
association with a Session EJB. To ensure that each use case is run within a
unit-of-work we set the transaction attribute of the session bean to
TX_REQUIRED.

In Figure 57 we demonstrate the session source for creating a competency.
Chapter 7. Associations 97



5754RelationShips.fm Draft Document for Review June 15, 2000 5:50 pm
Figure 57. Create a competency

In Figure 58 we show how to get the skill descriptions of an employee.

Figure 58. Get skill descriptions of an employee

In Figure 59 we illustrate the delete of an employee and his competencies.
We have to explicitly remove the employee’s competencies before delete of
the employee because we have not set the composite flag in the
EmployeeToCompetenciesLink object (see Chapter 7.3.2, “Delete cascading”
on page 82, “Official solution for deleted cascading” on page 84).

public void createCompeteny(String employeeId, String skillId) throws
java.rmi.RemoteException, javax.ejb.CreateException,
javax.ejb.FinderException {

Employee employee = getEmployee(employeeId);
Skill skill = getSkill(skillId);
getCompetencyHome().create(employee, skill);

}

public java.util.Vector getSkillDescriptionsOfEmployee(String
employeeId) throws RemoteException, javax.ejb.FinderException {

Employee employee = getEmployee(employeeId);
java.util.Enumeration competencyEnum = employee.getCompetencies();
java.util.Vector skillDescriptions = new java.util.Vector();
while(competencyEnum.hasMoreElements()) {

java.rmi.Remote remoteObject =
(java.rmi.Remote) competencyEnum.nextElement());

Competency competency = (Competency)
javax.rmi.PortableRemoteObject.narrow(remoteObject,
Competency.class);

skillDescriptions.addElement(competency.getSkill().
getDescription());

}
return skillDescriptions;

}

98 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754RelationShips.fm
Figure 59. Delete an employee

In Figure 60 we show the code to delete the skill and its associated
competencies. We have not to explicitly remove the competencies because
we have set the composite flag in the SkillToCompetenciesLink object (see
Chapter 7.3.2, “Delete cascading” on page 82, “Unofficial solution for deleted
cascading” on page 84).

Figure 60. Delete a skill

7.4 Hints and tips

7.4.1 Usage of the multi-valued getters
The system workload caused by the invocation of a multi-valued getter
depends on the transaction context.

If the getter is called within a transaction context the first five members are
activated and initialized from the database. Other members are activated and
hydrated from the persistent store (in chunks of five elements) by iterating the
enumerator within the same transaction.

If the getter is called outside of a transaction context the returned enumerator
includes all member elements, but the members are not activated yet. A
member will be activated by a method call.

public void removeEmployee(String employeeId) throws
java.rmi.RemoteException, javax.ejb.FinderException,
javax.ejb.RemoveException {

Employee employee = getEmployee(employeeId);
removeEmployeeCompetencies(employeeId);
employee.remove();

}

public void removeSkill(String skillId) throws
java.rmi.RemoteException, javax.ejb.FinderException,
javax.ejb.RemoveException {

Skill skill = getSkill(skillId);
skill.remove();

}

Chapter 7. Associations 99



5754RelationShips.fm Draft Document for Review June 15, 2000 5:50 pm
When we are developing an application we have to be aware of the
implication of the multi-valued getters, especially if we have a high number of
elements. For a detailed discussion and alternatives see Chapter 8,
“Collections” on page 107.

7.4.2 Associations with subtypes
In this chapter we describe the one-to-many sample Customer - Account.
Account is an ‘abstract’ CMP and has concrete subtypes (SavingsAccount,
CheckingAccount). The EJB inheritance support of VisualAge for Java
supports polymorphic homes, that means : AccountHome can identify and
instantiate account subtypes. The aim of this chapter is to describe how the
caller of Customer.getAccounts(), which returns an enumeration of account
subtypes, can evaluate the concrete account types (see Figure 61).

Figure 61. Customer - Account relation with account subtypes

In general it is not possible in CORBA to ask a remote object for its most
derived type. We can ask if it supports a specific type by calling
PortableRemoteObject.narrow().

In Figure 62 we show the source of a narrow helper method.
100 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754RelationShips.fm
Figure 62. Narrow helper method

In Figure 63 we illustrate the use of the narrow helper method.

Figure 63. Source using the narrow helper method

7.5 Association deployment

7.5.1 Deployment descriptor
VisualAge adds the foreign key fields as container-managed fields to the
deployment descriptor (see Chapter 7.2, “Description of the association
solution” on page 68).

private Object tryNarrow(java.rmi.Remote remoteObject, Class cls) {
try {

return javax.rmi.PortableRemoteObject.narrow(remoteObject, cls);
}
catch(ClassCastException castExcept) {

return remoteObject;
}

}

public String[] getAccountIdsOfCustomer(String customerId) throws
RemoteException {

accountEnum = getCustomer(customerId).getAccounts();
while( accountEnum.hasMoreElements()) {

Remote remoteObject = accountEnum.nextElement();
if ((remoteObject = tryNarrow(remoteObject,

SavingsAccount.class)) instanceof SavingsAccount {
//type is a savings account

}
else if ((remoteObject = tryNarrow(remoteObject,

CheckingAccount.class)) instanceof CheckingAccount {
//type is a checking account

}
...

}
}

Chapter 7. Associations 101



5754RelationShips.fm Draft Document for Review June 15, 2000 5:50 pm
The deployment descriptor contains the generated association specific
remote interface methods (beans and homes).

A description of the association mapping (mapping the foreign keys to
database fields) can be found in the official documentation and is not
addressed in the redbook.

7.5.2 Deployment on WebSphere Advanced Edition
Typically, an EJB developer has to provide finder logic for each finder method
(other than the findByPrimaryKey method) contained in the home interface of an
entity bean with CMP. When deploying on WebSphere Advanced the EJB
developer does not have to provide the finder logic for the association specific
methods. The tools support delivers the appropriate SQL statement.

We have tested the association solution deployment on IBM WebSphere
Advanced Edtion 3.02.

7.5.3 Deployment on WebSphere Enterprise Edition (CB)
Associations are deployable on IBM WebSphere Application Server
Enterprise Edition Component Broker 3.0.2.1 (Service Pack 3).

As mentioned above when developing associations, VisualAge for Java
automatically creates additional CMP fields that correspond to foreign keys.
CB does not currently support NULL values for primitive types, for example
java.lang.Integer and java.lang.Long. Because the foreign key of an optional
(non required) role can be NULL, we have to ensure that the primary key
field(s) of the inverse bean is (are) of type String. A String can be null in CB.

In our one-to-many sample Personalbanker - Customer where the
personalbanker role in Customer is optional (see Figure 30 on page 70) the
primary key field of Personalbanker (bankerId) has to be a String.

7.5.4 Deployment on non WebSphere application servers
The association solution is built on top of the EJB specs. Associations built
with VisualAge for Java should be portable to any EJB 1.0 compliant
application server. We have not tested the association deployment on non
WebSphere application servers.

7.5.5 Runtime requirements
To deploy Jar files containing associations, we copy ivjejb302.jar from
VisualAge for Java’s eab\runtime30 directory to the application server and
102 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754RelationShips.fm
client machines. We set our server and client CLASSPATH to point to this jar
file.

7.6 Performance

7.6.1 Inverse association maintenance
A major enhancement of the Association solution of VisualAge for Java 3.02
is association integrity within a transactions (inverse association
maintenance).

But this association integrity has its price. For the inverse association
maintenance additional remote methods are invoked (for a detailed
description see Chapter , “Inverse association maintenance implementation”
on page 73).

As we illustrated in the referenced chapter updating a one-to-many
association from the single-valued end causes less additional remote method
invocations (2) for the inverse association maintenance as updating the
relationship from the multi-valued end (4).

If both CMPs involved in an association are deployed on the same application
server process, the in-process optimization of WebSphere can decrease the
method invocation overhead.

7.6.2 Maintaining association members
The association solution supports lazy member initialization. That means for
example: the accounts of a customer are activated and loaded from the
database when Customer.getAccounts() is called. The members (accounts of
a customer) are not cached in the link objects.

Inverse association maintenance does not instantiate the inverse members.
The EjbMemberEnumeration class which is part of the association runtime
support ensures association integrity within a transaction without the need of
instantiating all members before explicitly requested.

For one-to-many associations with high number of members the invocation of
multi-valued getters can have a performance implication . See 7.4.1, “Usage
of the multi-valued getters” on page 99.

7.6.3 Association method types (read-only /update)
In order to prevent unnecessary SQL UPDATE at commitment and to get
better overall performance, it is safe to mark some methods of the remote
Chapter 7. Associations 103



5754RelationShips.fm Draft Document for Review June 15, 2000 5:50 pm
interface as const (that means: read-only). We are using the enterprise
bean’s Properties Editor in VisualAge for Java (Method panel) and select the
flag in the Control Descriptor window of the appropriate methods (see Figure
64). The current version of the Jetace deployment tools does not allow to set
the const flag.

Figure 64. Const mark in the Control Descriptor

For generated association methods, the following example illustrates which
methods can be marked const.

• Single-valued association end:

-get<role>()

-get<role>Key()

-secondarySet<role>(<inverse remote interface>)

•Multi-valued association end:

-get<role>()

-add<role>(<inverse remote interface>)

-secondaryAdd<role>(<inverse remote interface>)

-remove<role>(<inverse remote interface>)

-secondaryRemove<role>(<inverse remote interface>)

The only method that must be left non-const (Const Method check box not
selected) is set<Role>(<inverse remote interface>) and
privateSet<Role>Key(<Role>Key) on the single-valued association end. This
method updates the foreign key field(s).
104 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754RelationShips.fm
Accessing the naming service
The Association solution intensively invokes the CMP’s home finders. The
current implementation does neither cache the initial context reference of the
naming service nor the home references. This can lead to a performance
overhead.

In this chapter we illustrate an enhancement in the
com.ibm.ivj.ejb.associations.links.Link class which improves the naming
service performance.

The original source code for the Association Runtime support is available in
VisualAge for Java.

In Figure 65 we show the customized lookupTargetHome method of the Link
class. The naming service is delegated to an EJB home factory singleton. For
a detailed description of this pattern see 10.1, “Factory for EJB Homes” on
page 159.

Figure 65. Customized lookupTargetHome method of the LInk class

protected EJBHome lookupTargetHome(String className, Class homeClass)
throws NamingException {

/* Delegate naming service to an EJB home factory singleton */
try {

return HomeFactory.getSingleton().lookupHome(className);
}
catch(Exception except) {

throw new NamingException();
}
/*
EJBHome home = null;
javax.naming.InitialContext initialContext;
java.util.Properties properties = new java.util.Properties();
properties.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,
contextFactoryName());
initialContext = new javax.naming.InitialContext(properties);
java.lang.Object obj = initialContext.lookup(className);
home = (EJBHome) javax.rmi.PortableRemoteObject.narrow(obj,
homeClass);
return home;
*/

}

Chapter 7. Associations 105



5754RelationShips.fm Draft Document for Review June 15, 2000 5:50 pm
To enable the performance improvement in the application server runtime we
package the customized Link class in a .jar file and set this jar in the
CLASSPATH in front of the original ivjejb302.jar (see Chapter 7.5,
“Association deployment” on page 101).
106 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754Collections.fm
Chapter 8. Collections

Most applications found on the Web, at some point, have to display
information corresponding to a collection of elements. These elements can
be, for example, products or bank accounts.

When they represent business objects implemented as enterprise beans,
building the list of attributes by instanciating all the beans in order to get the
necessary properties may not be the best solution. Another approach based
on the use of the JDBC API to create this list of attributes is probably more
efficient.

Making a choice is a matter of trade-offs between flexibility and
maintainability versus performances.

This is the subject addressed in this chapter.

8.1 What we mean by collections

By collection we mean a set of objects that satisfy given conditions. In order
to retrieve these objects, a business developer working in an object oriented
environment ideally would like to execute some kind of finder conceptually
very similar to performing query on a relational database. It differs in that the
finder results on a collection of objects rather than a collection of records, and
the predicate is formed on the set of attributes rather than on columns in the
tables.

Such capabilities are described in the CORBA’s Query Service. It defines
interfaces to create collections, add, remove and replace elements in the
object space. A product such as Component Broker implements these
advanced services.

Since our business logic is implemented as enterprise beans, let us have a
look to what the Enterprise JavaBeans specification provides to the business
logic developer.

8.2 Enumerations with Finders

In the Enterprise JavaBeans specification, collection of enterprise beans are
retrieved by using finder methods declared in the bean home interface.
© Copyright IBM Corp. 2000 107



5754Collections.fm Draft Document for Review June 15, 2000 5:50 pm
Currently the specification does not provide a formal mechanism for the Bean
Provider to specify the criteria for the finder methods, nor syntax for
describing the finders.

It is up to the container provider to specify the format of the finder method
description.

So we picked up in the enterprise bean specification what is relevant to this
topics to be sure that the reader is aware of the absence/presence of
constraints imposed on container providers.

8.2.1 Finders
Finders, as described in the Enterprise JavaBeans specification, are methods
defined on the bean home. They are executed with the transaction context of
the caller.

8.2.1.1 Enterprise JavaBeans specification 1.0
The first version of the specification the Enterprise Bean’s states that

“The return type for a finder method must be the enterprise Bean’s remote
interface type, or a collection of thereof.”

And also:

“The return type of an entity finder method can be either a single
enterprise bean object reference or a collection of enterprise bean object
references. If there is the possibility that the finder method may find more
than one enterprise bean object, the Bean developer should define the
return type of the ejbFind<METHOD>(...) and find<METHOD>(...) method
to be a collection.

The JDK 1.1.x type for a collection is the java.util.Enumeration interface,
and therefore a finder method that returns a collection of enterprise bean
objects must define the return type to be java.util.Enumeration.”

8.2.1.2 Enterprise JavaBeans specification 1.1
The new version adds the possibility to return a java.util.Collection instead of
a java.util.Enumeration when targeting only containers and clients based on
Java 2 platform.

Consequences
IBM WebSphere Advanced Edition being based on the JDK 1.1 only
java.util.Enumeration of enterprise bean remote interfaces are supported.
108 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754Collections.fm
This implies that a client application will get access to any single attribute
through remote methods calls over RMI-IIOP.

Keep in mind the performance implications during design considerations

8.2.1.3 Using finders in IBM WebSphere Advanced Edition
IBM WebSphere Advanced Edition in combination with VisualAge for Java
offer different ways to specify finder methods.

The two old styles known as SELECT and WHERE custom finders are quite
limited in their usage. They are based on a partial or complete static
description of a SQL string. These solutions could not survive the introduction
of enterprise bean inheritance.

In order to support new features like inheritance, they were replaced by the
METHOD custom finder. A method custom finder uses a method signature in
the finder helper interface instead of a static string. The developer needs to
implement a new class that extends VapEJSJDBCFinderObject which
provides several important helper mehods to insert in WHERE clauses in
multiple points in a base query string.

This new way of implementing a finder provides all the flexibility you need to
create complexe queries.

The use of finder is the unique solution described in the Enterprise
JavaBeans specification for clients that need to process a collection of
enterprise beans.

In IBM WebSphere Advanced Edition, the execution of a finder method
returns an enumeration. It can be a greedy or lazy enumeration.

8.2.2 Greedy and Lazy enumerations
Depending on the caller’s transaction context the enumeration is greedy or
lazy.

8.2.2.1 Greedy mode
A finder will operate in greedy mode when called with no active transaction.

When in greedy mode, the resulting enumeration will be fully formed at the
time the finder method returns. However the elements are not yet activated.
This enumeration may be passed around at will and enumerated at any point
in time. There's no guarantee, however, that all members of the enumeration
will still exist.
Chapter 8. Collections 109



5754Collections.fm Draft Document for Review June 15, 2000 5:50 pm
8.2.2.2 Lazy mode
In contrast, a finder will operate in lazy mode when there is an active
transaction at the time the finder method is invoked. This will typically be the
case, for example, if you have a session bean with, its transaction attribute
set to TX_REQUIRED, invoking a finder.

When in lazy mode, the resulting enumeration is not fully formed when the
finder method returns. The JDBC result set remains open on the server; the
enumeration received by the caller will fetch members of the result set in
batches from the server as you step through the enumeration.

A lazy enumeration is valid only until the transaction in which the finder was
invoked commits. Attempts to use the enumeration after the transaction has
committed will result in an IllegalStateException.

8.2.2.3 Coding Rules
The following examples show how to program correct enterprise bean clients
using entity enterprise bean finders or association getters.

The session and entity beans in these examples have their transaction
attribute set to TX_REQUIRED unless otherwise specified.

Pure Java enterprise bean client:
In the following example, the finder will execute in greedy mode, since there
is no transaction active at the time the finder was invoked.

Figure 66. Enterprise Bean Client Using Greedy Enumeration

Session bean client:
Another example of a finder executed in greedy mode is when a session bean
with its transaction attribute set to TX_NOT_SUPPORTED calls findAll() as
shown in Figure 67.

...
// finder in greedy mode
Enumeration result = entityHome.findAll();
while (result.hasMoreElements()) {

Object o = result.nextElement();
...

}

110 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754Collections.fm
Figure 67. Session Bean Using Greedy Enumeration

In the next example, the finder will execute in lazy mode, since there is a
transaction active at the time the finder was invoked. The enumeration will
work as expected, since it is being walked within the same transaction used
to invoke the finder.

Figure 68. Client using lazy enumeration from within its originating transaction

Pure Java enterprise bean client programming errors:
In the following example, the finder executes in lazy mode since there is a
transaction active at the time it is invoked. The call to result.nextElement()

will fail with an IllegalStateException, because the transaction used to invoke
the finder has committed.

// Client code
...
MySessionBean s = ...
s.m1();

// Session EJB code
void m1() {

...
Enumeration result = entityHome.findAll();
// lazy finder being enumerated within the same transaction
while (result.hasMoreElements()) {

Object o = result.nextElement();
...

}
...

}

...
UserTransaction utx = ...
utx.begin();
Enumeration result = entityHome.findAll();
// enumerating result in same transaction as used to invoke the finder
while (result.hasMoreElements()) {

Object o = result.nextElement();
...

}
utx.commit();
...
Chapter 8. Collections 111



5754Collections.fm Draft Document for Review June 15, 2000 5:50 pm
Figure 69. Client using lazy enumeration outside its originating transaction

Session enterprise bean :
In the following example, a session bean (TX_REQUIRED) invokes an entity
bean finder. The finder will execute in lazy mode since there is a transaction
active at the time the finder is invoked. So we enumerate the result within the
same transaction.

Figure 70. SB returning a Lazy Enumeration after Enumerating it

Session enterprise bean programming errors:
In the following example, a session bean (TX_REQUIRED) invokes an entity
bean finder. The finder executes in lazy mode since there is a transaction
active at the time the finder is invoked. The session bean attempts to return
the Enumeration to the client. The Enumeration will fail with an
IllegalStateException on the client because the transaction in which the
finder was invoked has committed. (The transaction in this case was the
transaction started by the container when m1() was invoked.)

...
UserTransaction utx = ...
utx.begin();
Enumeration result = entityHome.findAll();
utx.commit();
// can’t enumerate result after committing the transaction
while (result.hasMoreElements()) {

Object o = result.nextElement();
...

}
...

// Client code
...
MySessionBean s = ...
s.m1();

// Session EJB code
void m1() {

...
Enumeration result = entityHome.findAll();
// lazy finder being enumerated within the same transaction
while (result.hasMoreElements()) {

Object o = result.nextElement();
...

}
...

}

112 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754Collections.fm
Figure 71. SB Returning a lazy Enumeration; Client Tries to Enumerate it

Back to Session enterprise bean correctly programmed:
The following example shows how you can use a session bean to invoke an
entity bean finder and return results to the client successfully. The
Enumeration is walked within the transaction and the results are stored in a
non-volatile Vector.

Figure 72. SB Returning a Copy of an Enumerated Lazy Enumeration

In the following example, a session bean (TX_REQUIRED) invokes an entity
bean finder. The finder executes in lazy mode since there is a transaction
active at the time the finder is invoked. This shows that the session bean can
return the enumeration to the client if the client started the transaction.

// Client code
...
MySessionBean s = ...
Enumeration result = s.m1();
while (result.hasMoreElements()) {

Object o = result.nextElement();
...

}

// Session bean code
Enumeration m1() {

...
Enumeration result = entityHome.findAll();
// Enumeration will become invalid once m1 returns
return result;

}

// Client code
...
MySessionBean s = ...
Vector result = s.m1();

// Session bean code
Vector m1() {

...
Vector result = new Vector();
Enumeration e = entityHome.findAll();
// lazy finder being enumerated within same transaction
while (result.hasMoreElements()) {

result.addElement(result.nextElement());
}
return result;

}

Chapter 8. Collections 113



5754Collections.fm Draft Document for Review June 15, 2000 5:50 pm
Figure 73. SB returning a lazy enumeration; client controls the transaction

8.2.3 Enumerations Test scenarios
For the sake of this book we developed a simple example that features the
elements described above. We added some tracing mechanism to be able to
capture the exact behavior of the IBM WebSphere Advanced Edition run-time
when dealing with enumerations.

This simple application has one container managed persistent bean:
Customer. On the CustomerHome we have defined a findAll() method that
retrieves all the customer instances.

The client application invokes findAll() in both greedy and lazy mode.The
database table for customer is initialized with 100 records.

Given this configuration, we could observe the behavior described hereafter.

8.2.3.1 Finder executed in greedy mode
In this scenario, the client does not starts a transaction (see Figure 74) before
calling findAll() method.

// Client code
...
MySessionBean s = ...
UserTransaction utx = ...
utx.begin();
Enumeration result = s.m1();
// result enumerated in same transaction as finder executed
while (result.hasMoreElements()) {

Object o = result.nextElement();
...

}
utx.commit();

// Session bean code
Enumeration m1() {
...
Enumeration result = entityHome.findAll();
return result;
}

114 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754Collections.fm
Figure 74. Client Code for Greedy Mode

As the client iterates through the enumeration, we can see the server
behavior as show in the following trace (see Figure 75).

public void findAllGreedy() {
Enumeration listOfCustomers=null;
Customer customer=null;
try {

listOfCustomers = CustomerHome.findAll();
System.out.println("findAll executed successfully ");
while(listOfCustomers.hasMoreElements()) {

customer = (Customer)
PortableRemoteObject.narrow(listOfCustomers.nextElement(),
Customer.class);
System.out.println("Greedy: from Java client without transaction
demarcation, customer name is : " + customer.getName());

}
}catch (FinderException e) {System.out.println("findAll failure " + e);}
catch (RemoteException e) {System.out.println("findAll failure " + e);}
catch (Exception e) {System.out.println("Exception on findAll " + e);}
Chapter 8. Collections 115



5754Collections.fm Draft Document for Review June 15, 2000 5:50 pm
Figure 75. Server Side While the Client Iterates Through the Enumeration

For each call to getName, the server instanciates the corresponding bean
which goes through a complete life cycle:

• ejbActivate
• ejbLoad
• getName
• ejbStore
• ejbPassivate

This is repeated on the server side for each element until the last one.

8.2.3.2 Pool size impact on greedy enumeration
In IBM WebSphere Advanced Edition, the container has a parameter (Cache
Size) that can be set to a given value. This value specifies how many
instances the container maintains in its pool.

Given this information, we may wonder what happens when the number of
elements goes beyond the cache size? In that case, we may expect an
exception to be thrown to the client.

When the client invokes findAll(), it receives the exception :

instance id= 0 -----> ejbActivate
instance id= 0 ----------> ejbLoad
instance id= 0 ------------- getName: Joaquin 0
instance id= 0 <---------- ejbStore
instance id= 0 <----- ejbPassivate
instance id= 1 -----> ejbActivate
instance id= 1 ----------> ejbLoad
instance id= 1 ------------- getName: Joaquin 1
instance id= 1 <---------- ejbStore
instance id= 1 <----- ejbPassivate
...
instance id= 98 -----> ejbActivate
instance id= 98 ----------> ejbLoad
instance id= 98 ------------- getName: Joaquin 98
instance id= 98 <---------- ejbStore
instance id= 98 <----- ejbPassivate
instance id= 99 -----> ejbActivate
instance id= 99 ----------> ejbLoad
instance id= 99 ------------- getName: Joaquin 99
instance id= 99 <---------- ejbStore
instance id= 99 <----- ejbPassivate
116 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754Collections.fm
java.rmi.NoSuchObjectException: CORBA INV_OBJREF 0 No; nested exception is:
org.omg.CORBA.INV_OBJREF: minor code: 0 completed: No

8.2.3.3 Finder executed in lazy mode
In this scenario, the client starts a transaction, calls findAll() and iterates
through the enumeration as shown in Figure 76.

Figure 76. Client Code for Lazy Mode

On the server side we can observe that the server picks a chunk of five
instances from the pool and calls ejbLoad (see Figure 77) before invoking the
business method (getName() in our example).

public void findAllLazy() {
Enumeration listOfCustomers=null;
Customer customer=null;
try {

javax.transaction.UserTransaction utx = (javax.transaction.UserTransaction)
ic.lookup("jta/usertransaction");
utx.begin();
listOfCustomers = customerHome.findAll();
System.out.println("findAll executed successfully ");
while(listOfCustomers.hasMoreElements()) {

customer = (Customer)
PortableRemoteObject.narrow(listOfCustomers.nextElement(),
Customer.class);
System.out.println("Lazy: from Java client WITH transaction
demarcation,customer name is : " + customer.getName());

}
utx.commit();

}catch (FinderException e) {System.out.println("findAll failure " + e);}
catch (RemoteException e) {System.out.println("findAll failure " + e);}
catch (NamingException e) {System.out.println("utx failed " + e);}
catch (Exception e) {
System.out.println("utx failed " + e);
System.out.println("printStack ");
e.printStackTrace();
}
}//end method
Chapter 8. Collections 117



5754Collections.fm Draft Document for Review June 15, 2000 5:50 pm
Figure 77. Server Loads 5 Elements at a Time

As the client iterates through the collection, the server keeps loading
instances until the last element of the enumeration is requested. They remain
loaded until the transaction is committed.

instance id= 0 ----------> ejbLoad
instance id= 1 ----------> ejbLoad
instance id= 2 ----------> ejbLoad
instance id= 3 ----------> ejbLoad
instance id= 4 ----------> ejbLoad
instance id= 0 ------------- getName: Joaquin 0
instance id= 1 ------------- getName: Joaquin 1
instance id= 2 ------------- getName: Joaquin 2
instance id= 3 ------------- getName: Joaquin 3
instance id= 4 ------------- getName: Joaquin 4
...
instance id= 95 ----------> ejbLoad
instance id= 96 ----------> ejbLoad
instance id= 97 ----------> ejbLoad
instance id= 98 ----------> ejbLoad
instance id= 99 ----------> ejbLoad
instance id= 95 ------------- getName: Joaquin 95
instance id= 96 ------------- getName: Joaquin 96
instance id= 97 ------------- getName: Joaquin 97
instance id= 98 ------------- getName: Joaquin 98
instance id= 99 ------------- getName: Joaquin 99
118 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754Collections.fm
Figure 78. All Elements of the Enumeration are Loaded

When the client commits the transaction, the server start a cycle of calls to
ejbStore on all instances still active, and then ejbPassivate (see Figure 78).
The call to ejbStore may appear a little bit weird since the server does not
need to store anything. This can be avoided by declaring in VisualAge for
Java the getName method as Const Method. In that case, ejbStore is not
called.

8.2.3.4 Pool size impact on lazy enumeration
We have already talked about the container cache size parameter in 8.2.3.2,
“Pool size impact on greedy enumeration” on page 116 for greedy
enumeration. Now let us see its influence on lazy enumerations.

Unlike for greedy enumeration, the client calls findAll which is successfully
executed. Then it starts iterating through the enumeration. The server loads
chunks of five elements until it reaches the maximum available in the pool. In
this situation, a timeout is started and if no instance has been freed before
the timer expires then the transaction is rolled back and the exception:

instance id= 77 <---------- ejbStore
instance id= 76 <---------- ejbStore
instance id= 75 <---------- ejbStore
...
instance id= 1 <---------- ejbStore
instance id= 0 <---------- ejbStore
instance id= 99 <---------- ejbStore
instance id= 98 <---------- ejbStore
...
instance id= 79 <---------- ejbStore
instance id= 78 <---------- ejbStore
instance id= 77 <----- ejbPassivate
instance id= 76 <----- ejbPassivate
...
instance id= 1 <----- ejbPassivate
instance id= 0 <----- ejbPassivate
instance id= 99 <----- ejbPassivate
instance id= 98 <----- ejbPassivate

...
instance id= 79 <----- ejbPassivate
instance id= 78 <----- ejbPassivate
Chapter 8. Collections 119



5754Collections.fm Draft Document for Review June 15, 2000 5:50 pm
com.ibm.ejs.persitence.EnumeratorException original exception:
javax.transaction.TransactionRolledbackException

is thrown to the client.

Which strategy to adopt in that case? You may increase the cache size but it
will not guarantee that the problem will not occur again with a larger
enumeration.

8.2.4 Summary

8.2.4.1 Lazy behavior
A home finder method invoked in an existing transaction, results in the
activation of the first five elements. As the client walks through the returned
enumeration, the server activates the next five elements until the last element
of the enumeration is reached.

Activated beans can be used as long as the transaction in which the finder
was invoked has not yet committed.

8.2.4.2 Greedy behavior
In contrast, a home finder method invoked without an existing transaction
returns a greedy enumeration. A client can iterate through the entire
enumeration and if no business method is invoked, the server does not
activates a bean.

Only enterprise bean’s remote interface methods invocation (for example
getName()) starts an activation cycle:

• ejbActivate,
• ejbLoad,
• business method invocation (example: getLastname())
• ejbStore,
• ejbPassivate.

This activation cycle is repeated for each method invoked on a bean.

8.3 Using the JDBC API

We have seen how we can handle collections by using finders. For
performance reason, it may be acceptable to use direct JDBC programming
instead.

In that case, we have a more powerful way of getting and manipulating a
collection of records. Let us see what do we get by using the JDBC API.
120 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754Collections.fm
8.3.1 ResultSet
JDBC 2.0 adds scrolling and update capability for ResultSet.

8.3.1.1 ResultSet types
The supported result types are the following:

• forward-only (JDBC 1.0 forward-only result type)
• scroll-insensitive (static view of the contents)
• scroll-sensitive (dynamic view of the contents)

Scrolling is the ability to move forward (first-to-last) and backward
(last-to-first) through the contents of the result set.

Result set types which support scrolling allow a particular row to be visited
multiple times while a result set is open. So the ability to make changes in the
underlying data visible to the application, which we call sensitivity, is definitely
relevant.

8.3.1.2 Scrolling and concurrency
The supported concurrency types are:

• read-only: this increases the level of concurrency as read-only locks are
not limited in numbers on the database

• updatable: this reduces concurrency as only one write lock may be held at
a time.

When concurrency occurs, it is clear that all of the updates that a transaction
makes are visible to itself, whereas the changes (updates, inserts, and
deletes) made by other transactions may or may not be visible to a particular
transaction. If updates made by one transaction are visible to another
transaction then the changes will be visible through the result set opened in
this other transaction.

Visibility through a result set means that depending on its result set type,
while it is open, it may or may not expose changes to its underlying data
made by other transactions or other result sets that are part of the same
transaction,.

This feature is determined by the transaction isolation level.

The transaction isolation level, since JDBC 1.0, determines whether changes
made by other transactions are visible to the current transaction.

/**
Chapter 8. Collections 121



5754Collections.fm Draft Document for Review June 15, 2000 5:50 pm
* Dirty reads, non-repeatable reads and phantom reads can occur.
*/
int TRANSACTION_READ_UNCOMMITTED = 1;

/**
* Dirty reads are prevented; non-repeatable reads and phantom
* reads can occur.
*/
int TRANSACTION_READ_COMMITTED = 2;

/**
* Dirty reads and non-repeatable reads are prevented; phantom
* reads can occur.
*/
int TRANSACTION_REPEATABLE_READ = 4;

/**
* Dirty reads, non-repeatable reads and phantom reads are prevented.
*/
int TRANSACTION_SERIALIZABLE = 8;

The isolation level for a given transaction can be set by calling
con.setTransactionIsolation(TRANSACTION_READ_COMMITTED);
where the variable con has type Connection. If all transactions in a system
execute at the TRANSACTION_READ_COMMITTED isolation level or higher,
then a transaction will only see the committed changes of other transactions.

8.3.1.3 Performance
You can specify, at result set level:

• the number of rows to be fetched when more rows are needed
• the direction for processing the rows (forward, reverse, or unknown).

In the end you have the option of writing an application using an optimistic
concurrency control scheme if data access conflicts are rare.

8.3.1.4 Usage
Forward-only and read-only result set (JDBC 1.0 like)
No transaction isolation level is specified, so a default value is taken.

Connection con = DriverManager.getConnection("jdbc:db2:SAMPLE");
Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("SELECT emp_no, salary FROM employee");

Forward-only and sensitive result set
Rows of data are requested to be fetched twenty-five at-a-time

Connection con = DriverManager.getConnection("jdbc:db2:SAMPLE");
Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);
stmt.setFetchSize(25);
ResultSet rs = stmt.executeQuery("SELECT emp_no, salary FROM employee");
122 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754Collections.fm
A prepared statement can be used as well.

PreparedStatement pstmt = con.prepareStatement(
"SELECT emp_no, salary FROM employees where emp_no = ?",
ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);
pstmt.setFetchSize(25);
pstmt.setString(1, "060366");

ResultSet rs = pstmt.executeQuery();

Update
The application can update, insert, delete rows in an updatable result set. It
has to position within the result set and then update, insert or delete.

An update example is (columns may be specified by name or number):

rs.first();
rs.updateString(1, "100");
rs.updateFloat("salary", 100000.0f);
rs.updateRow();

An insert example is:

rs.moveToInsertRow();
rs.updateString(1, "101");
rs.updateFloat(2, 200000.0f);
rs.insertRow();

rs.first(); //leave insert row and return to the row that was the current row before

Cursor movements
Examples of iteration are:

• full forward iteration:
rs.beforeFirst();
while (rs.next()) {
System.out.println(rs.getString("emp_no") + " " + rs.getFloat("salary"));
}

• full backward iteration:
rs.afterLast();
while (rs.previous()) {
System.out.println(rs.getString("emp_no") + " "+ rs.getFloat("salary"));

}

8.3.1.5 Caveats
It is up to the application developer to check the actual result set type used:

aResultSet.getType();
aResultSet.getConcurrency();
Chapter 8. Collections 123



5754Collections.fm Draft Document for Review June 15, 2000 5:50 pm
As a matter of fact, the result set type asked for may not be supported by the
JDBC driver you use (in which case you will probably get an SQL warning), or
not even possible for the kind of statement you have issued.

For example a SELECT statement that contains a join over multiple tables
may not end up into an updatable result set.

On the other hand:

• should be updatable queries on a single table, with no join operations, and
selecting the primary key.

• should be insertable queries that select all non-nullable columns and all
columns that don’t have a default value.

Visibility of updates have the following characteristics:

• a result set can or can not see its own changes (inserts, updates, and
deletes). This capability can vary between DBMSs and JDBC drivers.

• a scroll-insensitive result set, once it is opened, does not make any
changes visible that are made by other transactions or other result sets in
the same transaction. It can be seen as a private copy of the result set’s
data.

a scroll-sensitive result set makes all of the updates made by others that are
visible to its enclosing trans-action visible. Column values are always visible.
However, inserts and deletes may not be visible, however.

8.3.2 RowSet
“Just a nice extension of ResultSet”: a JavaBean using a datasource.

The interest of a Rowset is that it is a JavaBean that encapsulates a set of
rows, without necessarily maintaining an open database connection. If
necessary, an optimistic concurrency control mechanism is used.

8.3.3 Using JDBC with a stateless session bean
To come back to our main purpose which is about collections, we can use
direct JDBC code encapsulated in a session bean. The session bean
provides a service that can return a vector containing all the attributes values
corresponding to a given query for display purpose.

Once the user has selected a record then the corresponding enterprise bean
can be used in combination with other enterprise beans involved in the same
unit of work.
124 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754Collections.fm
8.4 Conclusion

Before using finders you need to understand lazy and greedy enumerations.

With lazy enumerations, you have to keep in mind that invoking a finder
involves on the server side the activation of five instances. As the client
iterates through the enumeration the server activates the next chunk of five
elements. If the number of elements goes beyond the number of instances
available in the pool then the server throws an exception and rolls back the
transaction.

With greedy enumerations, each call to a business method results in a
complete activation cycle. If the number of elements in the enumeration
resulting from the execution of the finder is greater than the number of
available instances in the pool, the finder returns an exception.

During our tests we did some measurements to compare the different
approaches. Iterating through a greedy is twice as fast as a lazy enumeration
if only one method is invoked on each instance.

However, as the number of methods invoked on an instance increases, the
lazy enumeration provides better performances.

If you really need speed, you can skip bean activation by going directly to
JDBC.

For example, assume we want to display on a browser customer id and name
for a hundred of customers. From this list, the user can select one customer
and request details.

An implementation that calls a home finder to retrieve these two customer’s
attributes results in the activation of each instance including hydrating all
object’s attributes. This represents a useless system overhead.

Instead, we will prefer to delegate to JDBC the creation of the list and only
when details are requested, we use the findByPrimaryKey finder on the home
to activate the corresponding bean.

Then we get full benefit of using enterprise beans by combining this and other
bean instances in a single unit of work.
Chapter 8. Collections 125



5754Collections.fm Draft Document for Review June 15, 2000 5:50 pm
126 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754p02.fm
Part 2. Design Patterns and Guidelines

In the first part of the book the reader is given guidelines about the
technology choices and architecture for his Web application.

This second part of the book may be structured like "Design Patterns from
Erich Gamma" style.

The user who is only interested by a given problem can go directly to the
design considerations and possible solution for this specific case.
© Copyright IBM Corp. 2000 127



5754p02.fm Draft Document for Review June 15, 2000 5:50 pm
128 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754TaskWrapper.fm
Chapter 9. Servlets/JSP

9.1 Organizing the application

9.1.1 Intent
With this pattern it is possible to organize servlets and Java Server Pages in a
way that it is easy to maintain the code.

9.1.2 Motivation
In applications that require complex modeling on the web application server
node, it is not easy to define the granularity of servlets and how servlets
interact. But without a good design for the servlets and JSP it is hard to
maintain the application.

In addition in the analysis phase of a project, use cases and state transition
diagrams are widely used to describe the result of the analysis phase. It
would be nice to map those results in the design and implementation phase.

One extreme design approach would be to have only one servlet per use
case. That servlet acts then as the central eventhandler and processes all
requests from the client. It executes the necessary action for that event and
forwards the request to one (of many) Java Server Page for displaying the
result. Using this solution, it might be difficult to develop that servlet. As it is
responsible for a whole use case, we might have to implement a lot of logic in
that servlet.

The other extreme would be to have as many servlets as Java Server Pages
and “chain” them. That means that a servlet gets a request, executes the
proper action and calls the Java Server Page specific to that servlet to display
the result. A request from that JSP then gets to another servlet and so on.
This approach will be hard to maintain since many servlets and JSP can get
confusing when trying to figure out the flow of the application.

We provide a solution that has a granularity between those extreme
approaches with dividing the application in different states. We try to transfer
a state transition diagram (modelled e.g. with RationalRose) into HTML
pages, servlets and Java Server Pages.
© Copyright IBM Corp. 2000 129



5754TaskWrapper.fm Draft Document for Review June 15, 2000 5:50 pm
9.1.3 Applicability
This pattern can be used in all servlet /JSP applications. We recommend this
pattern especially in complex web applications where many web pages and
page transitions have to be developed.

9.1.4 Structure

Figure 79. Structure

9.1.5 Participants
• Servlet: A given request either gathers data needed for the display of a

given state or invokes the action causing transition out of the state. This
responsibility makes it the “controller” in a Model-View-Controller based
application.

• Java Server Page: Handles the generation of HTML code for a given
requet result.

• Task Wrapper: Encapsulates access to the enterprise business process
(back-end data and function). This function makes the Task Wrapper the
“model” in a MVC application.

• HTML Page: In case of static content and state transitions, we do not need
complex technologies. An HTML page handles the “static” states.

9.1.6 Collaborations
A Web application flow can be captured in a state transition diagram (which
is, by the way, a good documentation for the application flow). A state

Client

View
(JSP)

Servlet

Server

Business
logic

Ta
sk

W
ra

pp
er

HTML
Static
State

Dynamic State
130 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754TaskWrapper.fm
transition diagram contains named states which are connected with named
branches.

Our solution provides, that we map each component of the state transition
diagram to a component of our e-business architecture that can be managed
by the WebSphere Application Server.

We separate the states in the diagram into static states, and dynamic states.
State transitions from static states are inherent. As they are static in content
and in transitions, we can code one state as one HTML page which should be
named after the state: <State>.html.

When it comes to the dynamic states, life is a bit more difficult. Conforming to
our e-business architecture, we devide the state into model, view and
controller.

Controller

The servlet acts as the controller for one state in our scenario. That means,
that we get one servlet per dynamic state. By naming convention, the servlet
is named after the state: <State>Servlet. By doing so we get an easy way of
documentation.

We think about each interaction between the browser and the web application
server (e.g. the servlet) as a single unit of work, either read-only or update.
There are two basic flow of control patterns, both implemented by the servlet.
One handles the display for a given state, and the other one handes the
actions that cause a state change.

Display Pattern

This pattern is usually manifested within HTML as a link of some form,
resulting in a GET request. The flow of control for this pattern is the following:

1. The servlet invokes the appropriate read-only method on the model of the
state (that is the Task Wrapper, see below) and selects the Java Server
Page to handle the result.

2. The servlet initializes the Data Object associated with the Java Server
Page, loads it with the result and sets the View Bean into an HttpRequest
attribute.

3. The servlet forwards the request to the chosen Java Server Page.

4. The Java Server Page generates the HTML code.

Update Pattern
Chapter 9. Servlets/JSP 131



5754TaskWrapper.fm Draft Document for Review June 15, 2000 5:50 pm
This pattern is usually manifested within HTML as a form action of some sort,
resulting in a POST request. The flow of control pattern is likewise simple, but
since it represents a transition to some next state, actually employs the
Display pattern to handle processing of the next state.

1. The servlet determines the type of action to be taken (usually from the
submit button value), and selects the appropriate update method on the
model (which is the Task Wrapper, see below).

2. The servlet accesses the input parameter for the Task Wrapper method
from the request object and invokes the method.

3. Based on the result, the servlet does a state transition using the
sendRedirect() method to the “next” state.

4. This causes the Display Pattern for the next state to be invoked.

A Data Object is a Java Bean with simple getXXX() and setXXX() methods
which encapsulates a bulk of data. For more information about Data Objects,
see (FACADE - IMPLEMENTATION).

View

The view is implemented as a Java Server Page. Here, we use the same
naming convention. That means that a Java Server Page is named after its
state: <State>.jsp. If we have more than one Java Server Page associated
with one state (for example a separate error page) we recommand to start the
name of every Java Server Page belonging to one state with the name of that
state, for example <State>Error.jsp.

Model

We define a Task Wrapper class which is responsible to group the methods of
the given task that are likely to be implemented in a similar fashion into a
single object.

The Task Wrapper encapsulates the access to the enterprise business
process (that is, back-end data and function). This function makes the Task
Wrapper the “model” in the MVC pattern. As we want to get many parameters
to and from the Task Wrapper, we use Data Objects for each method when
the result is more than a single value.

State transitions

An interesting point is how to design and implement the state transitions. A
straightforward solution is to forward to the next state within a servlet, when
an update has to done (as mentioned in the Update Pattern section). If we
132 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754TaskWrapper.fm
need a state transition by pressing the “submit” button on the screen we can
let the Java Server Page / HTML page directly point to the new state (which
means to the servlet of that state). This approach is quite simple but it is
difficult to maintain such an application, because state transitions are handled
in servlets and Java Server Pages. A more consistent approach would allow
state transitions only from servlets. That means, that a Java Server Page
always calls the servlet belonging to the same state. That servlet would
execute the state transition by redirecting to the new state servlet. We have to
be aware that we have to keep track of the servlets internal state as it might
be called several times. This might be done by storing the state in the session
object or by integrating it into the active Java Server Page.

9.1.7 Consequence
Using this pattern we get a good approach for designing a web application.

9.1.8 Implementation
Task Wrapper

The Task Wrapper could be implemented as a stateless Session Bean. That
means that it runs on the EJB server and therefore, it executes local calls
when accessing the EJB.

It is a nice idea to encapsulate that Session Bean with a Java class, so that it
is easier for the servlet-programmer to access the Session Bean. Therefore,
we need a Java class with the same methods as in the Session Bean. If we
use a class with static methods for accessing the Session Bean, it is easy to
cache the InitialContext and rarely changing read-only data within one JVM,
so that we get a performance benefit.

If we have the following attributes in this static class

private static InitialContext nameContext = null;
private static ThisTaskSessionHome taskSessionHome = null;
private static ThisTaskSession taskSession = null;

we can use

private static TasksSession getTasksSession() {
try {

if (nameContext == null) {
Properties p = new Properties();
p.put(
javax.naming.Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.ejs.ns.jndi.CNInitialContextFactory"
);
Chapter 9. Servlets/JSP 133



5754TaskWrapper.fm Draft Document for Review June 15, 2000 5:50 pm
nameContext = new InitialContext(p);
}
if (tasksHome == null) {

Object homeObject = nameContext.lookup("ThisTasksSession");
tasksHome =
(ThisTasksSessionHome)javax.rmi.PortableRemoteObject.narrow(
homeObject, ThisTasksSessionHome.class
);

}
if (tasksSession == null) {

tasksSession = tasksHome.create();
}
return tasksSession;

}
catch (Exception e) {

return null;
}

}

to implement a task wrapper method like

public static synchronized void denyRequest (String serialNumber)
{

try {
getTasksSession().denyRequest (serialNumber);

} catch (Exception e) {
}

}

Servlet

The implementation of the servlets is straightforward to the patterns given
above. As we do not implement anything else in the servlets, they become
very mechanical. The implementation of the Display Pattern for example
could be

public void doGet (HttpServletRequest req, HttpServletResponse res) throws
ServletException, IOException
{

// This will handle read and display from the Manager screen
String serialNumber = req.getParameter("serialNumber");
req.setAttribute("ManagerCheckInView", Tasks.getManagerCheckInView(serialNumber));

getServletContext().getRequestDispatcher("/Application/ManagerCheckIn.jsp").forward(
req,res);

}

134 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754TaskWrapper.fm
It is an interesting idea to create a superclass for the servlets when we
discover similarities in their behavior. For example if we require that a user
has to be logged on for our application, this check could be done in the
superclass. The proper action, e.g. display a logon Java Server Page, could
be included in that servlet.

9.1.9 Related Pattern
Data Object: Data Objects are used as a contract in the input and output
parameter of a Task Wrapper and between the servlet and Java Server Page.

Command Pattern: The Task Wrapper of our pattern is somehow equivalent
to a Command Bean. But while the Task Wrapper typically has multiple
methods, each representing a unit of work associated with th underlying
business process, there is one Command Bean for each unit of work. That
means that a difference is the granularity they address.

Facade: It is the responsibility of the Task Wrapper to execute the right
business logic. This is a good point to integrate the Facade pattern, so that
the Task Wrapper uses the Facade to call the business logic.
Chapter 9. Servlets/JSP 135



5754TaskWrapper.fm Draft Document for Review June 15, 2000 5:50 pm
136 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754DataIslands.fm
9.2 XML Data Islands

9.2.1 Intent
To include a view of an XML stream in our application we introduce XML Data
islands. The XML Data island is a generic Java Beans that takes XML data,
formats it using a given XSL stylesheet and returns a piece of HTML code
which can be included in a Java Server Page.

9.2.2 Motivation
In our programming model we use servlets and Java Server Pages to display
information to the client as this is an easy and straightforward way.

But in many cases we have to deal with XML as XML becomes more and
more popular, especially as an exchange language between software
components. It is often required to display those XML data. Therefore, we can
use XSL (eXtensible Stylesheet Language) to format a given XML document
into HTML. But it would be nice to integrate XML and XSL into our Java
Server Page / servlet driven architecture. As WebSphere has a build-in XSL
Processor (Lotus XSL) for converting an XML document into an HTML page,
there should be a way to use that XSL processor within a Java Server Page.

9.2.3 Applicability
Use this pattern when you want to integrate XML data with a XSL stylesheet
in a Java Server Page.

9.2.4 Structure
© Copyright IBM Corp. 2000 137



5754DataIslands.fm Draft Document for Review June 15, 2000 5:50 pm
Figure 80. Structure of Data Island

9.2.5 Participants
The Java Server Page acts as the view in our application. It is responsible for
the output page to the user. The Java Server Page is the “host” for the XML
Data Island and includes the resulting HTML code.

The XML Data Island Bean is used to integrate the XML data and the XSL
stylesheet into the Java Server Page. Its detailed structure is seen in Figure
81. The URLs of the XML data and the XSL stylesheet have to been set using
the setXml() and setXsl() methods. Then the getDocument() method can be
called to get the HTML code.

Servlet

Client

XML

Data Island
Bean

Java
Server
Page

XSL
Stylesheet

HTML

XSL
Processor
138 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754DataIslands.fm
Figure 81. Class model of the XML Data Island

The XSL Processor, which is included in WebSphere, is used to convert the
XML data into HTML code using a given XSL stylesheet.

9.2.6 Collaboration
The XML Data Island is created by the Java Server Page. By calling the
getDocument() method, the Data Island creates an instance of the XSL
processor, passes the URL for both XML data and XSL stylesheet to the
processor and invokes it. The result, the HTML code, is stored in the
document property and returned to the Java Server Page. There the HTML
code is included.

9.2.7 Consequence
With XML Data Islands we get the opportunity to include XML data in our web
pages. We get a complete and integrated architecture.

9.2.8 Implementation
The XML Data Island Bean

It is the XML Data Island’s responsibility to call the XSL processor with the
XML document and the XSL stylesheet. Therefore we must import the XSL
processor classes. We declare the class, which simply extends Object:

package itso.dg.xml;
139



5754DataIslands.fm Draft Document for Review June 15, 2000 5:50 pm
import java.lang.*;
import java.util.*;
import com.ibm.xml.parser.*;
import com.lotus.xsl.*;
import java.io.*;

public class DataIslandBean implements java.io.Serializable
{

// Attributes
protected String xml = ““;
protected String xsl = ““;
protected String document = ““;

// Define Methods here
}

The HTML code and the URLs for the XML document and the XSL stylesheet
are stored in a bean property. Therefore, we must provide get and set
methods for them:

public String getXml ()
{

return xml;
}

public void setXml (String value)
{

xml = value;
}

public String getXsl (String value)
{

return xsl;
}

public void setXsl (String value)
{

xsl = value;
}

public void setDocument (value)
{

document = value;
}

140 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754DataIslands.fm
The real work is done by the get method of the document property. It get the
URL for the XML data and the URL of the XSL stylesheet and calls the XSL
Processor to transform the XML data, using the instructions in the XSL
stylesheet. The resulting data is stored in the document property:

public String getDocument ()
{

try {
ByteArrayOutputStream stream = new ByteArrayOutputStream ();
PrintWriter pw = new PrintWriter (stream);
XSLProcessor processor = new XSLProcessor ();
processor.process (xml, xsl, pw);
document = stream.toString ();

} catch (Exception e) {
document = “Error in XSL processing: “ + e.getMessage ();

}
return document;

}

The “host” Java Server Page which includes the XML Data Island

The Java Server Page has to add a useBean tag, to set the URLs for the XML
document and the XSL stylesheet and to call the getDocument() method where
appropriate:

<%@ page import = "itso.dg.xml.DataIslandBean" %>
<jsp:useBean id="dataIslandBean" class="itso.dg.xml.DataIslandBean"
scope="session"/>
<jsp:setProperty name="dataIslandBean" property="xml" value="XML-URL"/>
<jsp:setProperty name="dataIslandBean" property="xsl" value="XSL-URL"/>
<%= dataIslandBean.getDocument() %>

XML data input

Because we are passing only the URL to the XML document, it could be in a
file as seen in the example below. But it does not need to be on the web
server.

The XML document could be constructed by another servlet. If the URL of
this servlet is set to the XML Data Island Bean by the Java Server Page, its
output would be converted to HTML.
141



5754DataIslands.fm Draft Document for Review June 15, 2000 5:50 pm
9.2.9 Sample Code
For this example, we use the XML file seen in Figure 82 and the XSL
stylesheet seen in Figure 83. For the example, both files have to be in the
/xml directory of the web server.

Figure 82. specs.xml

Figure 83. specs.xsl

<?xml version = “1.0”?>
<spec>

<title>Configuration for ACME Mega Server </title>
<model>AMS 9000</model>
<parts>

<part>
<number>9000</number>
<description>Mode 9000</description>
<list-price>$2,000.00</list-price>

</part>
</parts>
<list-subtotal>$2,000.00</list-subtotal>

</spec>

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
<xsl:template match="/">

<H1> <xsl:value-of select="spec/title"/> </H1>
<P> <xsl:value-of select="spec/model"/> </P>
<TABLE BORDER="1">

<TR>
<TH>Part#: </TH>
<TH><xsl:value-of select="spec/model"/></TH>
<TH>List Price</TH>

</TR>
<xsl:for-each select="spec/parts/part">
<TR>

<TH><xsl:value-of select="number"/></TH>
<TH><xsl:value-of select="description"/></TH>
<TH><xsl:value-of select="list-price"/></TH>

</TR>
</xsl:for-each>

</TABLE>
</xsl:template>
</xsl:stylesheet>
142 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754DataIslands.fm
Java Server Page

Using the Data Island Bean is easy. We need to add a bean tag into the Java
Server Page and then call the getDocument() method where we want the data
bean to be displayed:

<%@ page import = "itso.dg.xml.DataIslandBean" %>
<jsp:useBean id="dataIslandBean" class="itso.dg.xml.DataIslandBean"
scope="session"/>
<jsp:setProperty name="dataIslandBean" property="xml"
value="http://localhost:8080/spec/spec.xml"/>
<jsp:setProperty name="dataIslandBean" property="xsl"
value="http://localhost:8080/spec/spec.xsl"/>
<HTML>

<HEAD>
<TITLE>XML Data Island Sample</TITLE>

</HEAD>
<BODY>

<H2> Data Island Example</H2>
<P>

<%= dataIslandBean.getDocument() %>
</P>

</BODY>
</HTML>

9.2.10 Related Patterns
It is possible to integrate the command pattern and the XML data island
pattern. This results into a display command which calls some commands
with XML results. The display command then converts the XML data into
HTML code using the technique of the data island.

A similar approach is described in the redbook SG24-5429. They introduce
XSLT Islands, which are scriptlets embedded in a Java Server Page. The
scriptlets contain the XSL code directly. They use the Bean Scripting
Framework (BSF) available on alphaWorks to integrate JSP, XML and XSL.
143



5754DataIslands.fm Draft Document for Review June 15, 2000 5:50 pm
144 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754AppletServer.fm
9.3 Applet to server communication

9.3.1 Introduction
Building applets is a powerful way of extending HTML pages with dynamical
and sophisticated interfaces. Sun’s Java Application Programming Model
recommends using HTML, Java Serverpages and also applets on the client.
In many cases we just have to implement some presentation logic in the
applets. But sometimes the applet has to put or get information from the
server during runtime.

An easy and straightforward way for the communication from an applet to a
server uses Java’s build-in mechanism for remote communication, RMI.
Although this idea seems simple, we can run into problems with this
approach.

First, using RMI means that we open our application to the internet by offering
a RMI server to the world which is usually not desired. Firewalls, which are
used to secure the server and clients, will usually block incoming traffic on all
ports, only the port used by HTTP gets through, so that RMI communication
will fail.

Second, in our e-business architecture we propose the use of servlets as the
connection point to the client. Since the standard way of talking with servlets
is based on HTTP we cannot use RMI.

9.3.2 Applet to servlet communication
Since the HTTP port is usually the only communication port from the applet to
the servlet, we need a way to connect to the server via HTTP which makes it
easy to use servlets.

The strategy is to write servlets and to let them run in on the server. The
servlets are called by applet wrapping the communication in HTTP requests.

Java provides an API for that kind of communication. To open an HTTP
connection, we have to use the URL and the URLConnection classes which make
it easy to read and write data from a URL. All we have to do is to make an
URL connection to the servlet, write the output text to the HTTP stream and
read the incoming text.

The following code snippet shows this part of an applet:

private String callServlet (String city) {
String input = "";
© Copyright IBM Corp. 2000 145



5754AppletServer.fm Draft Document for Review June 15, 2000 5:50 pm
try {
URL url = new URL
("http://localhost/servlet/AppletCommServlet");
URLConnection connection = url.openConnection ();
connection.setUseCaches (false);
connection.setDoOutput (true);

OutputStream out = connection.getOutputStream();
PrintWriter print = new PrintWriter (out);
print.println ("city=" + city);
// print.write (city);
print.flush();
print.close();

InputStream in = connection.getInputStream ();
DataInputStream textStream = new DataInputStream (in);

input = textStream.readLine ();
in.close();

} catch (Exception e) {
buffer.append ("Exception: " + e);
System.out.println ("Exception: " + e);
}

return input;
}

On the server-side we need just a regular servlet. Since the HTTP issues are
handled by WebSphere we have implement the proper action. The service()

method could be:

public void service (HttpServletRequest request, HttpServletResponse
response) throws java.io.IOException {
String city;
PrintWriter writer = response.getWriter();

city = request.getParameter ("city");

// do something
System.out.println ("city: " + city);

// answer to applet
writer.println ("95123"); // zip code of city
}

One advantage of carrying text over the network is the compatibility with
exiting servlets because the applet may use the same format as HTML forms.
146 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754AppletServer.fm
But on the other hand it is arduous coding and decoding text streams.
Fortunately, HTTP connections can also carry binary data. This allows us to
transport whole Java objects (this is called firewall tunneling) using the
content-type

application/x-www-form-urlencoded.

We flatten the objects we want to carry into a binary stream and use HTTP to
convey the binary data. On the other side we de-flatten the stream back into
objects and use them.

The object flattening can be done by the standard object serialization build in
Java. An object can be serialized if its class implements the
java.io.Serializable interface. The default implementation of the serialization
is sufficient in most cases, therefore there is no need to code anything for
serialization. If we require special treatment during serialization and
deserialization, we must implement the following two methods:

private void writeObject (java.io.ObjectOutputStream out) throws IOException;
private void readObject (java.io.ObjectInputStream in) throws IOException,
ClassNotFoundException;

Then we wrap the OutputStream from the URLConnection in an
ObjectOutputStream and write the serialized object on the stream. The same
applies to the input stream, we must wrap it into an ObjectIntoStream.

As we have to deal with object streams only, the code is nearly the same on
the applet and on the servlet. Thus we show the applet code only:

private UserInfo callServlet () {
String input = "";

try {
URL url = new URL ("http://localhost/servlet/AppletCommServlet1");
URLConnection connection = url.openConnection ();
connection.setUseCaches (false);
connection.setDoOutput (true);
connection.setRequestProperty (
"content-type",
"application/x-www-form-urlencoded");

OutputStream out = connection.getOutputStream();
ObjectOutputStream objectOutStream = new ObjectOutputStream (out);
objectOutStream.writeObject (new UserInfo());

InputStream in = connection.getInputStream ();
ObjectInputStream objectInStream = new ObjectInputStream (in);

UserInfo i = (UserInfo)objectInStream.readObject();
in.close();

} catch (Exception e) {
buffer.append ("Exception: " + e);
System.out.println ("Exception: " + e);
}

147



5754AppletServer.fm Draft Document for Review June 15, 2000 5:50 pm
return i;
}

Using object serialization and the standard HTTP protocol is a simple way for
an applet to communicate with a servlet. Because it does not require an open
socket (like RMI) it is scalable. But you have to be aware that serialization is a
feature of the JDK 1.1 and therefore it won’t work with old browsers.

9.3.3 Outlook: applet to server-object communication
Sometimes it makes sense to access backend objects like EJB directly from
the applet. RMI-IIOP is emerging as the standard protocol to access
Enterprise Beans on the server. Because of the following issues

• EJB containers communicate via IIOP or RMI over IIOP. This causes
problems described above using firewalls.

• Since not all browser support RMI over IIOP we are limited in the browser
we support.

• Applets are, by default, limited to communicate only with the server that
they originate from, thus the EJBs will have to be there. We can get
around this with certificates, but this complicates the design and the
administration.

• EJB are not easy to access from applets or from pervasive clients without
any Java support.

Therefore the standard solution is to develop a servlet / JSP front end with a
HTML interface. Despite this option, in many cases it is required to develop
application or applet-based clients that can access EJBs across the Internet.

Since the internet firewalls let the HTTP protocol pass, we need to have a
protocol on top of HTTP which allows remote object calls. At the moment
there is no standard definition of such a protocol but many ideas coming up.

It could be an option to encapsulate one or more EJB interaction from the
client into an XML message. This XML document can be shipped over HTTP
to a servlet which reads the document and calls the EJB by reflection. The
result can be shipped to the client as an XML stream again.

XML seems perfect for this solution since it allows not only Java clients to
connect to the beans. Even a lightweight JavaScript client could use the EJB.
With XML we are not restricted to HTTP either. This offers us the chance to
access EJB objects and methods across all kinds of protocols like MQSeries.

There are two approaches to that:
148 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754AppletServer.fm
• A very complex but powerful approach uses its own definition language.
Like in RMI or CORBA you will need to define an interface and pre-compile
the objects to define stubs and skeletons.

• A more dynamic way is the one described above. Here we don’t need any
fixed information as the reflection-api is used to call the methods.
149



5754AppletServer.fm Draft Document for Review June 15, 2000 5:50 pm
150 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754Pushlet.fm
9.4 Pushing1 content to the client

9.4.1 Introducing Push technology
When developing an e-business architecture we have many interaction
between the client and the server. But the characteristics of most e-business
applications show that communication happens only if the client (i.e. the
browser) initiates an event.

But sometimes it is necessary to update the client’s data from the server
without having a client requesting the information. This is what we call push
technology. A typical application using push technology would be a flight
information system on the internet with automated arrival, departure and
delay time display.

Push technology makes it possible for the server to update content on the
client as it changes rather than having the client having to go and look for it.

9.4.2 Solutions

9.4.2.1 Automatic reload of HTML page
An easy way of updating information on the client is not to push the
information to the client but to have the client automatically reload the HTML
content of the page.

If we use the “Refresh” meta tag in an HTML page

<META HTTP-EQUIV=”Refresh” CONTENT=”2;URL=http://bismuth/servlet/MyServlet”>

the browser will reload the page with the URL
http://bismuth/servlet/MyServlet every two seconds. This line of code can of
course not only be included in static HTML pages but also in Java
Serverpages and servlets. The following example shows a servlet which is
reloaded every two seconds

public class ReloadServlet extends HttpServlet implements
java.io.Serializable {
public void service (HttpServletRequest request, HttpServletResponse
response) throws java.io.IOException {
HttpSession session;
Writer out;
int i = 1;
Date date = new Date ();

out = response.getWriter ();
response.setContentType ("text/html");

1 Based on Just van den Broecke’s article http://www.javaworld.com/javaworld/jw-03-2000/jw-03-pushlet.html
© Copyright IBM Corp. 2000 151



5754Pushlet.fm Draft Document for Review June 15, 2000 5:50 pm
out.write ("<html><head><title>Yet another test</title>");
out.write ("<META HTTP-EQUIV=\"Refresh\"
CONTENT=\"2;URL=http://bismuth/servlet/ReloadServlet\"> ");
out.write ("</head><body><H1>Test1:" + date + "</H1></body></html>");
out.flush();
}
}

This solution is very simple and is useful only in special situations. Since the
refresh time of the HTML page is fixed and independent of the change of the
content you can’t be sure that the client has the up-to-date information. On
the other hand, if the content changes rarely, the refresh may happen without
having updated content. Therefore this solution needs more resources (i.e.
servlet invocations) than necessary.

9.4.2.2 Applets
Another, more sophisticated solution uses applets on the client. The applet is
able to connect to the server using RMI or CORBA and passes a remote
reference of an client object to the server as a callback. The server notifies
the client by calling the remote object on the client which can display the new
content in a Java GUI (using AWT or Swing).

Using applets with RMI/CORBA is an object-oriented way of pushing data to
the client and diplaying them the way you need. The server does not have to
worry about the technology as this solution is completely based on Java. The
server knows that the pushed data has been processed by the client and will
get an exception in case of a failure.

But a big problem with the applet communication using RMI or CORBA is that
it does not use the standard HTTP port and protocol to communicate.
Therefore the used ports may not be opened by a firewall and this technology
will fail. Another point worth mentioning is that we are using a different
technology on the client as HTML. This has consequences on the application
development (since the presentation programmer has to have Java
knowledge) and on the client technology. The browser must support Java and
RMI/CORBA. Problems may occur when a different version of the JDK is
used on the client and on the server because of different RMI
implementations.

Using RMI/CORBA callback is nice when used in an intranet environment
because you don’t have to worry about bandwidth (i.e. the applet will be
loaded fast) and about firewalls. In an intranet environment you can have full
control over the browser (and plugins) installed on the clients with system
152 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754Pushlet.fm
management tools like Tivoli so that you can avoid problems with different
JDK versions.

9.4.2.3 Open socket communication
Another approach avoiding the problems with the firewall uses a push
technology with just HTML (DHTML preferred) on the client and a normal
servlet on the server-side. To keep up the communication between client and
server, HTTP streaming is used. This technology is often seen on multimedia
web-sites where realtime audio or video data is transferred to the client and
simply means that the socket will not be closed after surrending the HTML
code but remains open.

The approach is easy; in the servlet we are not closing the HTTP connection
(by returning from the doGet() / doPost() method). Instead we are pushing
data to client whenever we need it. The following code shows an example
which appends a new line every two seconds:

public void service (HttpServletRequest request, HttpServletResponse
response) throws java.io.IOException {
Writer out;
int i = 1;

out = response.getWriter ();
response.setContentType ("text/html");

while (i++ < 20) {
out.write ("<H1>" + new Date() + "</H1>");
out.flush();
try {

Thread.sleep (2000);
} catch (InterruptedException e) {

out.write (e.toString());
}
}
}

Usually we don’t want to append information to the existing but replacing
them. This is a bit more tricky as we have to use at least JavaScript and the
browser’s document object model (DOM).

The idea is to write a callback function in JavaScript which is embedded into
the HTML page (generated by the servlet/JSP). Since we have an open
socket connection we can call this function when needed by pushing a call to
the function to update the information on the client. Now we have two
choices:
153



5754Pushlet.fm Draft Document for Review June 15, 2000 5:50 pm
The content we want to update is embedded in a browser element (such as
an input field). Then the following servlet snippet shows a possible solution
(the HTML code embedded in the servlet should go into a JSP page of
course):

public void service (HttpServletRequest request, HttpServletResponse response) throws
java.io.IOException {
HttpSession session;
Writer out;
int i = 1;

out = response.getWriter ();
response.setContentType ("text/html");
// output javascript function
out.write ("<html>");
out.write ("<head>");
out.write ("<title> JavaScriptPushServlet </title>");
out.write ("<script language=\"JavaScript\">");
out.write ("function changeContent (c)");
out.write ("{document.form.text.value=c}");
out.write ("</script>");
out.write ("</head>");
out.write ("<body>");
out.write ("<form name=\"form\">");
out.write ("<input type=\"text\" name=\"text\" value=\"\" size=25>");
out.write ("</form>");
out.write ("Test");
out.write ("</body>");

while (i++ < 20) {
out.write ("<script language=\"JavaScript\"> changeContent(\"" + new Date() +
"\")</script>");
out.flush();
try {
Thread.sleep (2000);
} catch (InterruptedException e) {
out.write (e.toString());
}
}
}

If we need to update a bigger section like a frame (or the whole page) it is
going to be more complicated. We have to use frames and dynamic HTML
(DHTML). DHTML gives us the possibility to access and to change all
documents in the browser with the DOM. We need a main page which defines
a frameset with two frames. One will be a visible page (with a dummy content
in the beginning) and the other one will be an invisible frame pointing to our
servlet.
154 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754Pushlet.fm
Figure 84. Pushing data using frames

The main page defines also the callback JavaScript function which gets a new
HTML page from the servlet and displays it in the first frame:

<HTML>
<HEAD>
<META http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<META HTTP-EQUIV="Pragma" CONTENT="no-cache">

<script LANGUAGE="JavaScript">
function displayPage(content) {

window.frames['page'].document.writeln(content);
window.frames['page'].document.close();

}
</script>
</HEAD>

<FRAMESET BORDER=0 COLS="*,0">
<!-- display -->
<FRAME SRC="pushframe.html" NAME="page" BORDER=0 SCROLLING=no>
<!-- Hidden -->
<FRAME SRC="/servlet/PushServlet" NAME="dummy" BORDER=0 SCROLLING=no>

</FRAMESET>
</HTML>

where pushframe.html is a dummy page displayed until the servlet outputs its
first page:

<HTML>
<BODY>
</BODY>

Servlet

Browser visible frame

invisible frame

call JavaScript function
of parent with content

displayPage (content)

invoke
155



5754Pushlet.fm Draft Document for Review June 15, 2000 5:50 pm
</HTML>

The PushServlet’s service method creates the new HTML pages and invokes
the callback method in the frame:

public void service (HttpServletRequest request, HttpServletResponse
response) throws java.io.IOException {
HttpSession session;
Writer out;
String content;

out = response.getWriter ();
response.setContentType ("text/html");
// response.setHeader ("pragma", "no-cache");

out.write ("<BODY>");
try {

while (true) {
try {

Thread.sleep(3000);
} catch (InterruptedException e) {

out.write (e.toString());
}
content = "<HTML><BODY>";
content += "<H1>The current time is: " + new Date() + "</H1>";
content += "</BODY></HTML>";
out.write ("<script language=JavaScript >parent.displayPage ('" +
content + "')</script>");
out.flush();

}
} catch (Exception e) {

out.write (e.toString());
}
out.write ("</BODY>");
}

This approach integrates perfectly in our e-business scenario using only
HTML and JavaScript on the client and servlets on the server. Since we are
using pure HTTP firewall problems described for the RMI/CORBA callback
solution does not occur. In addition we don’t have to get additional code to the
browser. That reduces not only the loading time, but also the resource
consumption on the browser and the requirements to the browser.

On the other hand we demand DHTML on the browser when displaying new
HTML pages. Most browser fulfill this requirement, but some old browser will
not display the content.
156 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754Pushlet.fm
9.4.3 Consequences of using push technology
It is tempting to use push technology. There are many fields where we want
the user to be up to date and push technology seems to be a good solution.
But you have to be careful implementing a push server. The big problem
about push technology (except for the first approach using the refresh, which
isn’t a real push technology) is the scalability. In an e-business application
there might be hundreds of clients connected to the application. For each
client we need an open socket. As a consequence these clients are tied to a
specific machine.

Another problem of push technology is that, when using the open HTTP
connection, the server does not get an acknowledge of the data coming in by
the client.

When implementing a push technology we have often one data source in our
system which feeds the client. In the flight information system sample we
would have a component with the flight information and many clients
accessing the data via push technology. Therefore it can be useful to design a
system seen in Figure 85 with the observer pattern (see GAMMA) where the
data source is the subject of the information and the servlets connected to a
client observe the data source.

Figure 85. Using the Observer pattern

servlet

data
source

Client 1

Client 2

servlet
Push

Push

"Subject"

"Observer"

"Observer"
157



5754Pushlet.fm Draft Document for Review June 15, 2000 5:50 pm
158 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754P2homes.fm
Chapter 10. EJB Design Patterns

10.1 Factory for EJB Homes

10.1.1 Intent
Insulate EJB clients from Naming Service complexity.

Cache naming context creation and EJB home lookup for getting better
performance.

Provide an interface for creating EJB homes without specifying the method to
use to narrow to the concrete class at run-time.

10.1.2 Also known as
Home Factory, Home Caching.

10.1.3 Motivation
Before invoking an EJB’s business method, a client must create or find an
EJB object for that bean. To create or find an instance of a bean's EJB object,
the client must do the following:

1. Locate and create an EJB home object for that bean.
2. Use the EJB home object to create or find an instance of the bean's EJB

object.

JNDI is used to find by name the EJB home object. Here the properties that
an EJB client uses to initialize JNDI and find an EJB home are stored in a
resource bundle. See Chapter 10.1.8, “Implementation” on page 163 for
further details.

To initialize a JNDI name service, an EJB client must set the appropriate
values for the following JNDI properties:

• javax.naming.Context.PROVIDER_URL: this property specifies the host name
and port of the name server used by the EJB client, in the format
iiop://hostname:port.

• javax.naming.Context.INITIAL_CONTEXT_FACTORY : this property identifies the
actual name service that the EJB client must use(in WSAE, this property
must be set to com.ibm.ejs.ns.jndi.CNInitialContextFactory).

Locating an EJB home object is a two-step process:

1. Create a javax.naming.InitialContext object.
© Copyright IBM Corp. 2000 159



5754P2homes.fm Draft Document for Review June 15, 2000 5:50 pm
2. Use the InitialContext object to create the EJB home object.

Creating an InitialContext object involves the following code:

// Get the initial context
if (initContext == null) {

try {
Properties properties = new Properties();
// Get location of name service
properties.put(javax.naming.Context.PROVIDER_URL,
bundle.getString("providerUrl"));
// Get name of initial context factory
properties.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,
bundle.getString("nameService"));
...
initContext = new InitialContext(properties);
} catch (Exception e) { // Error getting the initial context

...
}

}

Here we construct a java.util.Properties object, add values to the Properties
object, and then pass the object as the argument to the InitialContext
constructor. The resource bundle class may be instantiated by calling the
ResourceBundle.getBundle method. The values of variables within the
resource bundle class are extracted by calling the getString method on the
bundle object.

After the InitialContext object is created once, it remains good for the life of
the client session, provided it is stored appropriately as a class or instance
attribute. Therefore, the code required to create the InitialContext object is
placed within an if statement that determines if the reference to the
InitialContext object is null. If the reference is null, the InitialContext object is
created; otherwise, the reference can be reused on subsequent creations of
the EJB object.

Creating EJB home object

// Look up the home interface using the JNDI name
try {

java.lang.Object homeObject = initContext.lookup(bundle.getString("myHomeName"));
myHome = (MyHome)javax.rmi.PortableRemoteObject.narrow( (org.omg.CORBA.Object)
homeObject, MyHome.class);

} catch (Exception e) { // Error getting the home interface
...

}

After the InitialContext object (initContext) is created, the application uses it
to create the EJB home object by invoking the lookup method, which takes
the JNDI name of the enterprise bean in String form and returns a
java.lang.Object object.
160 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754P2homes.fm
After an object is returned by the lookup method, the static method
javax.rmi.PortableRemoteObject.narrow is used to obtain an EJB home
object for the specified enterprise bean. The narrow method takes two
parameters: the object to be narrowed and the class of the EJB home object
to be returned by the narrow method. The object returned by the
javax.rmi.PortableRemoteObject.narrow method is cast to the class
associated with the home interface.

So:

• as we have seen, getting acces to EJB homes is complex (initial context,
home lookup, home narrow).

• very simple caching can be implemented for the naming context, but still
needs a more clear design.

• home lookup caching is required because lookup operation involves at
least inter-process communication (between application server and admin
server), and possibly network roundtrip (for clients obtaining their initial
context from a remote machine), hence a negative impact on
performance.

• finally, the environments in which you are testing and/or deploying may
require a different narrow method, in which case this has to be
encapsulated and made transparent into a factory-like service.

10.1.4 Applicability
Use the Home Factory pattern when:

• the result of EJB homes lookups should be cached for performance
reasons.

• a client should be configurable to access different sets of classes
implementing an EJB, with the same EJB home JNDI name.

• the client should be independent of how the EJB homes are narrowed.

The first bullet has proven to be a mandatory requirement in any real-life
application.
Chapter 10. EJB Design Patterns 161



5754P2homes.fm Draft Document for Review June 15, 2000 5:50 pm
10.1.4.1 Structure

Figure 86. HomeFactory Class Diagram

10.1.5 Participants
• HomeFactory

- declares and implements an interface for:
• the operation that returns the factory singleton
• the operation that returns the EJB homes

• EJBClient
- uses interface declared by HomeFactory

10.1.6 Collaborations
• A single instance of Homefactory is created at run-time. This

HomeFactory creates EJB homes as defined in an externalized manner,
for example by means of resource bundles or XML files.

• HomeFactory uses the metadata stored in this externalized manner for
instanciating and returning the appropriate EJB home class.

EJBClient

HomeFactory

homes : Hashtable = new HashTable()

getSingleton() : HomeFactory
lookupHome(aClass : Class) : EJBHome

EJBHome
<<Interface>>requests-creation

AccountHome

creates

uses
162 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754P2homes.fm
10.1.7 Consequences
The HomeFactory pattern has the following benefits:

1. It promotes consistency among clients: When naming context and EJB
homes are accessed in the same way, it is easy to modify and/or enhance
the level of service provided by the factory.

2. Supporting new kinds of EJB homes is transparent: if specified externally,
EJB homes and their concrete classes can be added and made available
without effort.

3. It isolates the EJB home actual classes: the factory encapsulates and as
such isolates clients from actual EJB home concrete classes, as far as
those concrete classes are not needed for usage (that is none of their
specific methods are called).

10.1.8 Implementation
1. Factory as singleton: This ensures that only one instance of the factory

class is created, and that this one instance is accessible to all clients; all
clients get access to this instance by calling the class’s getSingleton static
method, rather than by constructing the instance by themselves; so the
class’s constructors are private (be sure to declare at least one private
constructor otherwise a default public constructor will be automatically
generated).

2. Loading externalized information: the properties that an EJB client uses to
initialize JNDI and find an EJB home object may vary across EJB server
implementations. To make an enterprise bean more portable between EJB
server implementations, we have to externalize these properties in
environment variables, XML files, properties files, or resource bundles
rather than hard code them into the EJB client code. The first issue we

public class HomeFactory {
...
private static HomeFactory singleton = null;
...
private HomeFactory() {
super();
}
...
public static HomeFactory getSingleton() {
if (singleton == null) {
singleton = new HomeFactory();
}
return singleton;
}
...
}

Factory as singleton
Chapter 10. EJB Design Patterns 163



5754P2homes.fm Draft Document for Review June 15, 2000 5:50 pm
face is the EJB home fully qualified class name to be used for narrowing
the result of the lookup. Here we give an outline of reading XML files.

3. Specifying externalized information: XML formatting for EJBHome,EJB
remote interface, EJB class, EJB primaty key class (if applicable), JNDI
name, naming context implementation class name and provider URL;
alternatives are environment properties, resource bundle, properties file.

public class HomeFactory {
...
private static ConfigurationData configuration = null;
...
public static ConfigurationData getConfigurationData()
{
if (aConfigurationData != null) {

return aConfigurationData;
}
ConfigurationData aConfigurationData = new ConfigurationData();
...
// obtaining an input stream and a DOM parser
...
Document document = parser.readStream(inputStream);
...
NodeList nodeList = document.getElementsByTagName("entity-bean");
int length = nodeList.getLength();
for (int i = 0; i < length; i++) {

EnterpriseBeanMetaData
enterpriseBeanMetaData = new EnterpriseBeanMetaData();
enterpriseBeanMetaData.readElement((Element) nodeList.item(i));
Class homeClass = enterpriseBeanMetaData.getHomeClass();
ConfigurationData.setEnterpriseBeanMetaData(homeClass,
enterpriseBeanMetaData);

}
...
configuration = aConfigurationData;
return aConfigurationData;
}
...
}

Loading externalized information
164 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754P2homes.fm
4. Caching initial context and EJB homes: the initial context is a single
object, whereas EJB homes are cached in a hash table with the JNDI
names as keys; the point is that we can take benefit of the
meta-information stored in the XML file specifying the EJB implementation
classes for writing a full generic version of the lookupHome method.

<configuration>
<jndi-property>java.naming.factory.initial=com.ibm.ejs.ns.jndi.CNInitialContextFac
tory</jndi-property>
<jndi-property>java.naming.provider.url=iiop://127.0.0.1:900</jndi-property>
<enterprise-beans>
<entity>
<jndi-name>AccountHome</jndi-name>
<home>itso.dg.ejb.AccountHome</home>
<helper-class>javax.rmi.PortableRemoteObject</helper-class>
</entity>
</enterprise-beans>
</configuration>

Information in XML format
Chapter 10. EJB Design Patterns 165



5754P2homes.fm Draft Document for Review June 15, 2000 5:50 pm
5. Concurrency: multiple client threads may use the factory at the same time;
we assume that it is better to let clients engage in looking up the same
EJB home concurrently, and then update multiple times the same entry in
the hash table (with the same value, as expected), than serializing access
to a method or a resource other than the hash table synchronized put

method.

10.1.9 Known uses
This work was based on the Freeside demo application from the SWGTC in
Austin and on the home factory developed for the ITSO banking application
(SG245429) by Martin.

public class HomeFactory {
...
private Hashtable homes = new Hashtable();
...
public static EJBHome lookupHome(Class aClass) throws RemoteException
{
try {
EJBHome home = (EJBHome) homeCache.get(aClass);
if (home != null) {
return home;
}
ConfigurationData aConfigurationData = getConfigurationData();

EnterpriseBeanMetaData enterpriseBeanMetaData =
aConfigurationData.getEnterpriseBeanMetaData(aClass);

InitialContext initialContext = new
InitialContext(enterpriseBeanMetaData.getJndiProperties());

String lookupString = enterpriseBeanMetaData.getJndiHomeName();
Object anObject = initialContext.lookup(lookupString);

Method narrowMethod = enterpriseBeanMetaData.getNarrowMethod();
if (narrowMethod == null) {
home = (EJBHome) anObject;
} else {
Object[] parameters = new Object[] {anObject, aClass};
home = (EJBHome) narrowMethod.invoke(null, parameters);
}
if (home == null) {
return null;
}
homeCache.put(aClass, home);
return home;
} catch (Exception ex) {
ex.printStackTrace();
return null;
}

Naming context and EJB homes caching
166 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754P2homes.fm
10.1.10 Related patterns
Singleton.
Chapter 10. EJB Design Patterns 167



5754P2homes.fm Draft Document for Review June 15, 2000 5:50 pm
168 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754Facade.fm
10.2 EJB Session Facade to Entity Beans

A facade provides a unified interface to a set of interfaces in a subsystem
(see Gamma, E. et al., Design Patterns: Elements of Reusable Object
Oriented Software).

10.2.1 Intent
In the EJB world the EJB Session Facade pattern provides a stable,
high-level gateway to the server-side components. An EJB Session Facade
hides the Entity Bean interfaces to the clients.

10.2.2 Motivation
An Entity Bean represents an object view of a business entity stored in
persistent storage and includes business logic to manipulate the bean state.
In addition an entity bean implements business logic dealing with entity
specific business rules. For example: the account bean implementation
checks the overdraft before allowing a withdraw. Entity Beans are
fine-grained components.

In contrast, business processes often involves multiple Entity Beans. For
example: the business process (use case) ‘transfer an amount from Account
A to Account B’ involves withdraw on AccountA and deposit on AccountB.
Furthermore the transfer use case should run within a unit of work.

We do not recommend that a client interacts directly with Entity Beans
because it ties the client directly to the details of the business entities. Any
changes in the interface of the Entity Beans and their interactions require
changes to the clients, and it is very difficult to reuse the code that models the
workflow.

Session Beans are better suited to deal with multiple-entity business logic.
Session Beans are coarse-grained components that allow clients to perform
tasks without being concerned with the details that make up the task. This
allows developers to update the Session Bean internals, possibility to change
the workflow, without impacting the client code.

An EJB Session Facade to Entity Beans has another benefit: performance
improvement. Accessing coarse-grained Session Beans from the client
instead of fine-grained Entity Beans reduce the number of remote method
invocations.
© Copyright IBM Corp. 2000 169



5754Facade.fm Draft Document for Review June 15, 2000 5:50 pm
10.2.3 Participants
The participants in this patterns are

• EJB Session Facade

• Entity Bean

10.2.4 Implementation
When impementing the facade pattern we have to decide about the structure
of the facade class, the granularity of facade objects and about structuring
and abstracting the input and output parameters.

Stateless vs. Stateful Session Beans

The choice of the EJB Session type (stateless, stateful) depends on several
factors:

• use case type

- non conversational
is one where the entire use-case is completed with a single session
method invocation.

- conversational
requires more than a single session method invocation by a particular
client with state maintained between invocations.

• client type

- web client (servlet invoked via web browser and HTTP protocol)

- Java application (via RMI/IIOP protocol)

• scalability

• performance

• system resources

• availability

We suggest to implement non conversational use cases with Stateless
Session Beans. Stateless Session Beans are scalable and in comparison to
Stateful Session Beans need less system resources and perform better.

We implement client neutral conversational use cases with Stateful Session
Beans. The homes of stateful sessions are scalable, stateful session beans
themselves are not. The homes allow Stateful Session Beans to be created
on a group of servers (clones), with client affinity to the one it happened to be
created on. That means: Stateful Session Beans are likely to be spread over
170 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754Facade.fm
all the clones in a workload managed environment which gives a measure of
load balance. Each method invocation goes to the server who created the
bean. The bean may be gone if the server has crashed, but this is the
expected behavior. The EJB specification states that session beans do not
survive server crashes. A web client (servlet) can store the handle of a
session bean in the HTTPSession object.

For a web-centric (web client only) application we could consider to maintain
the conversational state in a HTTPSession instead of a Stateful Session
Bean. The WebSphere session clustering mechanism serializes the Java
objects stored in the HTTPSession in a database. This approach enables a
scalable and fault-tolerant solution. In this scenario we would implement the
session facade as Stateless Session Bean.

For developing a fault-tolerant, client independent conversational use case
we consider to implement the conversational state with an Entity Bean behind
a Stateless Session facade. This pattern is out of the scope of this redbook.

Custom finders for update transactions
In session facade methods, entity beans are typically activated and loaded by
their homes. The methods gets the primary key fields of the entities via
parameters. To prevent database deadlocks in update transactions we
recommend to define and implement custom finders which lock the rows at
load time (SQL SELECT FOR UPDATE). For a detailed discussion see
11.1.3, “Database deadlocks” on page 186.

Isolation level dependencies
Within a transaction context the isolation level associated with the first
method invocation becomes the required isolation level for all methods
invoked within that transaction. If a method is invoked with a different
isolation level than that of the first method, the IsolationChangeException is
thrown.

In an EJB Session Facade pattern the invoked session method typically
implicitly or explicitly starts (and commits or rolls back) a transaction. The
isolation level attribute of the invoked session methods therefore determines
the isolation level for the transaction context.

Entity method invocations via Copy Helper AccessBeans
An EJB Session Facade collaborates with fine-grained Entity Beans. The
usage of Copy Helper AccessBeans can help to decrease the number of
remote method invocations.

For a detailed discussion see 6.2, “Copy helpers” on page 60.
171



5754Facade.fm Draft Document for Review June 15, 2000 5:50 pm
Granularity

Facades are built by the business logic programmer. The requirements are
usually coming from the use case analysis and define calls to the business
logic. Each of those coherent calls is implemented as a separate facade
method.

An interesting aspect is the size of a facade object. One extreme would be to
define one facade class per invocation. As we get a lot of facade classes, we
do not recommend this. The other extreme leads us to one big facade class
with all interface methods to the business logic included for an application.
This might be a good approach in a small application, but in a bigger
application the facade object is getting very large. The right approach will be
usually in the middle of both extremes. One possibility is to collect the calls
for one subsystem (such as a shopping subsystem or a CRM subsystem) in
one facade class.

Data Objects

Facades will provide a high-level interface to the inside of the components.
This has consequences on input and output parameters of the facade
methods. That means that a facade never returns a reference to an EJB
object as the EJB technology is hidden behind the facade. Instead we may
return only a key to an EJB object. The input and output parameters of a
facade method are coarse grained. A good way of defining and implementing
those parameters is using Data Objects.

A Data Object is a local only object with simple getXXX() and setXXX()

methods. An extreme approach makes a Data Object “immutable” with read
only properties and a special constructor that takes all of the properties in one
shot. This approach reinforces (enforces) the notion that it is a contract object
between two components and prevents the facade client from inadvertently
updating the data. A Data Object is serializable so that it can be passed by
value to and from EJB based implementations for the facade.

In our approach we recommend to use the Data Objects to return results, if
the return value is more than a single primitive type. We are a little more
flexible when it comes to the input parameters. If the method has more than
one, we do not prescribe that there must be a Data Object, although they can
be very handy.

As Data Objects are coded as Java Beans, it is a nice idea to use them
directly in a Java Server Page. That means that the servlet acts as a facade’s
client and therefore executes the business logic by calling the facade
172 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754Facade.fm
methods. The returned Data Object is directly passed to the Java Server
Page, where its data can be displayed.

Since Data Objects transfer data only, an alternative could be XML. Therefore
we must define DTDs for the input and the output parameters of the facade
methods. The signature of all methods would have a string as input
parameter and as the return type. This approach has the advantage that we
are more flexible in defining the contract between the client and the facade.
But on the other hand we have to interpret the incoming and outcoming XML
stream, both in the facade and in the client of the facade. This could be a
performance problem.

10.2.5 Related patterns
Command pattern: If we are developing an e-business architecture with
many EJB it is useful to encapsulate them with the facade pattern. This
solves the problem of the complexity of our business logic but we still have a
performance problem. If the servlet invokes the facade objects directly, we
can get multiple round-trips because different facade objects may be invoked.
This is a good application for the command pattern: The servlet calls the
command which is transferred to the server. There it performs method calls to
the facade. The result, the Data Object, is stored in the command bean and
transferred back to the client.

Figure 87. Collaboration between command pattern and facade pattern

Client
View
(JSP)

Servlet

Server

Business
logic

C
om

m
an

d
B

ea
n

F
ac

ad
e

173



5754Facade.fm Draft Document for Review June 15, 2000 5:50 pm
174 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754P2Optimistic.fm
10.3 Optimistic Locking Pattern

10.3.1 Intent
The optimistic locking pattern ensures entity integrity with short lock cycles.
This approach reduces overall locking overhead and improves total system
throughput and performance.

10.3.2 Motivation
Obviously we expect optimistic locking support as part of the application
server infrastructure (transparent container service).

IBM WebSphere Enterprise Editon / Component Broker 3.02.1 provides
support for optimistic locking through its caching service by mouse-click.

Such an optimistic locking support for entities is neither part of the EJB
specifications nor IBM WebSphere Advanced Edition 3.02.1.

The aim of this section is to provide an application pattern for runtimes
without optimistic locking infrastructure support.

A user request may result in starting a transaction which should also be
terminated before returning an answer to the user. As a general rule,
transactions (and associated locks) should not span user think-time.

We discuss this issue with the proposed locking mechanism approach based
on the following use case.

A user needs to update a customer information. For that purpose, he goes
through the following steps:

• get a copy of customer data
(first transaction)

• modify this copy

• send the copy to the server side to make this update permanent
(second transaction)

It could happen that another user concurrently accesses the same data for
update as described in this scenario:

1. userA requests a copy of customerA’s data

2. userB requests a copy of customerA’s data

3. userA changes customerA’s name from ‘Kurt Weiss’ to ‘Martin Weiss’
© Copyright IBM Corp. 2000 175



5754P2Optimistic.fm Draft Document for Review June 15, 2000 5:50 pm
4. userB changes customerA’s birthday from 57/05/01 to 55/08/08

5. userA sends the changed copy for server-side update

6. userB sends the changed copy for server-side update

How can we prevent that updates done by userB don’t override those of
userA?

The answer resides in the implementation of an update service. This
additional service is in charge of checking that the persistent customer data
has not been modified since a copy was sent to the user.

10.3.3 Applicability
• IBM WebSphere Advanced Edition with

• commit option C (see EJB spec)

10.3.4 Participants
• EJB Session Facade

- generic, unified copy / update service for entities

• EJB Entity home

- findByPrimaryKey (for copy services)

- custom finder (for update services)

• EJB Entity bean

- accessed concurrently from different transactions

- timestamp field

• EJB Entity bean copy

- serializable copy of the bean state

• Database manager

- responsible for managing concurrency with Commit Option C

- timestamp setting via insert and update triggers

10.3.5 Implementation
This section describes the Optimistic Locking pattern for IBM WebSphere
Advanced Edition. The pattern is based on an OptimisticLockService
implemented as a Stateless Session Bean. The OptimisticLockService is a
generic, unified session facade for copying and updating all optimistic
lockable entities.
176 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754P2Optimistic.fm
The introduction of the OptimisticLockService bean has some implications:

• Optimistic lockable Entity Bean

- the remote interface extends from OptimisticLockable (see Figure 88).
The entity bean implements the copy and update methods.

Figure 88. OptimisticLockable interface

- a java.sql.Timestamp field (lastModified) in the implementation of the
bean. The timestamp represents the creation time or the last update of
the bean’s state.

As the timestamp is a usual persistent field, it has to be part of the
underlaying database table.

Responsible for setting the timestamp are database triggers. For each
of the underlaying database table we define two triggers: a
before_insert trigger and a before_update trigger. See Figure 94 on
page 182 for a concrete sample.

This approach makes the scalability of the application easier.
Delegating the timestamp setting to the bean implementation would
rely on synchronized clocks (application server clones). The approach
with the database triggers is application server independent.

We do not implement a getter and setter for the timestamp field in the
bean.

- for the update service: a custom finder in the entity’s home
implementing a read-for-update (with an SQL clause “FOR UPDATE”).
The parameter list includes:

• primary key field(s) of the bean

• timestamp

For the copy service we use the findByPrimaryKey finder method of the
bean’s home.

• implementation of a copy class for each optimistic lockable entity. The
copy class extends from OptimisticLockableEntityCopy (see Figure 89).

public interface OptimisticLockable {
public OptimisticLockableEntityCopy copy() throws

java.rmi.RemoteException;
public void update(OptimisticLockableEntityCopy entityCopy) throws

java.rmi.RemoteException;
}

177



5754P2Optimistic.fm Draft Document for Review June 15, 2000 5:50 pm
Figure 89. OptimisticLockableEntityCopy class

The OptimisticLockableEntityCopy base class has lastModified as a
protected member. Each concrete copy class has to implement the three
methods findEntity(), findEntityForUpdate() and getHomeName().

The getHome() method of base class delegates the naming service (home
lookup and narrow the remote reference to the appropriate type) to the
Home Factory. For a detailed discussion see 10.1, “Factory for EJB
Homes” on page 159.

public abstract class OptimisticLockableEntityCopy implements
java.io.Serializable {

public abstract javax.ejb.EJBObject findEntity() throws
javax.ejb.FinderException, java.rmi.RemoteException;

public abstract javax.ejb.EJBObject findEntityForUpdate() throws
javax.ejb.FinderException, java.rmi.RemoteException;

protected abstract String getHomeName();
public OptimisticLockableEntityCopy(java.sql.Timestamp
argLastModifier) {

lastModified = argLastModified;
}
public java.sql.Timestamp getLastModified() {

return lastModified;
}
protected java.sql.Timestamp lastModified;

}
protected javax.ejb.EJBHome getHome() throws java.rmi.RemoteException {

String homeName = getHomeName();
//HomeFactory class is an implementation of the Factory for EJB Homes
//pattern published in the redbook ’Servlet/JSP/EJB Design
//and Implementation Guide for IBM WebSphere Application Servers’.
//HomeFactory narrows the remote reference to the appropriate type.
javax.ejb.EJBHome home =

itso.dg.ejb.base.HomeFactory.getSingleton().lookupHome(homeName);
if (home == null)

throw new java.rmi.RemoteException("home with name '" + homeName
+ "' not found or narrowing error");

else
return home;

}

178 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754P2Optimistic.fm
The OptimisticLockService (session facade for copying and updating all
optimistic lockable entities) has two methods:

• copy entity

• update entity

For both methods we set the transaction attribute to TX_REQUIRES_NEW.
With this transaction settings we enforce both methods to run in an own
transaction context with a short commit cycle and lock time respectively.

In Figure 90 we show the implementation of the copyEntity method.

Figure 90. CopyEntity method of OptimisticLockService Session Bean

The caller of the copyEntity method instantiates a copy of an entity and sets
the primary key field(s) for the copy request. The copy object with the search
arguments is passed as a parameter to the copy method. The
OptimisticLockService facade delegates the entity search to the findEntity
method of the copy class which invokes the entity’s home findByPrimaryKey.
A findByPrimaryKey does not exclusively lock the row in the underlaying
database.

The OptimisticLockService redirects the copy request to the found entity
bean. The copy method of the entity implementation instantiates and returns
a full blown copy to the facade which returns the serialized copy to the caller.
The copy transaction commits.

public OptimisticLockableEntityCopy
copyEntity(OptimisticLockableEntityCopy copyWithEntitySearchArgs)
throws javax.ejb.FinderException, java.rmi.RemoteException {

//find entity (read-only)
EJBObject ejbObject = copyWithEntitySearchArgs.findEntity();
if (ejbObject instanceof OptimisticLockable) {

return ((OptimisticLockable)
javax.rmi.PortableRemoteObject.narrow(ejbObject,
OptimisticLockable.class)).copy();

}
else

throw new java.rmi.RemoteException("entity bean is not
OptimisticLockable");

}

179



5754P2Optimistic.fm Draft Document for Review June 15, 2000 5:50 pm
In Figure 91 we show the implementation of the updateEntity method.

Figure 91. UpdateEntity method of OptimisticLockService Session Bean

The caller invokes the updateEntity method to synchronize the (updated)
entity copy with the server-side entity state. The OptimisticLockService
facade delegates the entity search to the findEntityForUpdate method of the
copy class which invokes the entity’s home custom finder passing the primary
key fields and the timestamp from the entity copy as parameters.

If findEntityForUpdate() does not throw a FinderException means that no
other transaction has changed the entity state in the meantime. The
OptimisticLockService redirects the update request to the found entity bean.
The update method of the entity implementation synchronizes the entity state
with the copy. The OptimisticLockService then implicitly commits the update
transaction and the database trigger updates the timestamp

The copy method of the entity has to be set to read-only. To prevent a
store at commit (which would update the timestamp via database
trigger) we select the ‘Const method’ checkbox for the copy() method in
the Properties panel of the bean (VisualAge for Java). For a detailed
discussion see 11.1.1, “Read-only methods” on page 185.

copy set to read-only

public void updateEntity(OptimisticLockableEntityCopy entityCopy)
throws OptimisticLockException, java.rmi.RemoteException {

EJBObject ejbObject = null;
try {

//find entity (read-for-update)
ejbObject = entityCopy.findEntityForUpdate();

}
catch(javax.ejb.FinderException finderExcept) {

throw new OptimisticLockException();
}
if (ejbObject instanceof OptimisticLockable) {

((OptimisticLockable)
javax.rmi.PortableRemoteObject.narrow(ejbObject,
OptimisticLockable.class)).update(entityCopy);}

else
throw new java.rmi.RemoteException("entity bean is not
OptimisticLockable");

}

180 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754P2Optimistic.fm
If the findEntityForUpdate() throws a FinderException means that the EJB
does not exist anymore or that another transaction has changed the entity
state reflected by the timestamp. In this case the OptimisticLockService
throws an OptimisticLockException and the transaction rolls back.

10.3.6 Sample code
In this section we show the source for an optimistic lockable Customer entity
bean. Customer has three persistent fields: customerId, name and
lastModified (java.sql.Timestamp).

In Figure 92 we show the copy method implementation of CustomerBean.
The copy method creates a copy of the customer state.

Figure 92. Copy method implementation of CustomerBean

In Figure 93 we show the update method implementation of CustomerBean.
The update method synchronizes the bean state with the customer copy.

The update method of the entity has not to be set to read-only. To
enforce a store at commit (which updates the timestamp via database
trigger) we do not select the ‘Const method’ checkbox for the
update(OptimisticLockableEntityCopy) method in the Properties panel
of the bean (VisualAge for Java). For a detailed discussion see 11.1.1,
“Read-only methods” on page 185.

To prevent database deadlocks we recommend to implement the
custom finder with a SELECT FOR UPDATE. A select for update
acquires an exclusive lock on the corresponding row. For a detailed
discussion see 11.1.3, “Database deadlocks” on page 186.

update not set to read-only

public OptimisticLockableEntityCopy copy() {
OptimisticLockableCustomerCopy copy = new

OptimisticLockableCustomerCopy(customerId, name, lastModified);
return copy;

}

181



5754P2Optimistic.fm Draft Document for Review June 15, 2000 5:50 pm
Figure 93. Update method implemention of CustomerBean

In Figure 94 we show the creation of the two database triggers (before insert
/ before update).

Figure 94. Database triggers for timestamp setting

In Figure 95 we show the source for the read-for-update custom finder (finder
helper interface and class).

public void update(OptimisticLockableEntityCopy entityCopy) {
OptimisticLockableCustomerCopy copy =

(OptimisticLockableCustomerCopy) entityCopy;
//update entity fields
setName(copy.getName());

}

db2 create trigger cust_ins_timestamp no cascade before insert
on ITSO.CUSTOMER referencing new as CUST for each row mode db2sql
set CUST.LASTMODIFIED = CURRENT TIMESTAMP

db2 create trigger cust_upd_timestamp no cascade before update
on ITSO.CUSTOMER referencing new as CUST for each row mode db2sql
set CUST.LASTMODIFIED = CURRENT TIMESTAMP
182 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754P2Optimistic.fm
Figure 95. Read-for-update custom finder implementation

In Figure 96 we illustrate the implementation of the Customer copy class.

The constructor OptimisticLockableCustomerCopy(String argCustomerId) is
used to specify the primary key field (customerId) of the customer to copy
(passed as parameter in copyEntity method of the OptimisticLockService
facade).

public interface CustomerBeanFinderHelper {
public java.sql.PreparedStatement

findByPrimaryKeyForUpdate(CustomerKey customerKey,
java.sql.Timestamp timestamp) throws Exception;

}

public class CustomerBeanFinderObject extends
com.ibm.vap.finders.VapEJSJDBCFinderObject implements
CustomerBeanFinderHelper {

public CustomerBeanFinderObject() {
super();

}
public java.sql.PreparedStatement
findByPrimaryKeyForUpdate(CustomerKey customerKey,
java.sql.Timestamp timestamp) throws Exception {

java.sql.PreparedStatement ps = null;
ps = getMergedPreparedStatement("T1.customerId = ? and
T1.lastmodified = ? FOR UPDATE");
ps.setString(1, customerKey.customerId);
ps.setObject(2, timestamp);
return ps;

}
}

183



5754P2Optimistic.fm Draft Document for Review June 15, 2000 5:50 pm
Figure 96. Implementation of Customer copy class

10.3.7 Related patterns
• EJB Session Facade

• EJB Home Factory

public class OptimisticLockableCustomerCopy extends
OptimisticLockableEntityCopy {

private String customerId;
private String name;
public OptimisticLockableCustomerCopy(String argCustomerId) {

super(0);
customerId = argCustomerId;

}
public OptimisticLockableCustomerCopy(String argCustomerId, String
argName, java.sql.Timestamp argTimestamp) {

super(argTimestamp);
customerId = argCustomerId;
name = argName;

}
public javax.ejb.EJBObject findEntity() throws
java.rmi.RemoteException, javax.ejb.FinderException {

//get narrowed home reference from base class
CustomerHome customerHome = (CustomerHome) getHome();
return customerHome.findByPrimaryKey(new

CustomerKey(customerId));
}
public javax.ejb.EJBObject findEntityForUpdate() throws
java.rmi.RemoteException, javax.ejb.FinderException {

//get narrowed home reference from base class
CustomerHome customerHome = (CustomerHome) getHome();
return customerHome.findByPrimaryKeyForUpdate(new

CustomerKey(getCustomerId()), getTimestamp());
}
public String getCustomerId() {

return customerId;
}
public String getName() {

return name;
}
protected String getHomeName() {

return "Customer";
}

}

184 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754P2dbaccess.fm
Chapter 11. EJB Performance Guidelines

11.1 Database access

The following considerations are valid for EJB deployment on IBM
WebSphere Advanced.

11.1.1 Read-only methods
The EJB specification does not provide a standard mechanism to allow a
container to check if the bean’s state has changed within a unit of work.

VisualAge for Java allows the bean developer to define the method types
(read-only/update) as an IBM extension to the EJB spec with the Const
Method checkbox in the control descriptor of the bean’s Properties panel
(Method screen). A selected checkbox means read-only, non checked is a
update method. Default is update (non read-only).

Figure 97. Read-only flag in the control descriptor of VisualAge for Java

When deploying the EJB on IBM WebSphere Advanced the container runtime
only stores a bean’s state if at least one non read-only (update) method has
been invoked during a transaction. This eliminates unnecessary SQL
UPDATE at commit time, for example for getters that do not change the entity
state.
© Copyright IBM Corp. 2000 185



5754P2dbaccess.fm Draft Document for Review June 15, 2000 5:50 pm
When an update (non read-only) method is invoked on a bean and the bean is
not active, the container runtime will load the bean using the Persister
loadForUpdate method. This method will (typically) acquire a lock on the
bean’s state in the underlying data store.

11.1.2 Transaction lifecycle
Locking mechanisms are used by database managers to handle resource
allocation among many users without compromising data integrity. While
necessary and valuable, locking tends to impact the ability to handle multiple
requests for the same data resource concurrently.

As a general rule transactions should not span user think-time. A transaction
lives between the reception of a user request and the return of the response.
A user should not control transaction demarcation.

The introduction of the Session Facade design pattern supports this locking
strategy. The facade handles the transaction demarcation explicitly
(TX_BEAN_MANAGED) or delegates the transaction life cycle to the
container (TX_REQUIRES) which implicitly starts and commits (or rollbacks)
a transaction.

The first, and least exclusive alternative is optimistic locking. With optimistic
locking updates are not actually attempted until all business conditions are
met. The side affect of this approach is that the original data values must be
revalidated before update are actually applied. For a detailed discussion see
10.3, “Optimistic Locking Pattern” on page 175.

11.1.3 Database deadlocks
The implementation of the withdraw method (see Figure 98) leads to a
database deadlock when two clients concurrently try to withdraw from the
same account. The assumption is that the invoked withdraw method which is
part of a session facade and Account.withdraw both have transaction
attribute TX_REQUIRES and isolation level TRANSACTION_SERIALIZABLE
or TRANSACTION_REPEATABLE_READ. Other transaction attribute /
isolation level combinations probably do not run into deadlocks, but could
lead to data inconsistency.

The deadlock detection is database implementation specific. In UDB both
threads are waiting until lock time-out is reached. Then the database
manager aborts one of the thread with an “SQL0911N The current transaction
has been rolled back” exception. The other thread continues and will end
(eventually) correctly.
186 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754P2dbaccess.fm
Figure 98. withdraw from account with deadlock potential

The Acount’s home findByPrimaryKey methods activates and loads the
account bean for the first transaction with a SQL SELECT from the database
(read-only). The finder of the second transaction can concurrently load the
same bean state because the database manager have acquired a shared
(read) lock on this row. Both transactions now withdraw the amount from the
same balance. Because Account.withdraw is a non-const (update) method
both transactions try to store the account’s state (including the wrong
balance) at commit time. The database manager responsible for concurrency
attempts to convert their shared locks to exclusive locks.This leads to a
deadlock. Both transactions are waiting the termination of the other. The
database manager resolves the waiting conflict when the locks time out and
rollback one of theme.

Depending on the lock time-out parameter both transactions can be blocked
for a reasonable time.

In Figure 99 we illustrate the solution to prevent deadlocks. The account is
loaded via a SELECT FOR UPDATE (custom finder in AccountHome). Now
the database manager serializes the two transactions at bean load time. The
account state for the second transaction can not be loaded while the first
transaction is still active. Both transaction can (eventually) run correctly.

Figure 99. withdraw from account without deadlock potential

The Client Console of WebSphere Advanced Enterprise Editon 3.02 has a
checkbox ‘Find for update’ in the EnterpriseBean notebook Advanced tab.

public void withdraw(String accountId, java.math.BigDecimal amount)
throws javax.ejb.FinderException, java.rmi.RemoteException {

Account account = getAccountHome().findByPrimaryKey(new
AccountKey(accountId));

account.withdraw(amount);
}

public void withdraw(String accountId, java.math.BigDecimal amount)
throws javax.ejb.FinderException, java.rmi.RemoteException {

Account account = getAccountHome().findForUpdate(accountId));
account.withdraw(amount);

}

Chapter 11. EJB Performance Guidelines 187



5754P2dbaccess.fm Draft Document for Review June 15, 2000 5:50 pm
Checking this box means: the findByPrimaryKey method of all homes are
invoked with the FOR UPDATE clause. To prevent unnecessary serializations
for read-only transactions, we have decided to implement a custom finder.

It is worth to say that when an update (non-const) is invoked on a bean and
the bean is not active, the container runtime will implicitly load the bean using
the Persister loadForUpdate. However with the preferred Session Facade
pattern a bean will obviously be loaded via home finder. That mean: the
non-const flag has no influence for the bean load.

11.1.4 Caching
commit options and database connections.

WebSphere Advanced supports Commit Option A (Entity Beans cached
between transactions) and Commit Option C (Entity Beans not cached
between transaction). Commit Option A dramatically reduces the number of
db access in comparison to Option C, but has some concerns.This chapter
describes the pros and cons of the options and compares the state transitions
(activation / passivation)..

A concurrency control mechanism is needed by the container (or the
underlaying database) to control concurrent access to entity bean instances.
The aim of the container’s concurrency control and caching mechanism is to
allow concurrent transactions to access a single entity bean instance in such
a way that concurrent requests will still be serialized with respect to their
access to the bean instance. For IBM WebSphere Advanced, the container
concurreny control/caching mechanisme performs concurrency control in
object space for beans cached between transactions (Commit Option A) and
delegates concurrency control to the database for beans that are not cached
(Commit Option C).

Entities not cached between transactions (Commit Option C)
In IBM WebSphere Advanced when a bean is not cached between
transactions there is always a transaction associated with the bean’s
persistent state at the database; that means: the transaction used to load the
bean’s persistent state when it first joined the transaction. The database will
ensure that this transaction is isolated with respect to other database
transations by locking the bean’s persistent state. What type of locks are
taken, and the duration of the locks are all questions that must consider in
order to understand what type of behavior to expect from this strategy.
188 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:50 pm 5754P2dbaccess.fm
Entities cached between transactions (Commit Option A)
IBM WebSphere Advanced Edition supports commit option A. This is done at
the enterprise bean level by specifying the database access level. Option A is
activated by selecting Exclusive on the Database access parameter.

In that case transaction isolation is ensured by the container instead of being
delegated to the database. Because of its exclusive access to the database,
the container caches the enterprise beans and does not systematically load
and store the bean state between transactions. It improves performances but
prevents other application from sharing the same database records.
Chapter 11. EJB Performance Guidelines 189



5754P2dbaccess.fm Draft Document for Review June 15, 2000 5:50 pm
190 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:51 pm 5754spec.fm
Appendix A. Special notices

This publication is intended to help application developers and architects to
design e-business type of applications. The information in this publication is
not intended as the specification of any programming interfaces that are
provided by VisualAge for Java or IBM WebSphere Advanced Edition. See the
PUBLICATIONS section of the IBM Programming Announcement for
VisualAge for Java or IBM WebSphere Advanced Edition for more information
about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
© Copyright IBM Corp. 2000 191



5754spec.fm Draft Document for Review June 15, 2000 5:51 pm
attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli
A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through The Open Group.

IBM �
192 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:51 pm 5754spec.fm
SET and the SET logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
Appendix A. Special notices 193



5754spec.fm Draft Document for Review June 15, 2000 5:51 pm
194 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:51 pm 5754bibl.fm
Appendix B. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

B.1 IBM Redbooks publications

For information on ordering these publications see “How to get IBM
Redbooks” on page 197.

• Servlet and JSP Programming with IBM WebSphere Studio and VisualAge
for Java, SG24-5755-00

• Patterns for e-business: User-to-Business Patterns for Topology 1 and 2
using WebSphere Advanced Edition, SG24-5864-00

• IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay
Network Dispatcher, SG24-5858

• VisualAge for Java Enterprise Version 3: Persistence Builder with GUIs,
Servlets, and Java Server Pages, SG24-5426-00

• WebSphere V3 Performance Tuning Guide, SG24-5657

• The XML Files: Using XML and XSL with IBM WebSphere V3.0,
SG245479

B.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177

Networking and Systems Management Redbooks Collection SK2T-6022

Transaction Processing and Data Management Redbooks Collection SK2T-8038

Lotus Redbooks Collection SK2T-8039

Tivoli Redbooks Collection SK2T-8044

AS/400 Redbooks Collection SK2T-2849

Netfinity Hardware and Software Redbooks Collection SK2T-8046

RS/6000 Redbooks Collection (BkMgr) SK2T-8040

RS/6000 Redbooks Collection (PDF Format) SK2T-8043

Application Development Redbooks Collection SK2T-8037

IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 2000 195

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/


5754bibl.fm Draft Document for Review June 15, 2000 5:51 pm
B.3 Other resources

These publications are also relevant as further information sources:

• Design Patterns: Elements of Reusable Object Oriented Software
(Addison-Wesley Professional Computing Series)

B.4 Referenced Web sites

These Web sites are also relevant as further information sources:

• http://www-4.ibm.com/software/developer/web/patterns/
196 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:51 pm 5754ord.fm
How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2000 197

http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl  
mailto:usib6fpl@ibmmail.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl


5754ord.fm Draft Document for Review June 15, 2000 5:51 pm
IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
198 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:51 pm 5754glos.fm
Glossary

This glossary defines terms and abbreviations that
are used in this book. If you do not find the term
you are looking for, refer to the IBM Dictionary of
Computing, New York: McGraw-Hill, 1994.

This glossary includes terms and definitions from
the American National Standard Dictionary for
Information Systems, ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies may be
purchased from the American National Standards
Institute, 1430 Broadway, New York, New York
10018.

A
abstract class. A class that provides common
behavior across a set of subclasses but is not
itself designed to have instances that work. An
abstract class represents a concept; classes
derived from it represent implementations of the
concept. See also base class.

access application. Generated by the Data
Access Builder for each schema mapping, an
executable GUI that provides access to the
database using the other classes generated for
the mapping.

accessor methods. Methods that an object
provides to define the interface to its instance
variables. The accessor method to return the
value of an instance variable is called a get
method or getter method, and the accessor
method to assign a value to an instance variable is
called a set method or setter method.

applet. A Java program designed to run within a
Web browser. Contrast with application.

application. In Java programming, a
self-contained, stand-alone Java program that
includes a main() method. Contrast with applet.

application server. A server program that allows
the installation of application specific software
components, in a manner so that they can be
© Copyright IBM Corp. 2000
remotely invoked, usually by some for of remote
object method call.

argument. A data element, or value, included as a
bean in a method call. Arguments provide
additional information that the called method can
use to perform the requested operation.

attribute. A specification of a property of a bean.
For example, a customer bean could have a name
attribute and an address attribute. An attribute can
itself be a bean with its own behavior and
attributes. In the Data Access Builder, the aspect
of a schema mapping that represents a column in
a database table.

B
base class. A class from which other classes or
beans are derived. A base class may itself be
derived from another base class. See also
abstract class.

bean. A definition or instance of a JavaBeans
component. See also JavaBeans.

BeanInfo. (1) A companion class for a bean that
defines a set of methods that can be accessed to
retrieve information on the bean’s properties,
events, and methods. (2) In the VisualAge for
Java IDE, a page in the class browser that
provides bean information.

Bean-managed persistence. When an
Enterprise JavaBeans performs its own long-term
state management.

beans palette. In the Visual Composition Editor, a
two-column pane that contains prefabricated
beans that you can select and manipulate to
create programs. The left column contains
categories of beans, and the right column contains
beans for the selected category. The default set of
beans generally represents JDK AWT
components. You can add your own categories
and beans to the beans palette.

break point. A point in a computer program where
the execution can be halted.
199



5754glos.fm Draft Document for Review June 15, 2000 5:51 pm
browser. (1) In VisualAge for Java, a window that
provides information on program elements. There
are browsers for projects, packages, classes,
methods, and interfaces. (2) An Internet-based tool
that lets users browse Web sites.

C
C++ Access Builder. A VisualAge for Java
Enterprise tool that generates beans to access C
and C++ DLLs.

category. In the Visual Composition Editor, a
selectable grouping of beans represented by an
icon in the left-most column. Selecting a category
displays the beans belonging to that category in the
next column. See also beans palette.

CICS Access Builder. A VisualAge for Java
Enterprise tool that generates beans to access
CICS transactions through the CICS Gateway for
Java and CICS Client.

CICS Client. A server program that processes
CICS ECI calls, forwarding transaction requests to
a CICS program running on a host.

CICS ECI. An API that provides C and C++
programs with procedural access to transactions.

CICS Gateway for Java. A server program that
processes Java ECI calls and forwards CICS ECI
calls to the CICS Client.

class. An aggregate that defines properties,
operations, and behavior for all instances of that
aggregate.

class hierarchy. The relationships between
classes that share a single inheritance. All Java
classes inherit from the Object class.

class library. A collection of classes.

class method. See method.

CLASSPATH. In your deployment environment, the
environment variable that specifies the directories
in which to look for class and resource files.

client/server. The model of interaction in
distributed data processing where a program at one
location sends a request to a program at another
location and awaits a response. The requesting

program is called a client, and the answering
program is called a server.

client-side server proxy. Generated by the RMI
Access Builder, a local representative of a remote
bean. This proxy provides access to the operations
of the server bean, allowing a Java client to work
with it as if it were the server bean. See also proxy
bean and server-side server proxy.

Class Browser. In the VisualAge for Java IDE, a
tool used to browse the classes loaded in the
workspace.

collection. A set of features in which each feature
is an object.

commit. The operation that ends a unit of work and
updates the database such that other processes
can access any changes made.

Common Object Request Broker Architecture
(CORBA). A middleware specification which
defines a software bus—the Object Request Broker
(ORB)—that provides the infrastructure.

communications area (COMMAREA). In a CICS
transaction program, a group of records that
describes both the format and volume of data used.

component model. An architecture and an API
that allows developers to define reusable segments
of code that can be combined to create a program.
VisualAge for Java uses the JavaBeans component
model.

composite bean. A bean that is composed of a
bean and one or more subbeans. A composite bean
can contain visual beans, nonvisual beans, or both.
See also nonvisual bean, bean, and visual bean.

concrete class. A subclass of an abstract class
that is a specialization of the abstract class.

connection. In the Visual Composition Editor, a
visual link between two components that represents
the relationship between the components. Each
connection has a source, a target, and other
properties. See also event-to-method connection,
event-to-property connection, parameter
connection, property-to-method connection, and
property-to-property connection.

console. In VisualAge for Java, the window that
acts as the standard input (System.in) and standard
200 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:51 pm 5754glos.fm
output (System.out) device for programs running in
the VisualAge for Java IDE.

Container-managed persistence. When an
Enterprise JavaBeans server manages a bean’s
long term state.

construction from parts. A software development
technology in which applications are assembled
from existing and reusable software components,
known as parts. In VisualAge for Java, parts are
called beans.

constructor. A special class method that has the
same name as the class and is used to construct
and possibly initialize objects of its class type.

container. A component that can hold other
components. In Java, examples of containers
include applets, frames, and dialogs. In the Visual
Composition Editor, containers can be graphically
represented and generated.

current edition. The edition of a program element
that is currently in the workspace. See also open
edition.

cursor. A database control structure used by the
Data Access Builder to point to a specific row within
some ordered set of rows and to retrieve rows from
a set, possibly making updates or deletions.

D
data abstraction. A data type with a private
representation and a public set of operations. The
Java language uses the concept of classes to
implement data abstraction.

Data Access Builder. A VisualAge for Java
Enterprise tool that generates beans to access and
manipulate the content of JDBC/ODBC-compliant
relational databases.

DB2 for MVS/ESA. An IBM relational database
management system for the MVS operating
system.

double-byte character set (DBCS). A set of
characters in which each character is represented
by 2 bytes. Languages such as Japanese, Chinese,
and Korean, which contain more symbols than can
be represented by 256 code points, require

double-byte character sets. Compare with
single-byte character set.

Distributed Computing Environment (DCE).
Adopted by the computer industry as a de facto
standard for distributed computing. DCE allows
computers from a variety of vendors to
communicate transparently and share resources
such as computing power, files, printers, and other
objects in the network.

Distributed Component Object Model (DCOM). A
protocol that enables software components to
communicate directly over a network in a reliable,
secure, and efficient manner. Previously called
"Network OLE," DCOM is designed for use across
multiple network transports, including Internet
protocols such as HTTP. DCOM is based on the
Open Software Foundation's DCE-RPC
specification and works with both Java applets and
ActiveX components through its use of the
Component Object Model (COM).

dynamic link library (DLL). A file containing
executable code and data bound to a program at
run time rather than at link time. The C++ Access
Builder generates beans and C++ wrappers that let
your Java programs access C++ DLLs.

E
edition. A specific “cut” of a program element.
VisualAge for Java supports multiple editions of
program elements. See also current edition, open
edition, and versioned edition.

encapsulation. The hiding of a software object’s
internal representation. The object provides an
interface that queries and manipulates the data
without exposing its underlying structure.

enterprise access builders. In VisualAge for Java
Enterprise, a set of code-generation tools. See also
C++ Access Builder, CICS Access Builder, Data
Access Builder, and RMI Access Builder.

Enterprise JavaBeans. A server component
developed by SUN Microsystems.

event. An action by a user program, or a
specification of a notification that may trigger
specific behavior. In JDK 1.1, events notify the
201



5754glos.fm Draft Document for Review June 15, 2000 5:51 pm
relevant listener classes to take appropriate
actions.

event-to-method connection. A connection from
an event generated by a bean to a method of
another bean. When the connected event occurs,
the method is executed. See also connection.

event-to-property connection. A connection that
changes the value of a property when a certain
event occurs. See also connection.

F
feature. (1) A major component of a software
product that can be installed separately. (2) In
VisualAge for Java, a method, field, or event that is
available from a bean’s interface and to which other
beans can connect.

field. A data object in a class. For example, a
customer class could have a name field and an
address field. A field can itself be an object with its
own behavior and fields. By default, a field, in
contrast to a property, does not support event
notification.

free-form surface. The large open area of the
Visual Composition Editor where you can work with
visual and nonvisual beans. You add, remove, and
connect beans on the free-form surface.

framework. A set of cooperative classes with
strong connections that provide a template for
development.

G
garbage collection. A Smalltalk process for
periodically identifying unreferenced objects and
deallocating their memory.

gateway. A host computer that connects networks
that communicate in different languages. For
example, a gateway connects a company’s LAN to
the Internet.

graphical user interface (GUI). A type of interface
that enables users to communicate with a program
by manipulating graphical features, rather than by
entering commands. Typically, a graphical user
interface includes a combination of graphics,

pointing devices, menu bars and other menus,
overlapping windows, and icons.

H
hypertext. Text in a document that contains a
hidden link to other text. You can click a mouse on a
hypertext word and it will take you to the text
designated in the link. Hypertext is used in
Windows help programs and CD encyclopedias to
jump to related references elsewhere within the
same document. Hypertext can link–using HTTP
over the Web–to any Web document in the world,
with only a single mouse click.

Hypertext Markup Language (HTML). The basic
language that is used to build hypertext documents
on the World Wide Web. It is used in basic, plain
ASCII-text documents, but when those documents
are interpreted (rendered) by a Web browser such
as Netscape, the document can display formatted
text, color, a variety of fonts, graphics images,
special effects, hypertext jumps to other Internet
locations, and information forms.

Hypertext Transfer Protocol (HTTP). The protocol
for moving hypertext files across the Internet.
Requires an HTTP client program on one end, and
an HTTP server program on the other end.

I
inheritance. (1) A mechanism by which an object
class can use the attributes, relationships, and
methods defined in more abstract classes related to
it (its base classes). (2) An object-oriented
programming technique that allows you to use
existing classes as bases for creating other
classes.

instance. Synonym for object, a particular
instantiation of a data type.

Integrated Development Environment (IDE). In
VisualAge for Java, the set of windows that provide
the user with access to development tools. The
primary windows are Workbench, Log, Console,
Debugger, and Repository Explorer.

interchange file. A file that you can export from
VisualAge for Java that contains information about
202 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:51 pm 5754glos.fm
selected projects or packages. This file can then be
imported into any VisualAge for Java session.

interface. A set of methods that can be accessed
by any class in the class hierarchy. The Interface
page in the Workbench lists all interfaces in the
workspace.

Internet. The vast collection of interconnected
networks that use TCP/IP and evolved from the
ARPANET of the late 1960s and early 1970s.

intranet. A private network, inside a company or
organization, that uses the same kinds of software
that you would find on the public Internet. Many of
the tools used on the Internet are being used in
private networks; for example, many companies
have Web servers that are available only to
employees.

Internet Protocol (IP). The rules that provide basic
Internet functions. See Transmission Control
Protocol/Internet Protocol.

IP number. An Internet address that is a unique
number consisting of four parts separated by dots,
sometimes called a dotted quad (for example:
198.204.112.1). Every Internet computer has an IP
number, and most computers also have one or
more domain names that are plain language
substitutes for the dotted quad.

J
Java. A programming language invented by Sun
Microsystems that is specifically designed for
writing programs that can be safely downloaded to
your computer through the Internet and immediately
run without fear of viruses or other harm to your
computer or files. Using small Java programs
(called applets), Web pages can include functions
such as animation, calculators, and other fancy
tricks. We can expect to see a huge variety of
features added to the Web through Java, because
you can write a Java program to do almost anything
a regular computer program can do and then
include that Java program in a Web page.

Java archive (JAR). A platform-independent file
format that groups many files into one. JAR files are
used for compression, reduced download time, and

security. Because the JAR format is written in Java,
JAR files are fully extensible.

JavaBeans. In JDK 1.1, the specification that
defines the platform-neutral component model used
to represent parts. Instances of JavaBeans (often
called beans) may have methods, properties, and
events.

Java Database Connectivity (JDBC). In JDK 1.1,
the specification that defines an API that enables
programs to access databases that comply with this
standard.

Java Naming and Directory Interace. The Java
standard API for accessing directory services, such
as LDAP, COS Naming, and others.

Java Native Interface (JNI). In JDK 1.1, the
specification that defines a standard naming and
calling convention so that the Java virtual machine
can locate and invoke methods written in a
language different from Java. See also native
method.

JTA. Java transaction API.

JTS. The Java Transaction Service based on the
CORBA Transaction Service which provides a way
for middleware vendors to build interoperable
transactional middleware.

K
keyword. A predefined word, reserved for Java,
that cannot be used as an identifier.

L
LDAP. Lightweight Directory Access Protocol for
accessing X.500 directories.

legacy code. Existing code that a user might have.
Legacy applications often have character-based,
nongraphical user interfaces. Usually they are
written in a non-object-oriented language, such as
C or COBOL.

listener. In JDK 1.1, a class that receives and
handles events.

local area network (LAN). A computer network
located on a user’s establishment within a limited
203



5754glos.fm Draft Document for Review June 15, 2000 5:51 pm
geographical area. A LAN typically consists of one
or more server machines providing services to a
number of client workstations.

log. In VisualAge for Java, the window that displays
messages and warnings during development.

M
mapping. See schema mapping.

member. (1) A data object in a structure or a union.
(2) In Java, classes and structures can also contain
functions and types as members.

method. A fragment of Java code within a class
that can be invoked and passed a set of parameters
to perform a specific task.

method call. A communication from one object to
another that requests the receiving object to
execute a method. A method call consists of a
method name that indicates the requested method
and the arguments to be used in executing the
method. The method call always returns some
object to the requesting object as the result of
performing the method. Synonym for message.

message. A request from one object that the
receiving object implement a method. Because data
is encapsulated and not directly accessible, a
message is the only way to send data from one
object to another. Each message specifies the
name of the receiving object, the method to be
implemented, and any arguments the method
needs for implementation. Synonym for method
call.

model. A nonvisual bean that represents the state
and behavior of an object, such as a customer or an
account. Contrast with view.

N
native method. Method written in a language other
than Java that can be called by a Java object
through the JNI specification.

named package. In the VisualAge for Java IDE, a
package that has been explicitly named and
created.

nonvisual bean. In the Visual Composition Editor,
a bean that has no visual representation at run
time. A nonvisual bean typically represents some
real-world object that exists in the business
environment. Compare with model. Contrast with
view and visual bean.

notification framework. In JDK 1.1, a set of
classes that implement the notifier/listener protocol.
The notification framework is the base of the
construction from beans technology (Visual
Composition Editor).

O
object. (1) A computer representation of something
that a user can work with to perform a task. An
object can appear as text or an icon. (2) A collection
of data and methods that operate on that data,
which together represent a logical entity in the
system. In object-oriented programming, objects
are grouped into classes that share common data
definitions and methods. Each object in the class is
said to be an instance of the class. (3) An instance
of an object class consisting of attributes, a data
structure, and operational methods. It can represent
a person, place, thing, event, or concept. Each
instance has the same properties, attributes, and
methods as other instances of the object class,
although it has unique values assigned to its
attributes.

object class. A template for defining the attributes
and methods of an object. An object class can
contain other object classes. An individual
representation of an object class is called an object.

object factory. A nonvisual bean capable of
dynamically creating new instances of a specified
bean. For example, during the execution of an
application, an object factory can create instances
of a new class to collect the data being generated.

object-oriented programming (OOP). A
programming approach based on the concepts of
data abstraction and inheritance. Unlike procedural
programming techniques, object-oriented
programming concentrates on those data objects
that constitute the problem and how they are
manipulated, not on how something is
accomplished.
204 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:51 pm 5754glos.fm
Object Request Broker (ORB). A CORBA term
designating the means by which objects
transparently make requests and receive
responses from objects, whether they are local or
remote.

ODBC driver. A DLL that implements ODBC
function calls and interacts with a data source.

Open Database Connectivity (ODBC). A
Microsoft developed C database API that allows
access to database management systems calling
callable SQL, which does not require the use of an
SQL preprocessor. In addition, ODBC provides an
architecture that allows users to add modules
(database drivers) that link the application to their
choice of database management systems at run
time. Applications no longer need to be directly
linked to the modules of all the database
management systems that are supported.

open edition. An edition of a program element that
can still be modified; that is, the edition has not
been versioned. An open edition may reside in the
workspace as well as in the repository.

operation. A method or service that can be
requested of an object.

overloading. An object-oriented programming
technique that allows redefinition of methods when
the methods are used with class types.

P
package. A program element that contains related
classes and interfaces.

palette. See beans palette.

parameter connection. A connection that satisfies
a parameter of an action or method by supplying
either a property’s value or the return value of an
action, method, or script. The parameter is always
the source of the connection. See also connection.

parent class. The class from which another bean
or class inherits data, methods, or both.

part. An existing, reusable software component. In
VisualAge for Java, all parts created with the Visual
Composition Editor conform to the JavaBeans
component model and are referred to as beans.

See also nonvisual bean and visual bean. Compare
with Class Editor and Composition Editor.

primitive bean. A basic building block of other
beans. A primitive bean can be relatively complex in
terms of the function it provides.

private. In Java, an access modifier associated
with a class member. It allows only the class itself to
access the member.

process. A collection of code, data, and other
system resources, including at least one thread of
execution, that performs a data processing task.

program. In VisualAge for Java, a term that refers
to both Java applets and applications.

project. In VisualAge for Java, the topmost kind of
program element. A project contains Java
packages.

promote features. Make features of a subbean
available to be used for making connections. This
applies to subbeans that are to be included in other
beans, for example, a subbean consisting of three
push buttons on a panel. If this sample subbean is
placed in a frame, the features of the push buttons
would have to be promoted to make them available
from within the frame.

property. An initial setting or characteristic of a
bean; for example, a name, font, text, or positional
characteristic.

property sheet. In the Visual Composition Editor, a
set of name-value pairs that specify the initial
appearance and other bean characteristics. A
bean’s property sheet can be viewed from the
Properties secondary window.

property-to-method connection. A connection
that calls a method whenever a property’s value
changes. It is similar to an event-to-method
connection because the property’s event ID is used
to notify the method when the value of the property
changes. See also connection.

property-to-property connection. A connection
from a property of one bean to a property of another
bean. When one property is updated, the other
property is updated automatically. See also
connection.
205



5754glos.fm Draft Document for Review June 15, 2000 5:51 pm
property-to-method connection. A connection
from a property of a bean to a method. When the
property undergoes a state change, the method is
called. See also connection.

protected. In Java, an access modifier associated
with a class member. It allows the class itself,
subclasses, and all classes in the same package to
access the member.

protocol. (1) The set of all messages to which an
object will respond. (2) Specification of the structure
and meaning (the semantics) of messages that are
exchanged between a client and a server. (3)
Computer rules that provide uniform specifications
so that computer hardware and operating systems
can communicate. It is similar to the way that mail,
in countries around the world, is addressed in the
same basic format so that postal workers know
where to find the recipient’s address, the sender’s
return address, and the postage stamp. Regardless
of the underlying language, the basic protocols
remain the same.

prototype. A method declaration or definition that
includes both the return type of the method and the
types of its arguments.

proxy bean. A group of client-side and server-side
objects that represent a remote server bean. The
top-level class that implements the proxy bean is
the client-side server proxy. See also client-side
server proxy and server-side server proxy.

R
Remote Method Invocation (RMI). In JDK 1.1, the
API that enables you to write distributed Java
programs, allowing methods of remote Java objects
to be accessed from other Java virtual machines.

remote object instance manager. Creates and
manages instances of RMI server beans through
their associated server-side server proxies.

repository. In VisualAge for Java, the storage area,
separate from the workspace, that contains all
editions (both open and versioned) of all program
elements that have ever been in the workspace,
including the current editions that are in the
workspace. You can add editions of program
elements to the workspace from the repository.

Repository Explorer. In VisualAge for Java, the
window from which you can view and compare
editions of program elements that are in the
repository.

resource file. A noncode file that can be referred to
from your Java program in VisualAge for Java.
Examples include graphics and audio files.

RMI Access Builder. A VisualAge for Java
Enterprise tool that generates proxy beans and
associated classes and interfaces so you can
distribute code for remote access, enabling
Java-to-Java solutions.

RMI compiler. The compiler that generates stub
and skeleton files that facilitate RMI
communication. This compiler can be automatically
invoked by the RMI Access Builder or from the
Tools menu item.

RMI registry. A server program that allows remote
clients to get a reference to a server bean.

roll back. The process of restoring data changed
by SQL statements to the state at its last commit
point.

S
schema. In the Data Access Builder, the
representation of the database that will be mapped.

schema mapping. In the Data Access Builder, a
set of definitions for all attributes matching all
columns for your database table, view, or SQL
statement. The mapping contains the information
required by the Data Access Builder to generate
Java classes.

Scrapbook. In VisualAge for Java, the window
from which you can write and test fragments of
code, without having to define an encompassing
class or method.

server. A computer that provides services to
multiple users or workstations in a network; for
example, a file server, a print server, or a mail
server.

server bean. The bean that is distributed using RMI
services and deployed on a server.
206 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:51 pm 5754glos.fm
server-side server proxy. Generated by the RMI
Access Builder, a companion class to the client-side
server proxy, facilitating client-side server proxy
communication over RMI. See also client-side
server proxy and proxy bean.

service. A specific behavior that an object is
responsible for exhibiting.

single-byte character set. A set of characters in
which each character is represented by a 1- byte
code.

SmartGuide. In IBM software products, an
interface that guides you through performing
common tasks.

SQL predicate. The conditional part of an SQL
statement.

sticky. In the Visual Composition Editor, the mode
that enables an application developer to add
multiple beans of the same class (for example,
three push buttons) without going back and forth
between the beans palette and the free-form
surface.

stored procedure. A procedure that is part of a
relational database. The Data Access Builder can
generate Java code that accesses stored
procedures.

superclass. See abstract class and base class.

T
Transmission Control Protocol/Internet
Protocol (TCP/IP). The basic programming
foundation that carries computer messages around
the globe through the Internet. The suite of
protocols that defines the Internet. Originally
designed for the UNIX operating system, TCP/IP
software is now available for every major kind of
computer operating system. To be truly on the
Internet, your computer must have TCP/IP
software.

tear-off property. A property that a developer has
exposed to work with as though it were a
stand-alone bean.

thread. A unit of execution within a process.

tool bar. The strip of icons along the top of the
free-form surface. The tool bar contains tools to
help an application developer construct composite
beans.

transaction. In a CICS program, an event that
queries or modifies a database that resides on a
CICS server.

type. In VisualAge for Java, a generic term for a
class or interface.

U
Unicode. A character coding system designed to
support the interchange, processing, and display of
the written texts of the diverse languages of the
modern world. Unicode characters are normally
encoded using 16-bit integral unsigned numbers.

uniform resource locator (URL). A standard
identifier for a resource on the World Wide Web,
used by Web browsers to initiate a connection. The
URL includes the communications protocol to use,
the name of the server, and path information
identifying the objects to be retrieved on the server.
A URL looks like this:

http://www.matisse.net/seminars.html

or telnet://well.sf.ca.us.br

or news:new.newusers.question.br

user interface (UI). (1) The hardware, software, or
both that enables a user to interact with a computer.
(2) The visual presentation and its underlying
software with which a user interacts.

V
variable. (1) A storage place within an object for a
data feature. The data feature is an object, such as
number or date, stored as an attribute of the
containing object. (2) A bean that receives an
identity at run time. A variable by itself contains no
data or program logic; it must be connected such
that it receives run-time identity from a bean
elsewhere in the application.
207



5754glos.fm Draft Document for Review June 15, 2000 5:51 pm
versioned edition. An edition that has been
versioned and can no longer be modified.

versioning. The act of making an open edition a
versioned edition; that is, making the edition
read-only.

view. (1) A visual bean, such as a window, push
button, or entry field. (2) A visual representation that
can display and change the underlying model
objects of an application. Views are both the end
result of developing an application and the basic
unit of composition of user interfaces. Compare
with visual bean. Contrast with model.

visual bean. In the Visual Composition Editor, a
bean that is visible to the end user in the graphical
user interface. Compare with view. Contrast with
nonvisual bean.

visual programming tool. A tool that provides a
means for specifying programs graphically.
Application programmers write applications by
manipulating graphical representations of
components.

Visual Composition Editor. In VisualAge for Java,
the tool where you can create graphical user
interfaces from prefabricated beans and define
relationships (connections) between both visual
and nonvisual beans. The Visual Composition
Editor is a page in the class browser.

W
Workbench. In VisualAge for Java, the main
window from which you can manage the
workspace, create and modify code, and open
browsers and other tools.

workspace. The work area that contains all the
code you are currently working on (that is, current
editions). The workspace also contains the
standard Java class libraries and other class
libraries.

Your glossary term, acronym or abbreviation.
Term definition
208 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:51 pm 5754IX.fm
Index

Numerics
2-phase commit 50

A
access bean

arguments 57
commit 61
CopyHelper 61
finder 56
home interface 56
init_xx 57
JNDI 58
lazy initialization 58
no-arg constructor 57
remote business method 55
wrapper 57

Access beans 55
accessors 55
activity 22
applets 145
arguments

access bean 57
association

cascaded delete 67
EJB

group 65
ejbCreate 77
ejbPostCreate 77
home caching 105
linkage internal method 71
primary key

String 102
required role 67
single-value

foreign key 77
Authentication 17
Authorization 17

B
backup machine

dispatcher 10
business process 169
© Copyright IBM Corp. 2000
C
caching

command 31
naming context 159

cascaded delete
association 67

chain 129
clones 52
cloning

horizontal scaling 14
model 15
vertical scaling 14

cluster 52
load balancing 9

collection
rowset 62

command
caching 31
compensable 36
encapsulate business logic 26
JavaBean 27
multi protocol 30
targetable 35
targetpolicy 37
undo 36

command target 34
commit 49

access bean 61
compensable

command 36
Concurrency

home factory 166
concurrency 49
CopyHelper

access bean 61
custom security code 51

D
Dispatcher 9
dispatcher

backup machine 10
heartbeat 10
operating systems 10
primary machine 10
synchronized 10

DMZ 12, 16
duplicated code 49
209



5754IX.fm Draft Document for Review June 15, 2000 5:51 pm
dynamic state 131

E
EJB

client 55
group

association 65
ejbCreate

association 77
ejbPostCreate

association 77
enterprise network

security 16

F
filters 20
findEntityForUpdate 178
finder

access bean 56
greedy 109, 114
lazy 110

firewall 16

G
Granularity 172
granularity 129
greedy

finder 109, 114

H
heartbeat

dispatcher 10
high-availability 10
Home Caching 159
Home Factory 159
home interface

access bean 56
horizontal scaling

cloning 14
HTTP server 16
HTTP streaming 153

I
init_xx

access bean 57
interaction

servlet 129

inverse association maintenance 74
isolation level 171

J
JavaBean

command 27
JNDI

access bean 58

L
lazy

finder 110
lazy initialization

access bean 58
LDAP 17
linkage internal method

association 71
load balancing

TCP/IP 8
locating

initial context 159

M
method-level security 51
middleware

home grown 51
model

cloning 15
models 52
multiple database 49
multiple protocol

command 30
multi-valued getter 99

N
named states 131
naming context

caching 159
no-arg constructor

access bean 57

O
operating systems

dispatcher 10
210 Servlet/JSP/EJB Design and Implementation Guide



Draft Document for Review June 15, 2000 5:51 pm 5754IX.fm
P
performance 8
persistence 49
platform independence 51
policy

ramdom 13
round robin 14
servlet redirector 13

polymorphic homes 100
primary machine

dispatcher 10

R
random

policy 13
reliability 8
remote business method

access bean 55
required role

association 67
rollback 49
round robin

policy 14
rowset 62

collection 62

S
scalability 8
scalability, availability 51
security

enterprise network 16
servlet redirector 12

servlet
interaction 129

servlet redirector 11
policy 13
security 12
thick 12
thin 12

short commit cycle 179
short lock cycle 175
singleton

home factory 163
state transition diagram 130
static state 131
synchronized

dispatcher 10

T
targetable

command 35
targetpolicy

command 37
task

command 26
TCP/IP

load balancing 8
thick

servlet redirector 12
thin

servlet redirector 12
timestamp 177
transaction 49
transaction demarcation 186
trigger 177
TX_REQUIRES_NEW 179

U
undo

command 36

V
vertical scaling

cloning 14
Visual Composition Editor

palette 200

W
wlmjar 16
workload 52
wrapper

access bean 57

X
XML 20

data object 173
home factory 162

XSL 21
211



5754IX.fm Draft Document for Review June 15, 2000 5:51 pm
212 Servlet/JSP/EJB Design and Implementation Guide



© Copyright IBM Corp. 2000 213

Draft Document for Review June 15, 2000 5:51 pm 5754eva.fm

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a
Redbook "made the difference" in a task or problem you encountered. Using one of the following
methods, please review the Redbook, addressing value, subject matter, structure, depth and
quality as appropriate.

• Use the online Contact us review redbook form found at ibm.com/redbooks
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-5754-00
Servlet/JSP/EJB Design and Implementation Guide for IBM
WebSphere Application Server

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the
following groups:

O Customer O Business Partner O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may
be used to provide you with
information from IBM or our
business partners about our
products, services or activities.

O Please do not use the information collected here for future
marketing or promotional contacts or other communications beyond
the scope of this transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/
http://www.redbooks.ibm.com/
http://www.ibm.com/privacy/yourprivacy/




(1.5” spine)
1.5”<-> 2.0”

789 <->1051 pages

(1.0” spine)
0.875”<->1.5”

460 <-> 788 pages
To determine the spine width of a book, you divide the paper PPI into the number of pages in the book. An example is a 250 page book using
Plainfield opaque 50# smooth which has a PPI of 526. Divided 250 by 526 which equals a spine width of .4752". In this case, you would use the
.5” spine. Now select the Spine width for the book and hide the others: Special>Conditional Text>Show/Hide>SpineSize(-->Hide:)>Set

Draft Document for Review June 15, 2000 5:51 pm 5754spine.fm 215

(0.5” spine)
0.5”<->0.875”

250 <-> 459 pages

(0.2”spine)
0.17”<->0.5”

90<->249 pages

(0.1”spine)
0.1”<->0.17”

53<->89 pages

Servlet/JSP/EJB  Design and Im
plem

entation Guide   

Servlet/JSP/EJB 
Design and Im

plem
entation 

Servlet/JSP/EJB 
Design and Im

plem
entation 

Guide 

Servlet/JSP/EJB  Design and Im
plem

entation Guide   



(2.5” spine)
2.5”<->nnn.n”

1315<-> nnnn pages
To determine the spine width of a book, you divide the paper PPI into the number of pages in the book. An example is a 250 page book using
Plainfield opaque 50# smooth which has a PPI of 526. Divided 250 by 526 which equals a spine width of .4752". In this case, you would use the
.5” spine. Now select the Spine width for the book and hide the others: Special>Conditional Text>Show/Hide>SpineSize(-->Hide:)>Set

Draft Document for Review June 15, 2000 5:51 pm 5754spine.fm 216

(2.0” spine)
2.0” <-> 2.5”

1052 <-> 1314 pages

Servlet/JSP/EJB 
Design and 
Im

plem
entation Guide

Servlet/JSP/EJB 
Design and 
Im

plem
entation Guide





®

SG24-5754-00 ISBN

Draft Document for Review June 15, 2000 5:53 pm

INTERNATIONAL 
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE 

IBM Redbooks are developed by 
IBM's International Technical 
Support Organization. Experts 
from IBM, Customers and 
Partners from around the world 
create timely technical 
information based on realistic 
scenarios. Specific 
recommendations are provided 
to help you implement IT 
solutions more effectively in 
your environment.

For more information:
ibm.com/redbooks

Servlet/JSP/EJB 
Design and 
Implementation Guide

Build scalable 
applications with 
IBM WebSphere 
Application 
Server

Apply design 
patterns to your 
applications

Improve 
performances

This redbook provides design guidelines for
developing e-business applications based on
Servlets, JSP and Enterprise Javabeans
technologies.

Part 1 of the redbook provides guidelines on how
to design specific components of an application.
It also explains why and when a designer should
move business logic from JavaBeans to a more
powerful technology like Enterprise JavaBeans.
By doing so, we explain what important aspects
of the techonology must be taken in account.

Part 2 is a set of design patterns for building
e-business applications. The reader can go
directly to one chapter and use the information
directly in his design.

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Comments welcome

	Part 1. Choosing Appropriate Web technologies
	Chapter 1. Introduction
	Chapter 2. A Scalable and Reliable Topology
	2.1 TCP/IP load balancing and Failover
	2.1.1 How the Dispatcher works
	2.1.2 High availability

	2.2 Servlets Load Balancing
	2.2.1 Cloning

	2.3 Servlets/EJB Load Balancing
	2.4 Security
	2.4.1 Demilitarized Zone
	2.4.2 Authentication and Autorization


	Chapter 3. Support for Pervasive Computing
	3.1 What is pervasive computing and why do we care?
	3.2 What is the problem about supporting multiple types of client?
	3.3 Description of the solution

	Chapter 4. WebSphere Command Framework
	4.1 Command Pattern
	4.1.1 Introduction
	4.1.2 Commands
	4.1.3 Display Commands
	4.1.4 Roles
	4.1.5 What’s the value?
	4.1.6 Granularity issues about the Command Bean
	4.1.7 Relationship of Command Beans and EJB
	4.1.8 Caching

	4.2 The command pattern
	4.2.1 Pattern description
	4.2.2 Command programming model
	4.2.3 Command Target and Server implementation
	4.2.4 Command client model


	Chapter 5. Need for the EJB technology
	5.1 Multiple client types accessing shared data
	5.2 Concurrent read and update access to shared data
	5.3 Accessing multiple datasources with transactional capabilities
	5.4 Method-level object security
	5.5 Portable component-based architecture
	5.6 Multiple servers to handle throughput and availability
	5.7 Adopting enterprise bean technology

	Chapter 6. Access Beans
	6.1 Wrappers
	6.2 Copy helpers
	6.3 Rowsets
	6.4 Access beans and associations
	6.5 Access beans and WLM
	6.6 Use of Access Beans

	Chapter 7. Associations
	7.1 Overview
	7.2 Description of the association solution
	7.3 Association developer and user responsibilities
	7.3.1 Implementation of ejbCreate / ejbPostCreate methods
	7.3.2 Delete cascading
	7.3.3 Usage of associations with required roles
	7.3.4 Many-to-many relationships

	7.4 Hints and tips
	7.4.1 Usage of the multi-valued getters
	7.4.2 Associations with subtypes

	7.5 Association deployment
	7.5.1 Deployment descriptor
	7.5.2 Deployment on WebSphere Advanced Edition
	7.5.3 Deployment on WebSphere Enterprise Edition (CB)
	7.5.4 Deployment on non WebSphere application servers
	7.5.5 Runtime requirements

	7.6 Performance
	7.6.1 Inverse association maintenance
	7.6.2 Maintaining association members
	7.6.3 Association method types (read-only /update)


	Chapter 8. Collections
	8.1 What we mean by collections
	8.2 Enumerations with Finders
	8.2.1 Finders
	8.2.2 Greedy and Lazy enumerations
	8.2.3 Enumerations Test scenarios
	8.2.4 Summary

	8.3 Using the JDBC API
	8.3.1 ResultSet
	8.3.2 RowSet
	8.3.3 Using JDBC with a stateless session bean

	8.4 Conclusion

	Part 2. Design Patterns and Guidelines
	Chapter 9. Servlets/JSP
	9.1 Organizing the application
	9.1.1 Intent
	9.1.2 Motivation
	9.1.3 Applicability
	9.1.4 Structure
	9.1.5 Participants
	9.1.6 Collaborations
	9.1.7 Consequence
	9.1.8 Implementation
	9.1.9 Related Pattern

	9.2 XML Data Islands
	9.2.1 Intent
	9.2.2 Motivation
	9.2.3 Applicability
	9.2.4 Structure
	9.2.5 Participants
	9.2.6 Collaboration
	9.2.7 Consequence
	9.2.8 Implementation
	9.2.9 Sample Code
	9.2.10 Related Patterns

	9.3 Applet to server communication
	9.3.1 Introduction
	9.3.2 Applet to servlet communication
	9.3.3 Outlook: applet to server-object communication

	9.4 Pushing content to the client
	9.4.1 Introducing Push technology
	9.4.2 Solutions
	9.4.3 Consequences of using push technology


	Chapter 10. EJB Design Patterns
	10.1 Factory for EJB Homes
	10.1.1 Intent
	10.1.2 Also known as
	10.1.3 Motivation
	10.1.4 Applicability
	10.1.5 Participants
	10.1.6 Collaborations
	10.1.7 Consequences
	10.1.8 Implementation
	10.1.9 Known uses
	10.1.10 Related patterns

	10.2 EJB Session Facade to Entity Beans
	10.2.1 Intent
	10.2.2 Motivation
	10.2.3 Participants
	10.2.4 Implementation
	10.2.5 Related patterns

	10.3 Optimistic Locking Pattern
	10.3.1 Intent
	10.3.2 Motivation
	10.3.3 Applicability
	10.3.4 Participants
	10.3.5 Implementation
	10.3.6 Sample code
	10.3.7 Related patterns


	Chapter 11. EJB Performance Guidelines
	11.1 Database access
	11.1.1 Read-only methods
	11.1.2 Transaction lifecycle
	11.1.3 Database deadlocks
	11.1.4 Caching


	Appendix A. Special notices
	Appendix B. Related publications
	B.1 IBM Redbooks publications
	B.2 IBM Redbooks collections
	B.3 Other resources
	B.4 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Glossary
	Index
	IBM Redbooks review

